xref: /freebsd/lib/libkvm/kvm_proc.c (revision 1d66272a85cde1c8a69c58f4b5dd649babd6eca6)
1 /*-
2  * Copyright (c) 1989, 1992, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software developed by the Computer Systems
6  * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
7  * BG 91-66 and contributed to Berkeley.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *	This product includes software developed by the University of
20  *	California, Berkeley and its contributors.
21  * 4. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  * $FreeBSD$
38  */
39 
40 #if defined(LIBC_SCCS) && !defined(lint)
41 static char sccsid[] = "@(#)kvm_proc.c	8.3 (Berkeley) 9/23/93";
42 #endif /* LIBC_SCCS and not lint */
43 
44 /*
45  * Proc traversal interface for kvm.  ps and w are (probably) the exclusive
46  * users of this code, so we've factored it out into a separate module.
47  * Thus, we keep this grunge out of the other kvm applications (i.e.,
48  * most other applications are interested only in open/close/read/nlist).
49  */
50 
51 #include <sys/param.h>
52 #include <sys/user.h>
53 #include <sys/proc.h>
54 #include <sys/exec.h>
55 #include <sys/stat.h>
56 #include <sys/ioctl.h>
57 #define _KERNEL
58 #include <sys/select.h>
59 #undef _KERNEL
60 #include <sys/tty.h>
61 #include <sys/file.h>
62 #include <stdio.h>
63 #include <stdlib.h>
64 #include <unistd.h>
65 #include <nlist.h>
66 #include <kvm.h>
67 
68 #include <vm/vm.h>
69 #include <vm/vm_param.h>
70 #include <vm/swap_pager.h>
71 
72 #include <sys/sysctl.h>
73 
74 #include <limits.h>
75 #include <memory.h>
76 #include <paths.h>
77 
78 #include "kvm_private.h"
79 
80 #if used
81 static char *
82 kvm_readswap(kd, p, va, cnt)
83 	kvm_t *kd;
84 	const struct proc *p;
85 	u_long va;
86 	u_long *cnt;
87 {
88 #ifdef __FreeBSD__
89 	/* XXX Stubbed out, our vm system is differnet */
90 	_kvm_err(kd, kd->program, "kvm_readswap not implemented");
91 	return(0);
92 #endif	/* __FreeBSD__ */
93 }
94 #endif
95 
96 #define KREAD(kd, addr, obj) \
97 	(kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj))
98 
99 /*
100  * Read proc's from memory file into buffer bp, which has space to hold
101  * at most maxcnt procs.
102  */
103 static int
104 kvm_proclist(kd, what, arg, p, bp, maxcnt)
105 	kvm_t *kd;
106 	int what, arg;
107 	struct proc *p;
108 	struct kinfo_proc *bp;
109 	int maxcnt;
110 {
111 	register int cnt = 0;
112 	struct kinfo_proc kinfo_proc, *kp;
113 	struct pgrp pgrp;
114 	struct session sess;
115 	struct tty tty;
116 	struct vmspace vmspace;
117 	struct procsig procsig;
118 	struct pcred pcred;
119 	struct pstats pstats;
120 	struct ucred ucred;
121 	struct proc proc;
122 	struct proc pproc;
123 
124 	kp = &kinfo_proc;
125 	kp->ki_structsize = sizeof(kinfo_proc);
126 	for (; cnt < maxcnt && p != NULL; p = LIST_NEXT(&proc, p_list)) {
127 		if (KREAD(kd, (u_long)p, &proc)) {
128 			_kvm_err(kd, kd->program, "can't read proc at %x", p);
129 			return (-1);
130 		}
131 		if (KREAD(kd, (u_long)proc.p_cred, &pcred) == 0) {
132 			kp->ki_ruid = pcred.p_ruid;
133 			kp->ki_svuid = pcred.p_svuid;
134 			kp->ki_rgid = pcred.p_rgid;
135 			kp->ki_svgid = pcred.p_svgid;
136 			(void)(KREAD(kd, (u_long)pcred.pc_ucred, &ucred));
137 			kp->ki_ngroups = ucred.cr_ngroups;
138 			bcopy(ucred.cr_groups, kp->ki_groups,
139 			    NGROUPS * sizeof(gid_t));
140 			kp->ki_uid = ucred.cr_uid;
141 		}
142 
143 		switch(what) {
144 
145 		case KERN_PROC_PID:
146 			if (proc.p_pid != (pid_t)arg)
147 				continue;
148 			break;
149 
150 		case KERN_PROC_UID:
151 			if (kp->ki_uid != (uid_t)arg)
152 				continue;
153 			break;
154 
155 		case KERN_PROC_RUID:
156 			if (kp->ki_ruid != (uid_t)arg)
157 				continue;
158 			break;
159 		}
160 		/*
161 		 * We're going to add another proc to the set.  If this
162 		 * will overflow the buffer, assume the reason is because
163 		 * nprocs (or the proc list) is corrupt and declare an error.
