1 /*- 2 * Copyright (c) 1989, 1992, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software developed by the Computer Systems 6 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract 7 * BG 91-66 and contributed to Berkeley. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 */ 33 34 #if 0 35 #if defined(LIBC_SCCS) && !defined(lint) 36 static char sccsid[] = "@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93"; 37 #endif /* LIBC_SCCS and not lint */ 38 #endif 39 40 #include <sys/cdefs.h> 41 __FBSDID("$FreeBSD$"); 42 43 /* 44 * Proc traversal interface for kvm. ps and w are (probably) the exclusive 45 * users of this code, so we've factored it out into a separate module. 46 * Thus, we keep this grunge out of the other kvm applications (i.e., 47 * most other applications are interested only in open/close/read/nlist). 48 */ 49 50 #include <sys/param.h> 51 #define _WANT_UCRED /* make ucred.h give us 'struct ucred' */ 52 #include <sys/ucred.h> 53 #include <sys/queue.h> 54 #include <sys/_lock.h> 55 #include <sys/_mutex.h> 56 #include <sys/_task.h> 57 #define _WANT_PRISON /* make jail.h give us 'struct prison' */ 58 #include <sys/jail.h> 59 #include <sys/user.h> 60 #include <sys/proc.h> 61 #include <sys/exec.h> 62 #include <sys/stat.h> 63 #include <sys/sysent.h> 64 #include <sys/ioctl.h> 65 #include <sys/tty.h> 66 #include <sys/file.h> 67 #include <sys/conf.h> 68 #include <stdio.h> 69 #include <stdlib.h> 70 #include <unistd.h> 71 #include <nlist.h> 72 #include <kvm.h> 73 74 #include <vm/vm.h> 75 #include <vm/vm_param.h> 76 77 #include <sys/sysctl.h> 78 79 #include <limits.h> 80 #include <memory.h> 81 #include <paths.h> 82 83 #include "kvm_private.h" 84 85 #define KREAD(kd, addr, obj) \ 86 (kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj)) 87 88 static int ticks; 89 static int hz; 90 91 /* 92 * Read proc's from memory file into buffer bp, which has space to hold 93 * at most maxcnt procs. 94 */ 95 static int 96 kvm_proclist(kd, what, arg, p, bp, maxcnt) 97 kvm_t *kd; 98 int what, arg; 99 struct proc *p; 100 struct kinfo_proc *bp; 101 int maxcnt; 102 { 103 int cnt = 0; 104 struct kinfo_proc kinfo_proc, *kp; 105 struct pgrp pgrp; 106 struct session sess; 107 struct cdev t_cdev; 108 struct tty tty; 109 struct vmspace vmspace; 110 struct sigacts sigacts; 111 struct pstats pstats; 112 struct ucred ucred; 113 struct prison pr; 114 struct thread mtd; 115 struct proc proc; 116 struct proc pproc; 117 struct timeval tv; 118 struct sysentvec sysent; 119 char svname[KI_EMULNAMELEN]; 120 121 kp = &kinfo_proc; 122 kp->ki_structsize = sizeof(kinfo_proc); 123 /* 124 * Loop on the processes. this is completely broken because we need to be 125 * able to loop on the threads and merge the ones that are the same process some how. 126 */ 127 for (; cnt < maxcnt && p != NULL; p = LIST_NEXT(&proc, p_list)) { 128 memset(kp, 0, sizeof *kp); 129 if (KREAD(kd, (u_long)p, &proc)) { 130 _kvm_err(kd, kd->program, "can't read proc at %x", p); 131 return (-1); 132 } 133 if (proc.p_state != PRS_ZOMBIE) { 134 if (KREAD(kd, (u_long)TAILQ_FIRST(&proc.p_threads), 135 &mtd)) { 136 _kvm_err(kd, kd->program, 137 "can't read thread at %x", 138 TAILQ_FIRST(&proc.p_threads)); 139 return (-1); 140 } 141 } 142 if (KREAD(kd, (u_long)proc.p_ucred, &ucred) == 