xref: /freebsd/lib/libkvm/kvm_proc.c (revision 0fddbf874719b9bd50cf66ac26d1140bb3f2be69)
1 /*-
2  * Copyright (c) 1989, 1992, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software developed by the Computer Systems
6  * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
7  * BG 91-66 and contributed to Berkeley.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *	This product includes software developed by the University of
20  *	California, Berkeley and its contributors.
21  * 4. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  * $FreeBSD$
38  */
39 
40 #if defined(LIBC_SCCS) && !defined(lint)
41 static char sccsid[] = "@(#)kvm_proc.c	8.3 (Berkeley) 9/23/93";
42 #endif /* LIBC_SCCS and not lint */
43 
44 /*
45  * Proc traversal interface for kvm.  ps and w are (probably) the exclusive
46  * users of this code, so we've factored it out into a separate module.
47  * Thus, we keep this grunge out of the other kvm applications (i.e.,
48  * most other applications are interested only in open/close/read/nlist).
49  */
50 
51 #include <sys/param.h>
52 #include <sys/lock.h>
53 #include <sys/mutex.h>
54 #include <sys/user.h>
55 #include <sys/proc.h>
56 #include <sys/exec.h>
57 #include <sys/stat.h>
58 #include <sys/ioctl.h>
59 #include <sys/tty.h>
60 #include <sys/file.h>
61 #include <stdio.h>
62 #include <stdlib.h>
63 #include <unistd.h>
64 #include <nlist.h>
65 #include <kvm.h>
66 
67 #include <vm/vm.h>
68 #include <vm/vm_param.h>
69 #include <vm/swap_pager.h>
70 
71 #include <sys/sysctl.h>
72 
73 #include <limits.h>
74 #include <memory.h>
75 #include <paths.h>
76 
77 #include "kvm_private.h"
78 
79 #if used
80 static char *
81 kvm_readswap(kd, p, va, cnt)
82 	kvm_t *kd;
83 	const struct proc *p;
84 	u_long va;
85 	u_long *cnt;
86 {
87 #ifdef __FreeBSD__
88 	/* XXX Stubbed out, our vm system is differnet */
89 	_kvm_err(kd, kd->program, "kvm_readswap not implemented");
90 	return(0);
91 #endif	/* __FreeBSD__ */
92 }
93 #endif
94 
95 #define KREAD(kd, addr, obj) \
96 	(kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj))
97 
98 /*
99  * Read proc's from memory file into buffer bp, which has space to hold
100  * at most maxcnt procs.
101  */
102 static int
103 kvm_proclist(kd, what, arg, p, bp, maxcnt)
104 	kvm_t *kd;
105 	int what, arg;
106 	struct proc *p;
107 	struct kinfo_proc *bp;
108 	int maxcnt;
109 {
110 	register int cnt = 0;
111 	struct kinfo_proc kinfo_proc, *kp;
112 	struct pgrp pgrp;
113 	struct session sess;
114 	struct tty tty;
115 	struct vmspace vmspace;
116 	struct procsig procsig;
117 	struct pstats pstats;
118 	struct ucred ucred;
119 	struct proc proc;
120 	struct proc pproc;
121 
122 	kp = &kinfo_proc;
123 	kp->ki_structsize = sizeof(kinfo_proc);
124 	for (; cnt < maxcnt && p != NULL; p = LIST_NEXT(&proc, p_list)) {
125 		memset(kp, 0, sizeof *kp);
126 		if (KREAD(kd, (u_long)p, &proc)) {
127 			_kvm_err(kd, kd->program, "can't read proc at %x", p);
128 			return (-1);
129 		}
130 		if (KREAD(kd, (u_long)proc.p_ucred, &ucred) == 0) {
131 			kp->ki_ruid = ucred.cr_ruid;
132 			kp->ki_svuid = ucred.cr_svuid;
133 			kp->ki_rgid = ucred.cr_rgid;
134 			kp->ki_svgid = ucred.cr_svgid;
135 			kp->ki_ngroups = ucred.cr_ngroups;
136 			bcopy(ucred.cr_groups, kp->ki_groups,
137 			    NGROUPS * sizeof(gid_t));
138 			kp->ki_uid = ucred.cr_uid;
139 		}
140 
141 		switch(what) {
142 
143 		case KERN_PROC_PID:
144 			if (proc.p_pid != (pid_t)arg)
145 				continue;
146 			break;
147 
148 		case KERN_PROC_UID:
149 			if (kp->ki_uid != (uid_t)arg)
150 				continue;
151 			break;
152 
153 		case KERN_PROC_RUID:
154 			if (kp->ki_ruid != (uid_t)arg)
155 				continue;
156 			break;
157 		}
158 		/*
159 		 * We're going to add another proc to the set.  If this
160 		 * will overflow the buffer, assume the reason is because
161 		 * nprocs (or the proc list) is corrupt and declare an error.