164 		 */
165 		if (cnt >= maxcnt) {
166 			_kvm_err(kd, kd->program, "nprocs corrupt");
167 			return (-1);
168 		}
169 		/*
170 		 * gather kinfo_proc
171 		 */
172 		kp->ki_paddr = p;
173 		kp->ki_addr = proc.p_addr;
174 		kp->ki_args = proc.p_args;
175 		kp->ki_tracep = proc.p_tracep;
176 		kp->ki_textvp = proc.p_textvp;
177 		kp->ki_fd = proc.p_fd;
178 		kp->ki_vmspace = proc.p_vmspace;
179 		if (proc.p_procsig != NULL) {
180 			if (KREAD(kd, (u_long)proc.p_procsig, &procsig)) {
181 				_kvm_err(kd, kd->program,
182 				    "can't read procsig at %x", proc.p_procsig);
183 				return (-1);
184 			}
185 			kp->ki_sigignore = procsig.ps_sigignore;
186 			kp->ki_sigcatch = procsig.ps_sigcatch;
187 		}
188 		if ((proc.p_flag & P_INMEM) && proc.p_stats != NULL) {
189 			if (KREAD(kd, (u_long)proc.p_stats, &pstats)) {
190 				_kvm_err(kd, kd->program,
191 				    "can't read stats at %x", proc.p_stats);
192 				return (-1);
193 			}
194 			kp->ki_start = pstats.p_start;
195 			kp->ki_rusage = pstats.p_ru;
196 			kp->ki_childtime.tv_sec = pstats.p_cru.ru_utime.tv_sec +
197 			    pstats.p_cru.ru_stime.tv_sec;
198 			kp->ki_childtime.tv_usec =
199 			    pstats.p_cru.ru_utime.tv_usec +
200 			    pstats.p_cru.ru_stime.tv_usec;
201 		}
202 		if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
203 			_kvm_err(kd, kd->program, "can't read pgrp at %x",
204 				 proc.p_pgrp);
205 			return (-1);
206 		}
207 		if (proc.p_oppid)
208 			kp->ki_ppid = proc.p_oppid;
209 		else if (proc.p_pptr) {
210 			if (KREAD(kd, (u_long)proc.p_pptr, &pproc)) {
211 				_kvm_err(kd, kd->program,
212 				    "can't read pproc at %x", proc.p_pptr);
213 				return (-1);
214 			}
215 			kp->ki_ppid = pproc.p_pid;
216 		} else
217 			kp->ki_ppid = 0;
218 		kp->ki_pgid = pgrp.pg_id;
219 		kp->ki_jobc = pgrp.pg_jobc;
220 		if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
221 			_kvm_err(kd, kd->program, "can't read session at %x",
222 				pgrp.pg_session);
223 			return (-1);
224 		}
225 		kp->ki_sid = sess.s_sid;
226 		(void)memcpy(kp->ki_login, sess.s_login,
227 						sizeof(kp->ki_login));
228 		kp->ki_kiflag = sess.s_ttyvp ? KI_CTTY : 0;
229 		if (sess.s_leader == p)
230 			kp->ki_kiflag |= KI_SLEADER;
231 		if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
232 			if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
233 				_kvm_err(kd, kd->program,
234 					 "can't read tty at %x", sess.s_ttyp);
235 				return (-1);
236 			}
237 			kp->ki_tdev = tty.t_dev;
238 			if (tty.t_pgrp != NULL) {
239 				if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
240 					_kvm_err(kd, kd->program,
241 						 "can't read tpgrp at &x",
242 						tty.t_pgrp);
243 					return (-1);
244 				}
245 				kp->ki_tpgid = pgrp.pg_id;
246 			} else
247 				kp->ki_tpgid = -1;