0) { 143 kp->ki_ruid = ucred.cr_ruid; 144 kp->ki_svuid = ucred.cr_svuid; 145 kp->ki_rgid = ucred.cr_rgid; 146 kp->ki_svgid = ucred.cr_svgid; 147 kp->ki_ngroups = ucred.cr_ngroups; 148 bcopy(ucred.cr_groups, kp->ki_groups, 149 NGROUPS * sizeof(gid_t)); 150 kp->ki_uid = ucred.cr_uid; 151 if (ucred.cr_prison != NULL) { 152 if (KREAD(kd, (u_long)ucred.cr_prison, &pr)) { 153 _kvm_err(kd, kd->program, 154 "can't read prison at %x", 155 ucred.cr_prison); 156 return (-1); 157 } 158 kp->ki_jid = pr.pr_id; 159 } 160 } 161 162 switch(what & ~KERN_PROC_INC_THREAD) { 163 164 case KERN_PROC_GID: 165 if (kp->ki_groups[0] != (gid_t)arg) 166 continue; 167 break; 168 169 case KERN_PROC_PID: 170 if (proc.p_pid != (pid_t)arg) 171 continue; 172 break; 173 174 case KERN_PROC_RGID: 175 if (kp->ki_rgid != (gid_t)arg) 176 continue; 177 break; 178 179 case KERN_PROC_UID: 180 if (kp->ki_uid != (uid_t)arg) 181 continue; 182 break; 183 184 case KERN_PROC_RUID: 185 if (kp->ki_ruid != (uid_t)arg) 186 continue; 187 break; 188 } 189 /* 190 * We're going to add another proc to the set. If this 191 * will overflow the buffer, assume the reason is because 192 * nprocs (or the proc list) is corrupt and declare an error. 193 */ 194 if (cnt >= maxcnt) { 195 _kvm_err(kd, kd->program, "nprocs corrupt"); 196 return (-1); 197 } 198 /* 199 * gather kinfo_proc 200 */ 201 kp->ki_paddr = p; 202 kp->ki_addr = 0; /* XXX uarea */ 203 /* kp->ki_kstack = proc.p_thread.td_kstack; XXXKSE */ 204 kp->ki_args = proc.p_args; 205 kp->ki_tracep = proc.p_tracevp; 206 kp->ki_textvp = proc.p_textvp; 207 kp->ki_fd = proc.p_fd; 208 kp->ki_vmspace = proc.p_vmspace; 209 if (proc.p_sigacts != NULL) { 210 if (KREAD(kd, (u_long)proc.p_sigacts, &sigacts)) { 211 _kvm_err(kd, kd->program, 212 "can't read sigacts at %x", proc.p_sigacts); 213 return (-1); 214 } 215 kp->ki_sigignore = sigacts.ps_sigignore; 216 kp->ki_sigcatch = sigacts.ps_sigcatch; 217 } 218 #if 0 219 if ((proc.p_flag & P_INMEM) && proc.p_stats != NULL) { 220 if (KREAD(kd, (u_long)proc.p_stats, &pstats)) { 221 _kvm_err(kd, kd->program, 222 "can't read stats at %x", proc.p_stats); 223 return (-1); 224 } 225 kp->ki_start = pstats.p_start; 226 227 /* 228 * XXX: The times here are probably zero and need 229 * to be calculated from the raw data in p_rux and 230 * p_crux. 231 */ 232 kp->ki_rusage = pstats.p_ru; 233 kp->ki_childstime = pstats.p_cru.ru_stime; 234 kp->ki_childutime = pstats.p_cru.ru_utime; 235 /* Some callers want child-times in a single value */ 236 timeradd(&kp->ki_childstime, &kp->ki_childutime, 237 &kp->ki_childtime); 238 } 239 #endif 240 if (proc.p_oppid) 241 kp->ki_ppid = proc.p_oppid; 242 else if (proc.p_pptr) { 243 if (KREAD(kd, (u_long)proc.p_pptr, &pproc)) { 244 _kvm_err(kd, kd->program, 245 "can't read pproc at %x", proc.p_pptr); 246 return (-1); 247 } 248 kp->ki_ppid = pproc.p_pid; 249 } else 250 kp->ki_ppid = 0; 251 if (proc.p_pgrp == NULL) 252 goto nopgrp; 253 if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) { 254 _kvm_err(kd, kd->program, "can't read pgrp at %x", 255 proc.p_pgrp); 256 return (-1); 257 } 258 kp->ki_pgid = pgrp.pg_id; 259 kp->ki_jobc = pgrp.pg_jobc; 260 if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) { 261 _kvm_err(kd, kd->program, "can't