162 		 */
163 		if (cnt >= maxcnt) {
164 			_kvm_err(kd, kd->program, "nprocs corrupt");
165 			return (-1);
166 		}
167 		/*
168 		 * gather kinfo_proc
169 		 */
170 		kp->ki_paddr = p;
171 		kp->ki_addr = proc.p_addr;
172 		kp->ki_args = proc.p_args;
173 		kp->ki_tracep = proc.p_tracep;
174 		kp->ki_textvp = proc.p_textvp;
175 		kp->ki_fd = proc.p_fd;
176 		kp->ki_vmspace = proc.p_vmspace;
177 		if (proc.p_procsig != NULL) {
178 			if (KREAD(kd, (u_long)proc.p_procsig, &procsig)) {
179 				_kvm_err(kd, kd->program,
180 				    "can't read procsig at %x", proc.p_procsig);
181 				return (-1);
182 			}
183 			kp->ki_sigignore = procsig.ps_sigignore;
184 			kp->ki_sigcatch = procsig.ps_sigcatch;
185 		}
186 		if ((proc.p_sflag & PS_INMEM) && proc.p_stats != NULL) {
187 			if (KREAD(kd, (u_long)proc.p_stats, &pstats)) {
188 				_kvm_err(kd, kd->program,
189 				    "can't read stats at %x", proc.p_stats);
190 				return (-1);
191 			}
192 			kp->ki_start = pstats.p_start;
193 			kp->ki_rusage = pstats.p_ru;
194 			kp->ki_childtime.tv_sec = pstats.p_cru.ru_utime.tv_sec +
195 			    pstats.p_cru.ru_stime.tv_sec;
196 			kp->ki_childtime.tv_usec =
197 			    pstats.p_cru.ru_utime.tv_usec +
198 			    pstats.p_cru.ru_stime.tv_usec;
199 		}
200 		if (proc.p_oppid)
201 			kp->ki_ppid = proc.p_oppid;
202 		else if (proc.p_pptr) {
203 			if (KREAD(kd, (u_long)proc.p_pptr, &pproc)) {
204 				_kvm_err(kd, kd->program,
205 				    "can't read pproc at %x", proc.p_pptr);
206 				return (-1);
207 			}
208 			kp->ki_ppid = pproc.p_pid;
209 		} else
210 			kp->ki_ppid = 0;
211 		if (proc.p_pgrp == NULL)
212 			goto nopgrp;
213 		if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
214 			_kvm_err(kd, kd->program, "can't read pgrp at %x",
215 				 proc.p_pgrp);
216 			return (-1);
217 		}
218 		kp->ki_pgid = pgrp.pg_id;
219 		kp->ki_jobc = pgrp.pg_jobc;
220 		if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
221 			_kvm_err(kd, kd->program, "can't read session at %x",
222 				pgrp.pg_session);
223 			return (-1);
224 		}
225 		kp->ki_sid = sess.s_sid;
226 		(void)memcpy(kp->ki_login, sess.s_login,
227 						sizeof(kp->ki_login));
228 		kp->ki_kiflag = sess.s_ttyvp ? KI_CTTY : 0;
229 		if (sess.s_leader == p)
230 			kp->ki_kiflag |= KI_SLEADER;
231 		if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
232 			if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
233 				_kvm_err(kd, kd->program,
234 					 "can't read tty at %x", sess.s_ttyp);
235 				return (-1);
236 			}
237 			kp->ki_tdev = tty.t_dev;
238 			if (tty.t_pgrp != NULL) {
239 				if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
240 					_kvm_err(kd, kd->program,
241 						 "can't read tpgrp at &x",
242 						tty.t_pgrp);
243 					return (-1);
244 				}