248 			if (tty.t_session != NULL) {
249 				if (KREAD(kd, (u_long)tty.t_session, &sess)) {
250 					_kvm_err(kd, kd->program,
251 					    "can't read session at %x",
252 					    tty.t_session);
253 					return (-1);
254 				}
255 				kp->ki_tsid = sess.s_sid;
256 			}
257 		} else
258 			kp->ki_tdev = NODEV;
259 		if (proc.p_wmesg)
260 			(void)kvm_read(kd, (u_long)proc.p_wmesg,
261 			    kp->ki_wmesg, WMESGLEN);
262 
263 #ifdef sparc
264 		(void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_rssize,
265 		    (char *)&kp->ki_rssize,
266 		    sizeof(kp->ki_rssize));
267 		(void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_tsize,
268 		    (char *)&kp->ki_tsize,
269 		    3 * sizeof(kp->ki_rssize));	/* XXX */
270 #else
271 		(void)kvm_read(kd, (u_long)proc.p_vmspace,
272 		    (char *)&vmspace, sizeof(vmspace));
273 		kp->ki_size = vmspace.vm_map.size;
274 		kp->ki_rssize = vmspace.vm_swrss; /* XXX */
275 		kp->ki_swrss = vmspace.vm_swrss;
276 		kp->ki_tsize = vmspace.vm_tsize;
277 		kp->ki_dsize = vmspace.vm_dsize;
278 		kp->ki_ssize = vmspace.vm_ssize;
279 #endif
280 
281 		switch (what) {
282 
283 		case KERN_PROC_PGRP:
284 			if (kp->ki_pgid != (pid_t)arg)
285 				continue;
286 			break;
287 
288 		case KERN_PROC_TTY:
289 			if ((proc.p_flag & P_CONTROLT) == 0 ||
290 			     kp->ki_tdev != (dev_t)arg)
291 				continue;
292 			break;
293 		}
294 		if (proc.p_comm[0] != 0) {
295 			strncpy(kp->ki_comm, proc.p_comm, MAXCOMLEN);
296 			kp->ki_comm[MAXCOMLEN] = 0;
297 		}
298 		if (proc.p_blocked != 0) {
299 			kp->ki_kiflag |= KI_MTXBLOCK;
300 			if (proc.p_mtxname)
301 				(void)kvm_read(kd, (u_long)proc.p_mtxname,
302 				    kp->ki_mtxname, MTXNAMELEN);
303 			kp->ki_mtxname[MTXNAMELEN] = 0;
304 		}
305 		kp->ki_rtprio = proc.p_rtprio;
306 		kp->ki_runtime = proc.p_runtime;
307 		kp->ki_pid = proc.p_pid;
308 		kp->ki_siglist = proc.p_siglist;
309 		kp->ki_sigmask = proc.p_sigmask;
310 		kp->ki_xstat = proc.p_xstat;
311 		kp->ki_acflag = proc.p_acflag;
312 		kp->ki_pctcpu = proc.p_pctcpu;
313 		kp->ki_estcpu = proc.p_estcpu;
314 		kp->ki_slptime = proc.p_slptime;
315 		kp->ki_swtime = proc.p_swtime;
316 		kp->ki_flag = proc.p_flag;
317 		kp->ki_wchan = proc.p_wchan;
318 		kp->ki_traceflag = proc.p_traceflag;
319 		kp->ki_priority = proc.p_priority;
320 		kp->ki_usrpri = proc.p_usrpri;
321 		kp->ki_nativepri = proc.p_nativepri;
322 		kp->ki_stat = proc.p_stat;
323 		kp->ki_nice = proc.p_nice;
324 		kp->ki_lock = proc.p_lock;
325 		kp->ki_rqindex = proc.p_rqindex;
326 		kp->ki_oncpu = proc.p_oncpu;
327 		kp->ki_lastcpu = proc.p_lastcpu;
328 		bcopy(&kinfo_proc, bp, sizeof(kinfo_proc));
329 		++bp;
330 		++cnt;
331 	}
332 	return (cnt);
333 }
334 
335 /*
336  * Build proc info array by reading in proc list from a crash dump.