read session at %x", 262 pgrp.pg_session); 263 return (-1); 264 } 265 kp->ki_sid = sess.s_sid; 266 (void)memcpy(kp->ki_login, sess.s_login, 267 sizeof(kp->ki_login)); 268 kp->ki_kiflag = sess.s_ttyvp ? KI_CTTY : 0; 269 if (sess.s_leader == p) 270 kp->ki_kiflag |= KI_SLEADER; 271 if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) { 272 if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) { 273 _kvm_err(kd, kd->program, 274 "can't read tty at %x", sess.s_ttyp); 275 return (-1); 276 } 277 if (tty.t_dev != NULL) { 278 if (KREAD(kd, (u_long)tty.t_dev, &t_cdev)) { 279 _kvm_err(kd, kd->program, 280 "can't read cdev at %x", 281 tty.t_dev); 282 return (-1); 283 } 284 #if 0 285 kp->ki_tdev = t_cdev.si_udev; 286 #else 287 kp->ki_tdev = NODEV; 288 #endif 289 } 290 if (tty.t_pgrp != NULL) { 291 if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) { 292 _kvm_err(kd, kd->program, 293 "can't read tpgrp at %x", 294 tty.t_pgrp); 295 return (-1); 296 } 297 kp->ki_tpgid = pgrp.pg_id; 298 } else 299 kp->ki_tpgid = -1; 300 if (tty.t_session != NULL) { 301 if (KREAD(kd, (u_long)tty.t_session, &sess)) { 302 _kvm_err(kd, kd->program, 303 "can't read session at %x", 304 tty.t_session); 305 return (-1); 306 } 307 kp->ki_tsid = sess.s_sid; 308 } 309 } else { 310 nopgrp: 311 kp->ki_tdev = NODEV; 312 } 313 if ((proc.p_state != PRS_ZOMBIE) && mtd.td_wmesg) 314 (void)kvm_read(kd, (u_long)mtd.td_wmesg, 315 kp->ki_wmesg, WMESGLEN); 316 317 (void)kvm_read(kd, (u_long)proc.p_vmspace, 318 (char *)&vmspace, sizeof(vmspace)); 319 kp->ki_size = vmspace.vm_map.size; 320 kp->ki_rssize = vmspace.vm_swrss; /* XXX */ 321 kp->ki_swrss = vmspace.vm_swrss; 322 kp->ki_tsize = vmspace.vm_tsize; 323 kp->ki_dsize = vmspace.vm_dsize; 324 kp->ki_ssize = vmspace.vm_ssize; 325 326 switch (what & ~KERN_PROC_INC_THREAD) { 327 328 case KERN_PROC_PGRP: 329 if (kp->ki_pgid != (pid_t)arg) 330 continue; 331 break; 332 333 case KERN_PROC_SESSION: 334 if (kp->ki_sid != (pid_t)arg) 335 continue; 336 break; 337 338 case KERN_PROC_TTY: 339 if ((proc.p_flag & P_CONTROLT) == 0 || 340 kp->ki_tdev != (dev_t)arg) 341 continue; 342 break; 343 } 344 if (proc.p_comm[0] != 0) 345 strlcpy(kp->ki_comm, proc.p_comm, MAXCOMLEN); 346 (void)kvm_read(kd, (u_long)proc.p_sysent, (char *)&sysent, 347 sizeof(sysent)); 348 (void)kvm_read(kd, (u_long)sysent.sv_name, (char *)&svname, 349 sizeof(svname)); 350 if (svname[0] != 0) 351 strlcpy(kp->ki_emul, svname, KI_EMULNAMELEN); 352 if ((proc.p_state != PRS_ZOMBIE) && 353 (mtd.td_blocked != 0)) { 354 kp->ki_kiflag |= KI_LOCKBLOCK; 355 if (mtd.td_lockname) 356 (void)kvm_read(kd, 357 (u_long)mtd.td_lockname, 358 kp->ki_lockname, LOCKNAMELEN); 359 kp->ki_lockname[LOCKNAMELEN] = 0; 360 } 361 /* 362 * XXX: This is plain wrong, rux_runtime has nothing 363 * to do with struct bintime, rux_runtime is just a 64-bit 364 * integer counter of cputicks. What we need here is a way 365 * to convert cputicks to usecs. The kernel does it in 366 * kern/kern_tc.c, but the function can't be just copied. 