245 				kp->ki_tpgid = pgrp.pg_id;
246 			} else
247 				kp->ki_tpgid = -1;
248 			if (tty.t_session != NULL) {
249 				if (KREAD(kd, (u_long)tty.t_session, &sess)) {
250 					_kvm_err(kd, kd->program,
251 					    "can't read session at %x",
252 					    tty.t_session);
253 					return (-1);
254 				}
255 				kp->ki_tsid = sess.s_sid;
256 			}
257 		} else {
258 nopgrp:
259 			kp->ki_tdev = NODEV;
260 		}
261 		if (proc.p_wmesg)
262 			(void)kvm_read(kd, (u_long)proc.p_wmesg,
263 			    kp->ki_wmesg, WMESGLEN);
264 
265 #ifdef sparc
266 		(void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_rssize,
267 		    (char *)&kp->ki_rssize,
268 		    sizeof(kp->ki_rssize));
269 		(void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_tsize,
270 		    (char *)&kp->ki_tsize,
271 		    3 * sizeof(kp->ki_rssize));	/* XXX */
272 #else
273 		(void)kvm_read(kd, (u_long)proc.p_vmspace,
274 		    (char *)&vmspace, sizeof(vmspace));
275 		kp->ki_size = vmspace.vm_map.size;
276 		kp->ki_rssize = vmspace.vm_swrss; /* XXX */
277 		kp->ki_swrss = vmspace.vm_swrss;
278 		kp->ki_tsize = vmspace.vm_tsize;
279 		kp->ki_dsize = vmspace.vm_dsize;
280 		kp->ki_ssize = vmspace.vm_ssize;
281 #endif
282 
283 		switch (what) {
284 
285 		case KERN_PROC_PGRP:
286 			if (kp->ki_pgid != (pid_t)arg)
287 				continue;
288 			break;
289 
290 		case KERN_PROC_TTY:
291 			if ((proc.p_flag & P_CONTROLT) == 0 ||
292 			     kp->ki_tdev != (dev_t)arg)
293 				continue;
294 			break;
295 		}
296 		if (proc.p_comm[0] != 0) {
297 			strncpy(kp->ki_comm, proc.p_comm, MAXCOMLEN);
298 			kp->ki_comm[MAXCOMLEN] = 0;
299 		}
300 		if (proc.p_blocked != 0) {
301 			kp->ki_kiflag |= KI_MTXBLOCK;
302 			if (proc.p_mtxname)
303 				(void)kvm_read(kd, (u_long)proc.p_mtxname,
304 				    kp->ki_mtxname, MTXNAMELEN);
305 			kp->ki_mtxname[MTXNAMELEN] = 0;
306 		}
307 		kp->ki_runtime = proc.p_runtime;
308 		kp->ki_pid = proc.p_pid;
309 		kp->ki_siglist = proc.p_siglist;
310 		kp->ki_sigmask = proc.p_sigmask;
311 		kp->ki_xstat = proc.p_xstat;
312 		kp->ki_acflag = proc.p_acflag;
313 		kp->ki_pctcpu = proc.p_pctcpu;
314 		kp->ki_estcpu = proc.p_estcpu;
315 		kp->ki_slptime = proc.p_slptime;
316 		kp->ki_swtime = proc.p_swtime;
317 		kp->ki_flag = proc.p_flag;
318 		kp->ki_sflag = proc.p_sflag;
319 		kp->ki_wchan = proc.p_wchan;
320 		kp->ki_traceflag = proc.p_traceflag;
321 		kp->ki_stat = proc.p_stat;
322 		kp->ki_pri = proc.p_pri;
323 		kp->ki_nice = proc.p_nice;
324 		kp->ki_lock = proc.p_lock;
325 		kp->ki_rqindex = proc.p_rqindex;
326 		kp->ki_oncpu = proc.p_oncpu;
327 		kp->ki_lastcpu = proc.p_lastcpu;
328 		bcopy(&kinfo_proc, bp, sizeof(kinfo_proc));
329 		++bp;
330 		++cnt;
331 	}
332 	return (cnt);
333 }
334 
335 /*
336  * Build proc info array by reading in proc list from a crash dump.