337  * Return number of procs read.  maxcnt is the max we will read.
338  */
339 static int
340 kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt)
341 	kvm_t *kd;
342 	int what, arg;
343 	u_long a_allproc;
344 	u_long a_zombproc;
345 	int maxcnt;
346 {
347 	register struct kinfo_proc *bp = kd->procbase;
348 	register int acnt, zcnt;
349 	struct proc *p;
350 
351 	if (KREAD(kd, a_allproc, &p)) {
352 		_kvm_err(kd, kd->program, "cannot read allproc");
353 		return (-1);
354 	}
355 	acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
356 	if (acnt < 0)
357 		return (acnt);
358 
359 	if (KREAD(kd, a_zombproc, &p)) {
360 		_kvm_err(kd, kd->program, "cannot read zombproc");
361 		return (-1);
362 	}
363 	zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt);
364 	if (zcnt < 0)
365 		zcnt = 0;
366 
367 	return (acnt + zcnt);
368 }
369 
370 struct kinfo_proc *
371 kvm_getprocs(kd, op, arg, cnt)
372 	kvm_t *kd;
373 	int op, arg;
374 	int *cnt;
375 {
376 	int mib[4], st, nprocs;
377 	size_t size;
378 
379 	if (kd->procbase != 0) {
380 		free((void *)kd->procbase);
381 		/*
382 		 * Clear this pointer in case this call fails.  Otherwise,
383 		 * kvm_close() will free it again.
384 		 */
385 		kd->procbase = 0;
386 	}
387 	if (ISALIVE(kd)) {
388 		size = 0;
389 		mib[0] = CTL_KERN;
390 		mib[1] = KERN_PROC;
391 		mib[2] = op;
392 		mib[3] = arg;
393 		st = sysctl(mib, op == KERN_PROC_ALL ? 3 : 4, NULL, &size, NULL, 0);
394 		if (st == -1) {
395 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
396 			return (0);
397 		}
398 		do {
399 			size += size / 10;
400 			kd->procbase = (struct kinfo_proc *)
401 			    _kvm_realloc(kd, kd->procbase, size);
402 			if (kd->procbase == 0)
403 				return (0);
404 			st = sysctl(mib, op == KERN_PROC_ALL ? 3 : 4,
405 			    kd->procbase, &size, NULL, 0);
406 		} while (st == -1 && errno == ENOMEM);
407 		if (st == -1) {
408 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
409 			return (0);
410 		}
411 		if (kd->procbase->ki_structsize != sizeof(struct kinfo_proc)) {
412 			_kvm_err(kd, kd->program,
413 			    "kinfo_proc size mismatch (expected %d, got %d)",
414 			    sizeof(struct kinfo_proc),
415 			    kd->procbase->ki_structsize);
416 			return (0);
417 		}
418 		nprocs = size / kd->procbase->ki_structsize;
419 	} else {
420 		struct nlist nl[4], *p;
421 
422 		nl[0].n_name = "_nprocs";
423 		nl[1].n_name = "_allproc";
424 		nl[2].n_name = "_zombproc";
425 		nl[3].n_name = 0;
426 
427 		if (kvm_nlist(kd, nl) != 0) {
428 			for (p = nl; p->n_type != 0; ++p)
429 				;
430 			_kvm_err(kd, kd->program,
431 				 "%s: no such symbol", p->n_name);
432 			return (0);
433 		}