367 */ 368 bintime2timeval(&proc.p_rux.rux_runtime, &tv); 369 kp->ki_runtime = (u_int64_t)tv.tv_sec * 1000000 + tv.tv_usec; 370 kp->ki_pid = proc.p_pid; 371 kp->ki_siglist = proc.p_siglist; 372 SIGSETOR(kp->ki_siglist, mtd.td_siglist); 373 kp->ki_sigmask = mtd.td_sigmask; 374 kp->ki_xstat = proc.p_xstat; 375 kp->ki_acflag = proc.p_acflag; 376 kp->ki_lock = proc.p_lock; 377 if (proc.p_state != PRS_ZOMBIE) { 378 kp->ki_swtime = (ticks - proc.p_swtick) / hz; 379 kp->ki_flag = proc.p_flag; 380 kp->ki_sflag = 0; 381 kp->ki_nice = proc.p_nice; 382 kp->ki_traceflag = proc.p_traceflag; 383 if (proc.p_state == PRS_NORMAL) { 384 if (TD_ON_RUNQ(&mtd) || 385 TD_CAN_RUN(&mtd) || 386 TD_IS_RUNNING(&mtd)) { 387 kp->ki_stat = SRUN; 388 } else if (mtd.td_state == 389 TDS_INHIBITED) { 390 if (P_SHOULDSTOP(&proc)) { 391 kp->ki_stat = SSTOP; 392 } else if ( 393 TD_IS_SLEEPING(&mtd)) { 394 kp->ki_stat = SSLEEP; 395 } else if (TD_ON_LOCK(&mtd)) { 396 kp->ki_stat = SLOCK; 397 } else { 398 kp->ki_stat = SWAIT; 399 } 400 } 401 } else { 402 kp->ki_stat = SIDL; 403 } 404 /* Stuff from the thread */ 405 kp->ki_pri.pri_level = mtd.td_priority; 406 kp->ki_pri.pri_native = mtd.td_base_pri; 407 kp->ki_lastcpu = mtd.td_lastcpu; 408 kp->ki_wchan = mtd.td_wchan; 409 if (mtd.td_name[0] != 0) 410 strlcpy(kp->ki_ocomm, mtd.td_name, MAXCOMLEN); 411 kp->ki_oncpu = mtd.td_oncpu; 412 if (mtd.td_name[0] != '\0') 413 strlcpy(kp->ki_ocomm, mtd.td_name, sizeof(kp->ki_ocomm)); 414 if (!(proc.p_flag & P_SA)) { 415 kp->ki_pctcpu = 0; 416 kp->ki_rqindex = 0; 417 } else { 418 kp->ki_tdflags = -1; 419 /* All the rest are 0 for now */ 420 } 421 } else { 422 kp->ki_stat = SZOMB; 423 } 424 bcopy(&kinfo_proc, bp, sizeof(kinfo_proc)); 425 ++bp; 426 ++cnt; 427 } 428 return (cnt); 429 } 430 431 /* 432 * Build proc info array by reading in proc list from a crash dump. 433 * Return number of procs read. maxcnt is the max we will read. 434 */ 435 static int 436 kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt) 437 kvm_t *kd; 438 int what, arg; 439 u_long a_allproc; 440 u_long a_zombproc; 441 int maxcnt; 442 { 443 struct kinfo_proc *bp = kd->procbase; 444 int acnt, zcnt; 445 struct proc *p; 446 447 if (KREAD(kd, a_allproc, &p)) { 448 _kvm_err(kd, kd->program, "cannot read allproc"); 449 return (-1); 450 } 451 acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt); 452 if (acnt < 0) 453 return (acnt); 454 455 if (KREAD(kd, a_zombproc, &p)) { 456 _kvm_err(kd, kd->program, "cannot read zombproc"); 457 return (-1); 458 } 459 zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt); 460 if (zcnt < 0) 461 zcnt = 0; 462 463 return (acnt + zcnt); 464 } 465 466 struct kinfo_proc * 467 kvm_getprocs(kd, op, arg, cnt) 468 kvm_t *kd; 469 int op, arg; 470 int *cnt; 471 { 472 int mib[4], st, nprocs; 473 size_t size; 474 int temp_op; 475 476 if (kd->procbase != 0) { 477 free((void *)kd->procbase); 478 /* 479 * Clear this pointer in case this call fails. Otherwise, 480 * kvm_close() will free it again. 481 */ 482 kd->procbase = 0; 483 } 484 if (ISALIVE(kd)) { 485 size = 0; 486 mib[0] = CTL_KERN; 487 mib[1] = KERN_PROC; 488 mib[2] = op; 489 mib[3] = arg; 490 temp_op = op & ~KERN_PROC_INC_THREAD; 491 st = sysctl(mib, 492 temp_op == KERN_PROC_ALL || temp_op == KERN_PROC_PROC ? 493 3 : 4, NULL, &size, NULL, 0); 494 if (st == -1) { 495 _kvm_syserr(kd, kd->program, "kvm_getprocs"); 496 return (0); 497 } 498 /* 499 * We can't continue with a size of 0 because we pass 500 * it to realloc() (via _kvm_realloc()), and passing 0 501 * to realloc() results in undefined behavior. 