337  * Return number of procs read.  maxcnt is the max we will read.
338  */
339 static int
340 kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt)
341 	kvm_t *kd;
342 	int what, arg;
343 	u_long a_allproc;
344 	u_long a_zombproc;
345 	int maxcnt;
346 {
347 	register struct kinfo_proc *bp = kd->procbase;
348 	register int acnt, zcnt;
349 	struct proc *p;
350 
351 	if (KREAD(kd, a_allproc, &p)) {
352 		_kvm_err(kd, kd->program, "cannot read allproc");
353 		return (-1);
354 	}
355 	acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
356 	if (acnt < 0)
357 		return (acnt);
358 
359 	if (KREAD(kd, a_zombproc, &p)) {
360 		_kvm_err(kd, kd->program, "cannot read zombproc");
361 		return (-1);
362 	}
363 	zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt);
364 	if (zcnt < 0)
365 		zcnt = 0;
366 
367 	return (acnt + zcnt);
368 }
369 
370 struct kinfo_proc *
371 kvm_getprocs(kd, op, arg, cnt)
372 	kvm_t *kd;
373 	int op, arg;
374 	int *cnt;
375 {
376 	int mib[4], st, nprocs;
377 	size_t size;
378 
379 	if (kd->procbase != 0) {
380 		free((void *)kd->procbase);
381 		/*
382 		 * Clear this pointer in case this call fails.  Otherwise,
383 		 * kvm_close() will free it again.
384 		 */
385 		kd->procbase = 0;
386 	}
387 	if (ISALIVE(kd)) {
388 		size = 0;
389 		mib[0] = CTL_KERN;
390 		mib[1] = KERN_PROC;
391 		mib[2] = op;
392 		mib[3] = arg;
393 		st = sysctl(mib, op == KERN_PROC_ALL ? 3 : 4, NULL, &size, NULL, 0);
394 		if (st == -1) {
395 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
396 			return (0);
397 		}
398 		do {
399 			size += size / 10;
400 			kd->procbase = (struct kinfo_proc *)
401 			    _kvm_realloc(kd, kd->procbase, size);
402 			if (kd->procbase == 0)
403 				return (0);
404 			st = sysctl(mib, op == KERN_PROC_ALL ? 3 : 4,
405 			    kd->procbase, &size, NULL, 0);
406 		} while (st == -1 && errno == ENOMEM);
407 		if (st == -1) {
408 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
409 			return (0);
410 		}
411 		if (size > 0 &&
412 		    kd->procbase->ki_structsize != sizeof(struct kinfo_proc)) {
413 			_kvm_err(kd, kd->program,
414 			    "kinfo_proc size mismatch (expected %d, got %d)",
415 			    sizeof(struct kinfo_proc),
416 			    kd->procbase->ki_structsize);
417 			return (0);
418 		}
419 		nprocs = size == 0 ? 0 : size / kd->procbase->ki_structsize;
420 	} else {
421 		struct nlist nl[4], *p;
422 
423 		nl[0].n_name = "_nprocs";
424 		nl[1].n_name = "_allproc";
425 		nl[2].n_name = "_zombproc";
426 		nl[3].n_name = 0;
427 
428 		if (kvm_nlist(kd, nl) != 0) {
429 			for (p = nl; p->n_type != 0; ++p)
430 				;
431 			_kvm_err(kd, kd->program,
432 				 "%s: no such symbol", p->n_name);
433 			return (0);