434 		if (KREAD(kd, nl[0].n_value, &nprocs)) {
435 			_kvm_err(kd, kd->program, "can't read nprocs");
436 			return (0);
437 		}
438 		size = nprocs * sizeof(struct kinfo_proc);
439 		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
440 		if (kd->procbase == 0)
441 			return (0);
442 
443 		nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
444 				      nl[2].n_value, nprocs);
445 #ifdef notdef
446 		size = nprocs * sizeof(struct kinfo_proc);
447 		(void)realloc(kd->procbase, size);
448 #endif
449 	}
450 	*cnt = nprocs;
451 	return (kd->procbase);
452 }
453 
454 void
455 _kvm_freeprocs(kd)
456 	kvm_t *kd;
457 {
458 	if (kd->procbase) {
459 		free(kd->procbase);
460 		kd->procbase = 0;
461 	}
462 }
463 
464 void *
465 _kvm_realloc(kd, p, n)
466 	kvm_t *kd;
467 	void *p;
468 	size_t n;
469 {
470 	void *np = (void *)realloc(p, n);
471 
472 	if (np == 0) {
473 		free(p);
474 		_kvm_err(kd, kd->program, "out of memory");
475 	}
476 	return (np);
477 }
478 
479 #ifndef MAX
480 #define MAX(a, b) ((a) > (b) ? (a) : (b))
481 #endif
482 
483 /*
484  * Read in an argument vector from the user address space of process kp.
485  * addr if the user-space base address of narg null-terminated contiguous
486  * strings.  This is used to read in both the command arguments and
487  * environment strings.  Read at most maxcnt characters of strings.
488  */
489 static char **
490 kvm_argv(kd, kp, addr, narg, maxcnt)
491 	kvm_t *kd;
492 	struct kinfo_proc *kp;
493 	register u_long addr;
494 	register int narg;
495 	register int maxcnt;
496 {
497 	register char *np, *cp, *ep, *ap;
498 	register u_long oaddr = -1;
499 	register int len, cc;
500 	register char **argv;
501 
502 	/*
503 	 * Check that there aren't an unreasonable number of agruments,
504 	 * and that the address is in user space.
505 	 */
506 	if (narg > 512 || addr < VM_MIN_ADDRESS || addr >= VM_MAXUSER_ADDRESS)
507 		return (0);
508 
509 	/*
510 	 * kd->argv : work space for fetching the strings from the target
511 	 *            process's space, and is converted for returning to caller
512 	 */
513 	if (kd->argv == 0) {
514 		/*
515 		 * Try to avoid reallocs.
516 		 */
517 		kd->argc = MAX(narg + 1, 32);
518 		kd->argv = (char **)_kvm_malloc(kd, kd->argc *
519 						sizeof(*kd->argv));
520 		if (kd->argv == 0)
521 			return (0);
522 	} else if (narg + 1 > kd->argc) {
523 		kd->argc = MAX(2 * kd->argc, narg + 1);
524 		kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
525 						sizeof(*kd->argv));
526 		if (kd->argv == 0)
527 			return (0);
528 	}
529 	/*
530 	 * kd->argspc : returned to user, this is where the kd->argv
531 	 *              arrays are left pointing to the collected strings.