502 */ 503 if (size == 0) { 504 /* 505 * XXX: We should probably return an invalid, 506 * but non-NULL, pointer here so any client 507 * program trying to dereference it will 508 * crash. However, _kvm_freeprocs() calls 509 * free() on kd->procbase if it isn't NULL, 510 * and free()'ing a junk pointer isn't good. 511 * Then again, _kvm_freeprocs() isn't used 512 * anywhere . . . 513 */ 514 kd->procbase = _kvm_malloc(kd, 1); 515 goto liveout; 516 } 517 do { 518 size += size / 10; 519 kd->procbase = (struct kinfo_proc *) 520 _kvm_realloc(kd, kd->procbase, size); 521 if (kd->procbase == 0) 522 return (0); 523 st = sysctl(mib, temp_op == KERN_PROC_ALL || 524 temp_op == KERN_PROC_PROC ? 3 : 4, 525 kd->procbase, &size, NULL, 0); 526 } while (st == -1 && errno == ENOMEM); 527 if (st == -1) { 528 _kvm_syserr(kd, kd->program, "kvm_getprocs"); 529 return (0); 530 } 531 /* 532 * We have to check the size again because sysctl() 533 * may "round up" oldlenp if oldp is NULL; hence it 534 * might've told us that there was data to get when 535 * there really isn't any. 536 */ 537 if (size > 0 && 538 kd->procbase->ki_structsize != sizeof(struct kinfo_proc)) { 539 _kvm_err(kd, kd->program, 540 "kinfo_proc size mismatch (expected %d, got %d)", 541 sizeof(struct kinfo_proc), 542 kd->procbase->ki_structsize); 543 return (0); 544 } 545 liveout: 546 nprocs = size == 0 ? 0 : size / kd->procbase->ki_structsize; 547 } else { 548 struct nlist nl[6], *p; 549 550 nl[0].n_name = "_nprocs"; 551 nl[1].n_name = "_allproc"; 552 nl[2].n_name = "_zombproc"; 553 nl[3].n_name = "_ticks"; 554 nl[4].n_name = "_hz"; 555 nl[5].n_name = 0; 556 557 if (kvm_nlist(kd, nl) != 0) { 558 for (p = nl; p->n_type != 0; ++p) 559 ; 560 _kvm_err(kd, kd->program, 561 "%s: no such symbol", p->n_name); 562 return (0); 563 } 564 if (KREAD(kd, nl[0].n_value, &nprocs)) { 565 _kvm_err(kd, kd->program, "can't read nprocs"); 566 return (0); 567 } 568 if (KREAD(kd, nl[3].n_value, &ticks)) { 569 _kvm_err(kd, kd->program, "can't read ticks"); 570 return (0); 571 } 572 if (KREAD(kd, nl[4].n_value, &hz)) { 573 _kvm_err(kd, kd->program, "can't read hz"); 574 return (0); 575 } 576 size = nprocs * sizeof(struct kinfo_proc); 577 kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size); 578 if (kd->procbase == 0) 579 return (0); 580 581 nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value, 582 nl[2].n_value, nprocs); 583 #ifdef notdef 584 size = nprocs * sizeof(struct kinfo_proc); 585 (void)realloc(kd->procbase, size); 586 #endif 587 } 588 *cnt = nprocs; 589 return (kd->procbase); 590 } 591 592 void 593 _kvm_freeprocs(kd) 594 kvm_t *kd; 595 { 596 if (kd->procbase) { 597 free(kd->procbase); 598 kd->procbase = 0; 599 } 600 } 601 602 void * 603 _kvm_realloc(kd, p, n) 604 kvm_t *kd; 605 void *p; 606 size_t n; 607 { 608 void *np = (void *)realloc(p, n); 609 610 if (np == 0) { 611 free(p); 612 _kvm_err(kd, kd->program, "out of memory"); 613 } 614 return (np); 615 } 616 617 #ifndef MAX 618 #define MAX(a, b) ((a) > (b) ? (a) : (b)) 619 #endif 620 621 /* 622 * Read in an argument vector from the user address space of process kp. 623 * addr if the user-space base address of narg null-terminated contiguous 624 * strings. This is used to read in both the command arguments and 625 * environment strings. Read at most maxcnt characters of strings. 