434 		}
435 		if (KREAD(kd, nl[0].n_value, &nprocs)) {
436 			_kvm_err(kd, kd->program, "can't read nprocs");
437 			return (0);
438 		}
439 		size = nprocs * sizeof(struct kinfo_proc);
440 		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
441 		if (kd->procbase == 0)
442 			return (0);
443 
444 		nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
445 				      nl[2].n_value, nprocs);
446 #ifdef notdef
447 		size = nprocs * sizeof(struct kinfo_proc);
448 		(void)realloc(kd->procbase, size);
449 #endif
450 	}
451 	*cnt = nprocs;
452 	return (kd->procbase);
453 }
454 
455 void
456 _kvm_freeprocs(kd)
457 	kvm_t *kd;
458 {
459 	if (kd->procbase) {
460 		free(kd->procbase);
461 		kd->procbase = 0;
462 	}
463 }
464 
465 void *
466 _kvm_realloc(kd, p, n)
467 	kvm_t *kd;
468 	void *p;
469 	size_t n;
470 {
471 	void *np = (void *)realloc(p, n);
472 
473 	if (np == 0) {
474 		free(p);
475 		_kvm_err(kd, kd->program, "out of memory");
476 	}
477 	return (np);
478 }
479 
480 #ifndef MAX
481 #define MAX(a, b) ((a) > (b) ? (a) : (b))
482 #endif
483 
484 /*
485  * Read in an argument vector from the user address space of process kp.
486  * addr if the user-space base address of narg null-terminated contiguous
487  * strings.  This is used to read in both the command arguments and
488  * environment strings.  Read at most maxcnt characters of strings.
489  */
490 static char **
491 kvm_argv(kd, kp, addr, narg, maxcnt)
492 	kvm_t *kd;
493 	struct kinfo_proc *kp;
494 	register u_long addr;
495 	register int narg;
496 	register int maxcnt;
497 {
498 	register char *np, *cp, *ep, *ap;
499 	register u_long oaddr = -1;
500 	register int len, cc;
501 	register char **argv;
502 
503 	/*
504 	 * Check that there aren't an unreasonable number of agruments,
505 	 * and that the address is in user space.
506 	 */
507 	if (narg > 512 || addr < VM_MIN_ADDRESS || addr >= VM_MAXUSER_ADDRESS)
508 		return (0);
509 
510 	/*
511 	 * kd->argv : work space for fetching the strings from the target
512 	 *            process's space, and is converted for returning to caller
513 	 */
514 	if (kd->argv == 0) {
515 		/*
516 		 * Try to avoid reallocs.
517 		 */
518 		kd->argc = MAX(narg + 1, 32);
519 		kd->argv = (char **)_kvm_malloc(kd, kd->argc *
520 						sizeof(*kd->argv));
521 		if (kd->argv == 0)
522 			return (0);
523 	} else if (narg + 1 > kd->argc) {
524 		kd->argc = MAX(2 * kd->argc, narg + 1);
525 		kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
526 						sizeof(*kd->argv));
527 		if (kd->argv == 0)
528 			return (0);
529 	}
530 	/*
531 	 * kd->argspc : returned to user, this is where the kd->argv
532 	 *              arrays are left pointing to the collected strings.