532 	 */
533 	if (kd->argspc == 0) {
534 		kd->argspc = (char *)_kvm_malloc(kd, PAGE_SIZE);
535 		if (kd->argspc == 0)
536 			return (0);
537 		kd->arglen = PAGE_SIZE;
538 	}
539 	/*
540 	 * kd->argbuf : used to pull in pages from the target process.
541 	 *              the strings are copied out of here.
542 	 */
543 	if (kd->argbuf == 0) {
544 		kd->argbuf = (char *)_kvm_malloc(kd, PAGE_SIZE);
545 		if (kd->argbuf == 0)
546 			return (0);
547 	}
548 
549 	/* Pull in the target process'es argv vector */
550 	cc = sizeof(char *) * narg;
551 	if (kvm_uread(kd, kp, addr, (char *)kd->argv, cc) != cc)
552 		return (0);
553 	/*
554 	 * ap : saved start address of string we're working on in kd->argspc
555 	 * np : pointer to next place to write in kd->argspc
556 	 * len: length of data in kd->argspc
557 	 * argv: pointer to the argv vector that we are hunting around the
558 	 *       target process space for, and converting to addresses in
559 	 *       our address space (kd->argspc).
560 	 */
561 	ap = np = kd->argspc;
562 	argv = kd->argv;
563 	len = 0;
564 	/*
565 	 * Loop over pages, filling in the argument vector.
566 	 * Note that the argv strings could be pointing *anywhere* in
567 	 * the user address space and are no longer contiguous.
568 	 * Note that *argv is modified when we are going to fetch a string
569 	 * that crosses a page boundary.  We copy the next part of the string
570 	 * into to "np" and eventually convert the pointer.
571 	 */
572 	while (argv < kd->argv + narg && *argv != 0) {
573 
574 		/* get the address that the current argv string is on */
575 		addr = (u_long)*argv & ~(PAGE_SIZE - 1);
576 
577 		/* is it the same page as the last one? */
578 		if (addr != oaddr) {
579 			if (kvm_uread(kd, kp, addr, kd->argbuf, PAGE_SIZE) !=
580 			    PAGE_SIZE)
581 				return (0);
582 			oaddr = addr;
583 		}
584 
585 		/* offset within the page... kd->argbuf */
586 		addr = (u_long)*argv & (PAGE_SIZE - 1);
587 
588 		/* cp = start of string, cc = count of chars in this chunk */
589 		cp = kd->argbuf + addr;
590 		cc = PAGE_SIZE - addr;
591 
592 		/* dont get more than asked for by user process */
593 		if (maxcnt > 0 && cc > maxcnt - len)
594 			cc = maxcnt - len;
595 
596 		/* pointer to end of string if we found it in this page */
597 		ep = memchr(cp, '\0', cc);
598 		if (ep != 0)
599 			cc = ep - cp + 1;
600 		/*
601 		 * at this point, cc is the count of the chars that we are
602 		 * going to retrieve this time. we may or may not have found
603 		 * the end of it.  (ep points to the null if the end is known)
604 		 */
605 
606 		/* will we exceed the malloc/realloced buffer? */
607 		if (len + cc > kd->arglen) {
608 			register int off;
609 			register char **pp;
610 			register char *op = kd->argspc;
611 
612 			kd->arglen *= 2;
613 			kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
614 							  kd->arglen);
615 			if (kd->argspc == 0)
616 				return (0);
617 			/*
618 			 * Adjust argv pointers in case realloc moved
619 			 * the string space.
620 			 */
621 			off = kd->argspc - op;
622 			for (pp = kd->argv; pp < argv; pp++)
623 				*pp += off;
624 			ap += off;
625 			np += off;
626 		}
627 		/* np = where to put the next part of the string in kd->argspc*/
628 		/* np is kinda redundant.. could use "kd->argspc + len" */
629 		memcpy(np, cp, cc);
630 		np += cc;	/* inc counters */
631 		len += cc;
632 
633 		/*
634 		 * if end of string found, set the *argv pointer to the
635 		 * saved beginning of string, and advance. argv points to
636 		 * somewhere in kd->argv..  This is initially relative
637 		 * to the target process, but when we close it off, we set
638 		 * it to point in our address space.