626 */ 627 static char ** 628 kvm_argv(kd, kp, addr, narg, maxcnt) 629 kvm_t *kd; 630 struct kinfo_proc *kp; 631 u_long addr; 632 int narg; 633 int maxcnt; 634 { 635 char *np, *cp, *ep, *ap; 636 u_long oaddr = -1; 637 int len, cc; 638 char **argv; 639 640 /* 641 * Check that there aren't an unreasonable number of agruments, 642 * and that the address is in user space. 643 */ 644 if (narg > 512 || addr < VM_MIN_ADDRESS || addr >= VM_MAXUSER_ADDRESS) 645 return (0); 646 647 /* 648 * kd->argv : work space for fetching the strings from the target 649 * process's space, and is converted for returning to caller 650 */ 651 if (kd->argv == 0) { 652 /* 653 * Try to avoid reallocs. 654 */ 655 kd->argc = MAX(narg + 1, 32); 656 kd->argv = (char **)_kvm_malloc(kd, kd->argc * 657 sizeof(*kd->argv)); 658 if (kd->argv == 0) 659 return (0); 660 } else if (narg + 1 > kd->argc) { 661 kd->argc = MAX(2 * kd->argc, narg + 1); 662 kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc * 663 sizeof(*kd->argv)); 664 if (kd->argv == 0) 665 return (0); 666 } 667 /* 668 * kd->argspc : returned to user, this is where the kd->argv 669 * arrays are left pointing to the collected strings. 670 */ 671 if (kd->argspc == 0) { 672 kd->argspc = (char *)_kvm_malloc(kd, PAGE_SIZE); 673 if (kd->argspc == 0) 674 return (0); 675 kd->arglen = PAGE_SIZE; 676 } 677 /* 678 * kd->argbuf : used to pull in pages from the target process. 679 * the strings are copied out of here. 680 */ 681 if (kd->argbuf == 0) { 682 kd->argbuf = (char *)_kvm_malloc(kd, PAGE_SIZE); 683 if (kd->argbuf == 0) 684 return (0); 685 } 686 687 /* Pull in the target process'es argv vector */ 688 cc = sizeof(char *) * narg; 689 if (kvm_uread(kd, kp, addr, (char *)kd->argv, cc) != cc) 690 return (0); 691 /* 692 * ap : saved start address of string we're working on in kd->argspc 693 * np : pointer to next place to write in kd->argspc 694 * len: length of data in kd->argspc 695 * argv: pointer to the argv vector that we are hunting around the 696 * target process space for, and converting to addresses in 697 * our address space (kd->argspc). 698 */ 699 ap = np = kd->argspc; 700 argv = kd->argv; 701 len = 0; 702 /* 703 * Loop over pages, filling in the argument vector. 704 * Note that the argv strings could be pointing *anywhere* in 705 * the user address space and are no longer contiguous. 706 * Note that *argv is modified when we are going to fetch a string 707 * that crosses a page boundary. We copy the next part of the string 708 * into to "np" and eventually convert the pointer. 709 */ 710 while (argv < kd->argv + narg && *argv != 0) { 711 712 /* get the address that the current argv string is on */ 713 addr = (u_long)*argv & ~(PAGE_SIZE - 1); 714 715 /* is it the same page as the last one? */ 716 if (addr != oaddr) { 717 if (kvm_uread(kd, kp, addr, kd->argbuf, PAGE_SIZE) != 718 PAGE_SIZE) 719 return (0); 720 oaddr = addr; 721 } 722 723 /* offset within the page... kd->argbuf */ 724 addr = (u_long)*argv & (PAGE_SIZE - 1); 725 726 /* cp = start of string, cc = count of chars in this chunk */ 727 cp = kd->argbuf + addr; 728 cc = PAGE_SIZE - addr; 729 730 /* dont get more than asked