533 	 */
534 	if (kd->argspc == 0) {
535 		kd->argspc = (char *)_kvm_malloc(kd, PAGE_SIZE);
536 		if (kd->argspc == 0)
537 			return (0);
538 		kd->arglen = PAGE_SIZE;
539 	}
540 	/*
541 	 * kd->argbuf : used to pull in pages from the target process.
542 	 *              the strings are copied out of here.
543 	 */
544 	if (kd->argbuf == 0) {
545 		kd->argbuf = (char *)_kvm_malloc(kd, PAGE_SIZE);
546 		if (kd->argbuf == 0)
547 			return (0);
548 	}
549 
550 	/* Pull in the target process'es argv vector */
551 	cc = sizeof(char *) * narg;
552 	if (kvm_uread(kd, kp, addr, (char *)kd->argv, cc) != cc)
553 		return (0);
554 	/*
555 	 * ap : saved start address of string we're working on in kd->argspc
556 	 * np : pointer to next place to write in kd->argspc
557 	 * len: length of data in kd->argspc
558 	 * argv: pointer to the argv vector that we are hunting around the
559 	 *       target process space for, and converting to addresses in
560 	 *       our address space (kd->argspc).
561 	 */
562 	ap = np = kd->argspc;
563 	argv = kd->argv;
564 	len = 0;
565 	/*
566 	 * Loop over pages, filling in the argument vector.
567 	 * Note that the argv strings could be pointing *anywhere* in
568 	 * the user address space and are no longer contiguous.
569 	 * Note that *argv is modified when we are going to fetch a string
570 	 * that crosses a page boundary.  We copy the next part of the string
571 	 * into to "np" and eventually convert the pointer.
572 	 */
573 	while (argv < kd->argv + narg && *argv != 0) {
574 
575 		/* get the address that the current argv string is on */
576 		addr = (u_long)*argv & ~(PAGE_SIZE - 1);
577 
578 		/* is it the same page as the last one? */
579 		if (addr != oaddr) {
580 			if (kvm_uread(kd, kp, addr, kd->argbuf, PAGE_SIZE) !=
581 			    PAGE_SIZE)
582 				return (0);
583 			oaddr = addr;
584 		}
585 
586 		/* offset within the page... kd->argbuf */
587 		addr = (u_long)*argv & (PAGE_SIZE - 1);
588 
589 		/* cp = start of string, cc = count of chars in this chunk */
590 		cp = kd->argbuf + addr;
591 		cc = PAGE_SIZE - addr;
592 
593 		/* dont get more than asked for by user process */
594 		if (maxcnt > 0 && cc > maxcnt - len)
595 			cc = maxcnt - len;
596 
597 		/* pointer to end of string if we found it in this page */
598 		ep = memchr(cp, '\0', cc);
599 		if (ep != 0)
600 			cc = ep - cp + 1;
601 		/*
602 		 * at this point, cc is the count of the chars that we are
603 		 * going to retrieve this time. we may or may not have found
604 		 * the end of it.  (ep points to the null if the end is known)
605 		 */
606 
607 		/* will we exceed the malloc/realloced buffer? */
608 		if (len + cc > kd->arglen) {
609 			register int off;
610 			register char **pp;
611 			register char *op = kd->argspc;
612 
613 			kd->arglen *= 2;
614 			kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
615 							  kd->arglen);
616 			if (kd->argspc == 0)
617 				return (0);
618 			/*
619 			 * Adjust argv pointers in case realloc moved
620 			 * the string space.
621 			 */
622 			off = kd->argspc - op;
623 			for (pp = kd->argv; pp < argv; pp++)
624 				*pp += off;
625 			ap += off;
626 			np += off;
627 		}
628 		/* np = where to put the next part of the string in kd->argspc*/
629 		/* np is kinda redundant.. could use "kd->argspc + len" */
630 		memcpy(np, cp, cc);
631 		np += cc;	/* inc counters */
632 		len += cc;
633 
634 		/*
635 		 * if end of string found, set the *argv pointer to the
636 		 * saved beginning of string, and advance. argv points to
637 		 * somewhere in kd->argv..  This is initially relative
638 		 * to the target process, but when we close it off, we set
639 		 * it to point in our address space.