639 		 */
640 		if (ep != 0) {
641 			*argv++ = ap;
642 			ap = np;
643 		} else {
644 			/* update the address relative to the target process */
645 			*argv += cc;
646 		}
647 
648 		if (maxcnt > 0 && len >= maxcnt) {
649 			/*
650 			 * We're stopping prematurely.  Terminate the
651 			 * current string.
652 			 */
653 			if (ep == 0) {
654 				*np = '\0';
655 				*argv++ = ap;
656 			}
657 			break;
658 		}
659 	}
660 	/* Make sure argv is terminated. */
661 	*argv = 0;
662 	return (kd->argv);
663 }
664 
665 static void
666 ps_str_a(p, addr, n)
667 	struct ps_strings *p;
668 	u_long *addr;
669 	int *n;
670 {
671 	*addr = (u_long)p->ps_argvstr;
672 	*n = p->ps_nargvstr;
673 }
674 
675 static void
676 ps_str_e(p, addr, n)
677 	struct ps_strings *p;
678 	u_long *addr;
679 	int *n;
680 {
681 	*addr = (u_long)p->ps_envstr;
682 	*n = p->ps_nenvstr;
683 }
684 
685 /*
686  * Determine if the proc indicated by p is still active.
687  * This test is not 100% foolproof in theory, but chances of
688  * being wrong are very low.
689  */
690 static int
691 proc_verify(curkp)
692 	struct kinfo_proc *curkp;
693 {
694 	struct kinfo_proc newkp;
695 	int mib[4];
696 	size_t len;
697 
698 	mib[0] = CTL_KERN;
699 	mib[1] = KERN_PROC;
700 	mib[2] = KERN_PROC_PID;
701 	mib[3] = curkp->ki_pid;
702 	len = sizeof(newkp);
703 	if (sysctl(mib, 4, &newkp, &len, NULL, 0) == -1)
704 		return (0);
705 	return (curkp->ki_pid == newkp.ki_pid &&
706 	    (newkp.ki_stat != SZOMB || curkp->ki_stat == SZOMB));
707 }
708 
709 static char **
710 kvm_doargv(kd, kp, nchr, info)
711 	kvm_t *kd;
712 	struct kinfo_proc *kp;
713 	int nchr;
714 	void (*info)(struct ps_strings *, u_long *, int *);
715 {
716 	char **ap;
717 	u_long addr;
718 	int cnt;
719 	static struct ps_strings arginfo;
720 	static u_long ps_strings;
721 	size_t len;
722 
723 	if (ps_strings == NULL) {
724 		len = sizeof(ps_strings);
725 		if (sysctlbyname("kern.ps_strings", &ps_strings, &len, NULL,
726 		    0) == -1)
727 			ps_strings = PS_STRINGS;
728 	}
729 
730 	/*
731 	 * Pointers are stored at the top of the user stack.
732 	 */
733 	if (kp->ki_stat == SZOMB ||
734 	    kvm_uread(kd, kp, ps_strings, (char *)&arginfo,
735 		      sizeof(arginfo)) != sizeof(arginfo))
736 		return (0);
737 
738 	(*info)(&arginfo, &addr, &cnt);
739 	if (cnt == 0)
740 		return (0);
741 	ap = kvm_argv(kd, kp, addr, cnt, nchr);
742 	/*
743 	 * For live kernels, make sure this process didn't go away.
744 	 */
745 	if (ap != 0 && ISALIVE(kd) && !proc_verify(kp))
746 		ap = 0;
747 	return (ap);
748 }
749 
750 /*
751  * Get the command args.  This code is now machine independent.