for by user process */ 731 if (maxcnt > 0 && cc > maxcnt - len) 732 cc = maxcnt - len; 733 734 /* pointer to end of string if we found it in this page */ 735 ep = memchr(cp, '\0', cc); 736 if (ep != 0) 737 cc = ep - cp + 1; 738 /* 739 * at this point, cc is the count of the chars that we are 740 * going to retrieve this time. we may or may not have found 741 * the end of it. (ep points to the null if the end is known) 742 */ 743 744 /* will we exceed the malloc/realloced buffer? */ 745 if (len + cc > kd->arglen) { 746 int off; 747 char **pp; 748 char *op = kd->argspc; 749 750 kd->arglen *= 2; 751 kd->argspc = (char *)_kvm_realloc(kd, kd->argspc, 752 kd->arglen); 753 if (kd->argspc == 0) 754 return (0); 755 /* 756 * Adjust argv pointers in case realloc moved 757 * the string space. 758 */ 759 off = kd->argspc - op; 760 for (pp = kd->argv; pp < argv; pp++) 761 *pp += off; 762 ap += off; 763 np += off; 764 } 765 /* np = where to put the next part of the string in kd->argspc*/ 766 /* np is kinda redundant.. could use "kd->argspc + len" */ 767 memcpy(np, cp, cc); 768 np += cc; /* inc counters */ 769 len += cc; 770 771 /* 772 * if end of string found, set the *argv pointer to the 773 * saved beginning of string, and advance. argv points to 774 * somewhere in kd->argv.. This is initially relative 775 * to the target process, but when we close it off, we set 776 * it to point in our address space. 777 */ 778 if (ep != 0) { 779 *argv++ = ap; 780 ap = np; 781 } else { 782 /* update the address relative to the target process */ 783 *argv += cc; 784 } 785 786 if (maxcnt > 0 && len >= maxcnt) { 787 /* 788 * We're stopping prematurely. Terminate the 789 * current string. 790 */ 791 if (ep == 0) { 792 *np = '\0'; 793 *argv++ = ap; 794 } 795 break; 796 } 797 } 798 /* Make sure argv is terminated. */ 799 *argv = 0; 800 return (kd->argv); 801 } 802 803 static void 804 ps_str_a(p, addr, n) 805 struct ps_strings *p; 806 u_long *addr; 807 int *n; 808 { 809 *addr = (u_long)p->ps_argvstr; 810 *n = p->ps_nargvstr; 811 } 812 813 static void 814 ps_str_e(p, addr, n) 815 struct ps_strings *p; 816 u_long *addr; 817 int *n; 818 { 819 *addr = (u_long)p->ps_envstr; 820 *n = p->ps_nenvstr; 821 } 822 823 /* 824 * Determine if the proc indicated by p is still active. 825 * This test is not 100% foolproof in theory, but chances of 826 * being wrong are very low. 827 */ 828 static int 829 proc_verify(curkp) 830 struct kinfo_proc *curkp; 831 { 832 struct kinfo_proc newkp; 833 int mib[4]; 834 size_t len; 835 836 mib[0] = CTL_KERN; 837 mib[1] = KERN_PROC; 838 mib[2] = KERN_PROC_PID; 839 mib[3] = curkp->ki_pid; 840 len = sizeof(newkp); 841 if (sysctl(mib, 4, &newkp, &len, NULL, 0) == -1) 842 return (0); 843 return (curkp->ki_pid == newkp.ki_pid && 844 (newkp.ki_stat != SZOMB || curkp->ki_stat == SZOMB)); 845 } 846 847 static char ** 848 kvm_doargv(kd, kp, nchr, info) 849 kvm_t *kd; 850 struct kinfo_proc *kp; 851 int nchr; 852 void (*info)(struct ps_strings *, u_long *, int *); 853 { 854 char **ap; 855 u_long addr; 856 int cnt; 857 static struct ps_strings arginfo; 858 static u_long ps_strings; 859 size_t len; 860 861 if (ps_strings == 0) { 862 len = sizeof(ps_strings); 863 if (sysctlbyname("kern.ps_strings", &ps_strings, &len, NULL, 864 0) == -1) 865 ps_strings = PS_STRINGS; 866 } 867 868 /* 869 * Pointers are stored at the top of the user stack. 