640 		 */
641 		if (ep != 0) {
642 			*argv++ = ap;
643 			ap = np;
644 		} else {
645 			/* update the address relative to the target process */
646 			*argv += cc;
647 		}
648 
649 		if (maxcnt > 0 && len >= maxcnt) {
650 			/*
651 			 * We're stopping prematurely.  Terminate the
652 			 * current string.
653 			 */
654 			if (ep == 0) {
655 				*np = '\0';
656 				*argv++ = ap;
657 			}
658 			break;
659 		}
660 	}
661 	/* Make sure argv is terminated. */
662 	*argv = 0;
663 	return (kd->argv);
664 }
665 
666 static void
667 ps_str_a(p, addr, n)
668 	struct ps_strings *p;
669 	u_long *addr;
670 	int *n;
671 {
672 	*addr = (u_long)p->ps_argvstr;
673 	*n = p->ps_nargvstr;
674 }
675 
676 static void
677 ps_str_e(p, addr, n)
678 	struct ps_strings *p;
679 	u_long *addr;
680 	int *n;
681 {
682 	*addr = (u_long)p->ps_envstr;
683 	*n = p->ps_nenvstr;
684 }
685 
686 /*
687  * Determine if the proc indicated by p is still active.
688  * This test is not 100% foolproof in theory, but chances of
689  * being wrong are very low.
690  */
691 static int
692 proc_verify(curkp)
693 	struct kinfo_proc *curkp;
694 {
695 	struct kinfo_proc newkp;
696 	int mib[4];
697 	size_t len;
698 
699 	mib[0] = CTL_KERN;
700 	mib[1] = KERN_PROC;
701 	mib[2] = KERN_PROC_PID;
702 	mib[3] = curkp->ki_pid;
703 	len = sizeof(newkp);
704 	if (sysctl(mib, 4, &newkp, &len, NULL, 0) == -1)
705 		return (0);
706 	return (curkp->ki_pid == newkp.ki_pid &&
707 	    (newkp.ki_stat != SZOMB || curkp->ki_stat == SZOMB));
708 }
709 
710 static char **
711 kvm_doargv(kd, kp, nchr, info)
712 	kvm_t *kd;
713 	struct kinfo_proc *kp;
714 	int nchr;
715 	void (*info)(struct ps_strings *, u_long *, int *);
716 {
717 	char **ap;
718 	u_long addr;
719 	int cnt;
720 	static struct ps_strings arginfo;
721 	static u_long ps_strings;
722 	size_t len;
723 
724 	if (ps_strings == NULL) {
725 		len = sizeof(ps_strings);
726 		if (sysctlbyname("kern.ps_strings", &ps_strings, &len, NULL,
727 		    0) == -1)
728 			ps_strings = PS_STRINGS;
729 	}
730 
731 	/*
732 	 * Pointers are stored at the top of the user stack.
733 	 */
734 	if (kp->ki_stat == SZOMB ||
735 	    kvm_uread(kd, kp, ps_strings, (char *)&arginfo,
736 		      sizeof(arginfo)) != sizeof(arginfo))
737 		return (0);
738 
739 	(*info)(&arginfo, &addr, &cnt);
740 	if (cnt == 0)
741 		return (0);
742 	ap = kvm_argv(kd, kp, addr, cnt, nchr);
743 	/*
744 	 * For live kernels, make sure this process didn't go away.
745 	 */
746 	if (ap != 0 && ISALIVE(kd) && !proc_verify(kp))
747 		ap = 0;
748 	return (ap);
749 }
750 
751 /*
752  * Get the command args.  This code is now machine independent.