752  */
753 char **
754 kvm_getargv(kd, kp, nchr)
755 	kvm_t *kd;
756 	const struct kinfo_proc *kp;
757 	int nchr;
758 {
759 	int oid[4];
760 	int i;
761 	size_t bufsz;
762 	static int buflen;
763 	static char *buf, *p;
764 	static char **bufp;
765 	static int argc;
766 
767 	if (!ISALIVE(kd)) {
768 		_kvm_err(kd, kd->program,
769 		    "cannot read user space from dead kernel");
770 		return (0);
771 	}
772 
773 	if (!buflen) {
774 		bufsz = sizeof(buflen);
775 		i = sysctlbyname("kern.ps_arg_cache_limit",
776 		    &buflen, &bufsz, NULL, 0);
777 		if (i == -1) {
778 			buflen = 0;
779 		} else {
780 			buf = malloc(buflen);
781 			if (buf == NULL)
782 				buflen = 0;
783 			argc = 32;
784 			bufp = malloc(sizeof(char *) * argc);
785 		}
786 	}
787 	if (buf != NULL) {
788 		oid[0] = CTL_KERN;
789 		oid[1] = KERN_PROC;
790 		oid[2] = KERN_PROC_ARGS;
791 		oid[3] = kp->ki_pid;
792 		bufsz = buflen;
793 		i = sysctl(oid, 4, buf, &bufsz, 0, 0);
794 		if (i == 0 && bufsz > 0) {
795 			i = 0;
796 			p = buf;
797 			do {
798 				bufp[i++] = p;
799 				p += strlen(p) + 1;
800 				if (i >= argc) {
801 					argc += argc;
802 					bufp = realloc(bufp,
803 					    sizeof(char *) * argc);
804 				}
805 			} while (p < buf + bufsz);
806 			bufp[i++] = 0;
807 			return (bufp);
808 		}
809 	}
810 	if (kp->ki_flag & P_SYSTEM)
811 		return (NULL);
812 	return (kvm_doargv(kd, kp, nchr, ps_str_a));
813 }
814 
815 char **
816 kvm_getenvv(kd, kp, nchr)
817 	kvm_t *kd;
818 	const struct kinfo_proc *kp;
819 	int nchr;
820 {
821 	return (kvm_doargv(kd, kp, nchr, ps_str_e));
822 }
823 
824 /*
825  * Read from user space.  The user context is given by p.
826  */
827 ssize_t
828 kvm_uread(kd, kp, uva, buf, len)
829 	kvm_t *kd;
830 	struct kinfo_proc *kp;
831 	register u_long uva;
832 	register char *buf;
833 	register size_t len;
834 {
835 	register char *cp;
836 	char procfile[MAXPATHLEN];
837 	ssize_t amount;
838 	int fd;
839 
840 	if (!ISALIVE(kd)) {
841 		_kvm_err(kd, kd->program,
842 		    "cannot read user space from dead kernel");
843 		return (0);
844 	}
845 
846 	sprintf(procfile, "/proc/%d/mem", kp->ki_pid);
847 	fd = open(procfile, O_RDONLY, 0);
848 	if (fd < 0) {
849 		_kvm_err(kd, kd->program, "cannot open %s", procfile);
850 		close(fd);
851 		return (0);
852 	}
853 
854 	cp = buf;
855 	while (len > 0) {
856 		errno = 0;
857 		if (lseek(fd, (off_t)uva, 0) == -1 && errno != 0) {
858 			_kvm_err(kd, kd->program, "invalid address (%x) in %s",
859 			    uva, procfile);
860 			break;
861 		}
862 		amount = read(fd, cp, len);
863 		if (amount < 0) {
864 			_kvm_syserr(kd, kd->program, "error reading %s",
865 			    procfile);
866 			break;
867 		}
868 		if (amount == 0) {
869 			_kvm_err(kd, kd->program, "EOF reading %s", procfile);
870 			break;
871 		}
872 		cp += amount;
873 		uva += amount;
874 		len -= amount;
875 	}
876 
877 	close(fd);
878 	return ((ssize_t)(cp - buf));
879 }
880