870 */ 871 if (kp->ki_stat == SZOMB || 872 kvm_uread(kd, kp, ps_strings, (char *)&arginfo, 873 sizeof(arginfo)) != sizeof(arginfo)) 874 return (0); 875 876 (*info)(&arginfo, &addr, &cnt); 877 if (cnt == 0) 878 return (0); 879 ap = kvm_argv(kd, kp, addr, cnt, nchr); 880 /* 881 * For live kernels, make sure this process didn't go away. 882 */ 883 if (ap != 0 && ISALIVE(kd) && !proc_verify(kp)) 884 ap = 0; 885 return (ap); 886 } 887 888 /* 889 * Get the command args. This code is now machine independent. 890 */ 891 char ** 892 kvm_getargv(kd, kp, nchr) 893 kvm_t *kd; 894 const struct kinfo_proc *kp; 895 int nchr; 896 { 897 int oid[4]; 898 int i; 899 size_t bufsz; 900 static unsigned long buflen; 901 static char *buf, *p; 902 static char **bufp; 903 static int argc; 904 905 if (!ISALIVE(kd)) { 906 _kvm_err(kd, kd->program, 907 "cannot read user space from dead kernel"); 908 return (0); 909 } 910 911 if (!buflen) { 912 bufsz = sizeof(buflen); 913 i = sysctlbyname("kern.ps_arg_cache_limit", 914 &buflen, &bufsz, NULL, 0); 915 if (i == -1) { 916 buflen = 0; 917 } else { 918 buf = malloc(buflen); 919 if (buf == NULL) 920 buflen = 0; 921 argc = 32; 922 bufp = malloc(sizeof(char *) * argc); 923 } 924 } 925 if (buf != NULL) { 926 oid[0] = CTL_KERN; 927 oid[1] = KERN_PROC; 928 oid[2] = KERN_PROC_ARGS; 929 oid[3] = kp->ki_pid; 930 bufsz = buflen; 931 i = sysctl(oid, 4, buf, &bufsz, 0, 0); 932 if (i == 0 && bufsz > 0) { 933 i = 0; 934 p = buf; 935 do { 936 bufp[i++] = p; 937 p += strlen(p) + 1; 938 if (i >= argc) { 939 argc += argc; 940 bufp = realloc(bufp, 941 sizeof(char *) * argc); 942 } 943 } while (p < buf + bufsz); 944 bufp[i++] = 0; 945 return (bufp); 946 } 947 } 948 if (kp->ki_flag & P_SYSTEM) 949 return (NULL); 950 return (kvm_doargv(kd, kp, nchr, ps_str_a)); 951 } 952 953 char ** 954 kvm_getenvv(kd, kp, nchr) 955 kvm_t *kd; 956 const struct kinfo_proc *kp; 957 int nchr; 958 { 959 return (kvm_doargv(kd, kp, nchr, ps_str_e)); 960 } 961 962 /* 963 * Read from user space. The user context is given by p. 964 */ 965 ssize_t 966 kvm_uread(kd, kp, uva, buf, len) 967 kvm_t *kd; 968 struct kinfo_proc *kp; 969 u_long uva; 970 char *buf; 971 size_t len; 972 { 973 char *cp; 974 char procfile[MAXPATHLEN]; 975 ssize_t amount; 976 int fd; 977 978 if (!ISALIVE(kd)) { 979 _kvm_err(kd, kd->program, 980 "cannot read user space from dead kernel"); 981 return (0); 982 } 983 984 sprintf(procfile, "/proc/%d/mem", kp->ki_pid); 985 fd = open(procfile, O_RDONLY, 0); 986 if (fd < 0) { 987 _kvm_err(kd, kd->program, "cannot open %s", procfile); 988 return (0); 989 } 990 991 cp = buf; 992 while (len > 0) { 993 errno = 0; 994 if (lseek(fd, (off_t)uva, 0) == -1 && errno != 0) { 995 _kvm_err(kd, kd->program, "invalid address (%x) in %s", 996 uva, procfile); 997 break; 998 } 999 amount = read(fd, cp, len); 1000 if (amount < 0) { 1001 _kvm_syserr(kd, kd->program, "error reading %s", 1002 procfile); 1003 break; 1004 } 1005 if (amount == 0) { 1006 _kvm_err(kd, kd->program, "EOF reading %s", procfile); 1007 break; 1008 } 1009 cp += amount; 1010 uva += amount; 1011 len -= amount; 1012 } 1013 1014 close(fd); 1015 return ((ssize_t)(cp - buf)); 1016 } 1017