753  */
754 char **
755 kvm_getargv(kd, kp, nchr)
756 	kvm_t *kd;
757 	const struct kinfo_proc *kp;
758 	int nchr;
759 {
760 	int oid[4];
761 	int i;
762 	size_t bufsz;
763 	static int buflen;
764 	static char *buf, *p;
765 	static char **bufp;
766 	static int argc;
767 
768 	if (!ISALIVE(kd)) {
769 		_kvm_err(kd, kd->program,
770 		    "cannot read user space from dead kernel");
771 		return (0);
772 	}
773 
774 	if (!buflen) {
775 		bufsz = sizeof(buflen);
776 		i = sysctlbyname("kern.ps_arg_cache_limit",
777 		    &buflen, &bufsz, NULL, 0);
778 		if (i == -1) {
779 			buflen = 0;
780 		} else {
781 			buf = malloc(buflen);
782 			if (buf == NULL)
783 				buflen = 0;
784 			argc = 32;
785 			bufp = malloc(sizeof(char *) * argc);
786 		}
787 	}
788 	if (buf != NULL) {
789 		oid[0] = CTL_KERN;
790 		oid[1] = KERN_PROC;
791 		oid[2] = KERN_PROC_ARGS;
792 		oid[3] = kp->ki_pid;
793 		bufsz = buflen;
794 		i = sysctl(oid, 4, buf, &bufsz, 0, 0);
795 		if (i == 0 && bufsz > 0) {
796 			i = 0;
797 			p = buf;
798 			do {
799 				bufp[i++] = p;
800 				p += strlen(p) + 1;
801 				if (i >= argc) {
802 					argc += argc;
803 					bufp = realloc(bufp,
804 					    sizeof(char *) * argc);
805 				}
806 			} while (p < buf + bufsz);
807 			bufp[i++] = 0;
808 			return (bufp);
809 		}
810 	}
811 	if (kp->ki_flag & P_SYSTEM)
812 		return (NULL);
813 	return (kvm_doargv(kd, kp, nchr, ps_str_a));
814 }
815 
816 char **
817 kvm_getenvv(kd, kp, nchr)
818 	kvm_t *kd;
819 	const struct kinfo_proc *kp;
820 	int nchr;
821 {
822 	return (kvm_doargv(kd, kp, nchr, ps_str_e));
823 }
824 
825 /*
826  * Read from user space.  The user context is given by p.
827  */
828 ssize_t
829 kvm_uread(kd, kp, uva, buf, len)
830 	kvm_t *kd;
831 	struct kinfo_proc *kp;
832 	register u_long uva;
833 	register char *buf;
834 	register size_t len;
835 {
836 	register char *cp;
837 	char procfile[MAXPATHLEN];
838 	ssize_t amount;
839 	int fd;
840 
841 	if (!ISALIVE(kd)) {
842 		_kvm_err(kd, kd->program,
843 		    "cannot read user space from dead kernel");
844 		return (0);
845 	}
846 
847 	sprintf(procfile, "/proc/%d/mem", kp->ki_pid);
848 	fd = open(procfile, O_RDONLY, 0);
849 	if (fd < 0) {
850 		_kvm_err(kd, kd->program, "cannot open %s", procfile);
851 		close(fd);
852 		return (0);
853 	}
854 
855 	cp = buf;
856 	while (len > 0) {
857 		errno = 0;
858 		if (lseek(fd, (off_t)uva, 0) == -1 && errno != 0) {
859 			_kvm_err(kd, kd->program, "invalid address (%x) in %s",
860 			    uva, procfile);
861 			break;
862 		}
863 		amount = read(fd, cp, len);
864 		if (amount < 0) {
865 			_kvm_syserr(kd, kd->program, "error reading %s",
866 			    procfile);
867 			break;
868 		}
869 		if (amount == 0) {
870 			_kvm_err(kd, kd->program, "EOF reading %s", procfile);
871 			break;
872 		}
873 		cp += amount;
874 		uva += amount;
875 		len -= amount;
876 	}
877 
878 	close(fd);
879 	return ((ssize_t)(cp - buf));
880 }
881