1 /*- 2 * Copyright (c) 1989, 1992, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software developed by the Computer Systems 6 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract 7 * BG 91-66 and contributed to Berkeley. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. All advertising materials mentioning features or use of this software 18 * must display the following acknowledgement: 19 * This product includes software developed by the University of 20 * California, Berkeley and its contributors. 21 * 4. Neither the name of the University nor the names of its contributors 22 * may be used to endorse or promote products derived from this software 23 * without specific prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 28 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 35 * SUCH DAMAGE. 36 * 37 * $FreeBSD$ 38 */ 39 40 #include <sys/cdefs.h> 41 __FBSDID("$FreeBSD$"); 42 43 #if defined(LIBC_SCCS) && !defined(lint) 44 static char sccsid[] = "@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93"; 45 #endif /* LIBC_SCCS and not lint */ 46 47 /* 48 * Proc traversal interface for kvm. ps and w are (probably) the exclusive 49 * users of this code, so we've factored it out into a separate module. 50 * Thus, we keep this grunge out of the other kvm applications (i.e., 51 * most other applications are interested only in open/close/read/nlist). 52 */ 53 54 #include <sys/param.h> 55 #include <sys/user.h> 56 #include <sys/proc.h> 57 #include <sys/exec.h> 58 #include <sys/stat.h> 59 #include <sys/ioctl.h> 60 #include <sys/tty.h> 61 #include <sys/file.h> 62 #include <stdio.h> 63 #include <stdlib.h> 64 #include <unistd.h> 65 #include <nlist.h> 66 #include <kvm.h> 67 68 #include <vm/vm.h> 69 #include <vm/vm_param.h> 70 #include <vm/swap_pager.h> 71 72 #include <sys/sysctl.h> 73 74 #include <limits.h> 75 #include <memory.h> 76 #include <paths.h> 77 78 #include "kvm_private.h" 79 80 #if used 81 static char * 82 kvm_readswap(kd, p, va, cnt) 83 kvm_t *kd; 84 const struct proc *p; 85 u_long va; 86 u_long *cnt; 87 { 88 #ifdef __FreeBSD__ 89 /* XXX Stubbed out, our vm system is differnet */ 90 _kvm_err(kd, kd->program, "kvm_readswap not implemented"); 91 return(0); 92 #endif /* __FreeBSD__ */ 93 } 94 #endif 95 96 #define KREAD(kd, addr, obj) \ 97 (kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj)) 98 99 /* 100 * Read proc's from memory file into buffer bp, which has space to hold 101 * at most maxcnt procs. 102 */ 103 static int 104 kvm_proclist(kd, what, arg, p, bp, maxcnt) 105 kvm_t *kd; 106 int what, arg; 107 struct proc *p; 108 struct kinfo_proc *bp; 109 int maxcnt; 110 { 111 int cnt = 0; 112 struct kinfo_proc kinfo_proc, *kp; 113 struct pgrp pgrp; 114 struct session sess; 115 struct tty tty; 116 struct vmspace vmspace; 117 struct procsig procsig; 118 struct pstats pstats; 119 struct ucred ucred; 120 struct thread mainthread; 121 struct proc proc; 122 struct proc pproc; 123 struct timeval tv; 124 125 kp = &kinfo_proc; 126 kp->ki_structsize = sizeof(kinfo_proc); 127 for (; cnt < maxcnt && p != NULL; p = LIST_NEXT(&proc, p_list)) { 128 memset(kp, 0, sizeof *kp); 129 if (KREAD(kd, (u_long)p, &proc)) { 130 _kvm_err(kd, kd->program, "can't read proc at %x", p); 131 return (-1); 132 } 133 if (proc.p_state != PRS_ZOMBIE) { 134 if (KREAD(kd, (u_long)TAILQ_FIRST(&proc.p_threads), 135 &mainthread)) { 136 _kvm_err(kd, kd->program, 137 "can't read thread at %x", 138 TAILQ_FIRST(&proc.p_threads)); 139 return (-1); 140 } 141 } 142 if (KREAD(kd, (u_long)proc.p_ucred, &ucred) == 0) { 143 kp->ki_ruid = ucred.cr_ruid; 144 kp->ki_svuid = ucred.cr_svuid; 145 kp->ki_rgid = ucred.cr_rgid; 146 kp->ki_svgid = ucred.cr_svgid; 147 kp->ki_ngroups = ucred.cr_ngroups; 148 bcopy(ucred.cr_groups, kp->ki_groups, 149 NGROUPS * sizeof(gid_t)); 150 kp->ki_uid = ucred.cr_uid; 151 } 152 153 switch(what) { 154 155 case KERN_PROC_PID: 156 if (proc.p_pid != (pid_t)arg) 157 continue; 158 break; 159 160 case KERN_PROC_UID: 161 if (kp->ki_uid != (uid_t)arg) 162 continue; 163 break; 164 165 case KERN_PROC_RUID: 166 if (kp->ki_ruid != (uid_t)arg) 167 continue; 168 break; 169 } 170 /* 171 * We're going to add another proc to the set. If this 172 * will overflow the buffer, assume the reason is because 173 * nprocs (or the proc list) is corrupt and declare an error. 174 */ 175 if (cnt >= maxcnt) { 176 _kvm_err(kd, kd->program, "nprocs corrupt"); 177 return (-1); 178 } 179 /* 180 * gather kinfo_proc 181 */ 182 kp->ki_paddr = p; 183 kp->ki_addr = proc.p_uarea; 184 /* kp->ki_kstack = proc.p_thread.td_kstack; XXXKSE */ 185 kp->ki_args = proc.p_args; 186 kp->ki_tracep = proc.p_tracep; 187 kp->ki_textvp = proc.p_textvp; 188 kp->ki_fd = proc.p_fd; 189 kp->ki_vmspace = proc.p_vmspace; 190 if (proc.p_procsig != NULL) { 191 if (KREAD(kd, (u_long)proc.p_procsig, &procsig)) { 192 _kvm_err(kd, kd->program, 193 "can't read procsig at %x", proc.p_procsig); 194 return (-1); 195 } 196 kp->ki_sigignore = procsig.ps_sigignore; 197 kp->ki_sigcatch = procsig.ps_sigcatch; 198 } 199 if ((proc.p_sflag & PS_INMEM) && proc.p_stats != NULL) { 200 if (KREAD(kd, (u_long)proc.p_stats, &pstats)) { 201 _kvm_err(kd, kd->program, 202 "can't read stats at %x", proc.p_stats); 203 return (-1); 204 } 205 kp->ki_start = pstats.p_start; 206 kp->ki_rusage = pstats.p_ru; 207 kp->ki_childtime.tv_sec = pstats.p_cru.ru_utime.tv_sec + 208 pstats.p_cru.ru_stime.tv_sec; 209 kp->ki_childtime.tv_usec = 210 pstats.p_cru.ru_utime.tv_usec + 211 pstats.p_cru.ru_stime.tv_usec; 212 } 213 if (proc.p_oppid) 214 kp->ki_ppid = proc.p_oppid; 215 else if (proc.p_pptr) { 216 if (KREAD(kd, (u_long)proc.p_pptr, &pproc)) { 217 _kvm_err(kd, kd->program, 218 "can't read pproc at %x", proc.p_pptr); 219 return (-1); 220 } 221 kp->ki_ppid = pproc.p_pid; 222 } else 223 kp->ki_ppid = 0; 224 if (proc.p_pgrp == NULL) 225 goto nopgrp; 226 if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) { 227 _kvm_err(kd, kd->program, "can't read pgrp at %x", 228 proc.p_pgrp); 229 return (-1); 230 } 231 kp->ki_pgid = pgrp.pg_id; 232 kp->ki_jobc = pgrp.pg_jobc; 233 if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) { 234 _kvm_err(kd, kd->program, "can't read session at %x", 235 pgrp.pg_session); 236 return (-1); 237 } 238 kp->ki_sid = sess.s_sid; 239 (void)memcpy(kp->ki_login, sess.s_login, 240 sizeof(kp->ki_login)); 241 kp->ki_kiflag = sess.s_ttyvp ? KI_CTTY : 0; 242 if (sess.s_leader == p) 243 kp->ki_kiflag |= KI_SLEADER; 244 if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) { 245 if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) { 246 _kvm_err(kd, kd->program, 247 "can't read tty at %x", sess.s_ttyp); 248 return (-1); 249 } 250 kp->ki_tdev = tty.t_dev; 251 if (tty.t_pgrp != NULL) { 252 if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) { 253 _kvm_err(kd, kd->program, 254 "can't read tpgrp at &x", 255 tty.t_pgrp); 256 return (-1); 257 } 258 kp->ki_tpgid = pgrp.pg_id; 259 } else 260 kp->ki_tpgid = -1; 261 if (tty.t_session != NULL) { 262 if (KREAD(kd, (u_long)tty.t_session, &sess)) { 263 _kvm_err(kd, kd->program, 264 "can't read session at %x", 265 tty.t_session); 266 return (-1); 267 } 268 kp->ki_tsid = sess.s_sid; 269 } 270 } else { 271 nopgrp: 272 kp->ki_tdev = NODEV; 273 } 274 if ((proc.p_state != PRS_ZOMBIE) && mainthread.td_wmesg) 275 (void)kvm_read(kd, (u_long)mainthread.td_wmesg, 276 kp->ki_wmesg, WMESGLEN); 277 278 #ifdef sparc 279 (void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_rssize, 280 (char *)&kp->ki_rssize, 281 sizeof(kp->ki_rssize)); 282 (void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_tsize, 283 (char *)&kp->ki_tsize, 284 3 * sizeof(kp->ki_rssize)); /* XXX */ 285 #else 286 (void)kvm_read(kd, (u_long)proc.p_vmspace, 287 (char *)&vmspace, sizeof(vmspace)); 288 kp->ki_size = vmspace.vm_map.size; 289 kp->ki_rssize = vmspace.vm_swrss; /* XXX */ 290 kp->ki_swrss = vmspace.vm_swrss; 291 kp->ki_tsize = vmspace.vm_tsize; 292 kp->ki_dsize = vmspace.vm_dsize; 293 kp->ki_ssize = vmspace.vm_ssize; 294 #endif 295 296 switch (what) { 297 298 case KERN_PROC_PGRP: 299 if (kp->ki_pgid != (pid_t)arg) 300 continue; 301 break; 302 303 case KERN_PROC_TTY: 304 if ((proc.p_flag & P_CONTROLT) == 0 || 305 kp->ki_tdev != (dev_t)arg) 306 continue; 307 break; 308 } 309 if (proc.p_comm[0] != 0) { 310 strncpy(kp->ki_comm, proc.p_comm, MAXCOMLEN); 311 kp->ki_comm[MAXCOMLEN] = 0; 312 } 313 if ((proc.p_state != PRS_ZOMBIE) && 314 (mainthread.td_blocked != 0)) { 315 kp->ki_kiflag |= KI_MTXBLOCK; 316 if (mainthread.td_mtxname) 317 (void)kvm_read(kd, 318 (u_long)mainthread.td_mtxname, 319 kp->ki_mtxname, MTXNAMELEN); 320 kp->ki_mtxname[MTXNAMELEN] = 0; 321 } 322 bintime2timeval(&proc.p_runtime, &tv); 323 kp->ki_runtime = (u_int64_t)tv.tv_sec * 1000000 + tv.tv_usec; 324 kp->ki_pid = proc.p_pid; 325 kp->ki_siglist = proc.p_siglist; 326 kp->ki_sigmask = proc.p_sigmask; 327 kp->ki_xstat = proc.p_xstat; 328 kp->ki_acflag = proc.p_acflag; 329 if (proc.p_state != PRS_ZOMBIE) { 330 kp->ki_pctcpu = proc.p_kse.ke_pctcpu; 331 kp->ki_estcpu = proc.p_ksegrp.kg_estcpu; 332 kp->ki_slptime = proc.p_kse.ke_slptime; 333 kp->ki_swtime = proc.p_swtime; 334 kp->ki_flag = proc.p_flag; 335 kp->ki_sflag = proc.p_sflag; 336 kp->ki_wchan = mainthread.td_wchan; 337 kp->ki_traceflag = proc.p_traceflag; 338 if (proc.p_state == PRS_NORMAL) { 339 if ((mainthread.td_state == TDS_RUNQ) || 340 (mainthread.td_state == TDS_RUNNING)) { 341 kp->ki_stat = SRUN; 342 } else if (mainthread.td_state == TDS_SLP) { 343 kp->ki_stat = SSLEEP; 344 } else if (P_SHOULDSTOP(&proc)) { 345 kp->ki_stat = SSTOP; 346 } else if (mainthread.td_state == TDS_MTX) { 347 kp->ki_stat = SMTX; 348 } else { 349 kp->ki_stat = SWAIT; 350 } 351 } else { 352 kp->ki_stat = SIDL; 353 } 354 kp->ki_pri.pri_class = proc.p_ksegrp.kg_pri_class; 355 kp->ki_pri.pri_user = proc.p_ksegrp.kg_user_pri; 356 kp->ki_pri.pri_level = mainthread.td_priority; 357 kp->ki_pri.pri_native = mainthread.td_base_pri; 358 kp->ki_nice = proc.p_ksegrp.kg_nice; 359 kp->ki_lock = proc.p_lock; 360 kp->ki_rqindex = proc.p_kse.ke_rqindex; 361 kp->ki_oncpu = proc.p_kse.ke_oncpu; 362 kp->ki_lastcpu = mainthread.td_lastcpu; 363 } else { 364 kp->ki_stat = SZOMB; 365 } 366 bcopy(&kinfo_proc, bp, sizeof(kinfo_proc)); 367 ++bp; 368 ++cnt; 369 } 370 return (cnt); 371 } 372 373 /* 374 * Build proc info array by reading in proc list from a crash dump. 375 * Return number of procs read. maxcnt is the max we will read. 376 */ 377 static int 378 kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt) 379 kvm_t *kd; 380 int what, arg; 381 u_long a_allproc; 382 u_long a_zombproc; 383 int maxcnt; 384 { 385 struct kinfo_proc *bp = kd->procbase; 386 int acnt, zcnt; 387 struct proc *p; 388 389 if (KREAD(kd, a_allproc, &p)) { 390 _kvm_err(kd, kd->program, "cannot read allproc"); 391 return (-1); 392 } 393 acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt); 394 if (acnt < 0) 395 return (acnt); 396 397 if (KREAD(kd, a_zombproc, &p)) { 398 _kvm_err(kd, kd->program, "cannot read zombproc"); 399 return (-1); 400 } 401 zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt); 402 if (zcnt < 0) 403 zcnt = 0; 404 405 return (acnt + zcnt); 406 } 407 408 struct kinfo_proc * 409 kvm_getprocs(kd, op, arg, cnt) 410 kvm_t *kd; 411 int op, arg; 412 int *cnt; 413 { 414 int mib[4], st, nprocs; 415 size_t size; 416 417 if (kd->procbase != 0) { 418 free((void *)kd->procbase); 419 /* 420 * Clear this pointer in case this call fails. Otherwise, 421 * kvm_close() will free it again. 422 */ 423 kd->procbase = 0; 424 } 425 if (ISALIVE(kd)) { 426 size = 0; 427 mib[0] = CTL_KERN; 428 mib[1] = KERN_PROC; 429 mib[2] = op; 430 mib[3] = arg; 431 st = sysctl(mib, op == KERN_PROC_ALL ? 3 : 4, NULL, &size, NULL, 0); 432 if (st == -1) { 433 _kvm_syserr(kd, kd->program, "kvm_getprocs"); 434 return (0); 435 } 436 /* 437 * We can't continue with a size of 0 because we pass 438 * it to realloc() (via _kvm_realloc()), and passing 0 439 * to realloc() results in undefined behavior. 440 */ 441 if (size == 0) { 442 /* 443 * XXX: We should probably return an invalid, 444 * but non-NULL, pointer here so any client 445 * program trying to dereference it will 446 * crash. However, _kvm_freeprocs() calls 447 * free() on kd->procbase if it isn't NULL, 448 * and free()'ing a junk pointer isn't good. 449 * Then again, _kvm_freeprocs() isn't used 450 * anywhere . . . 451 */ 452 kd->procbase = _kvm_malloc(kd, 1); 453 goto liveout; 454 } 455 do { 456 size += size / 10; 457 kd->procbase = (struct kinfo_proc *) 458 _kvm_realloc(kd, kd->procbase, size); 459 if (kd->procbase == 0) 460 return (0); 461 st = sysctl(mib, op == KERN_PROC_ALL ? 3 : 4, 462 kd->procbase, &size, NULL, 0); 463 } while (st == -1 && errno == ENOMEM); 464 if (st == -1) { 465 _kvm_syserr(kd, kd->program, "kvm_getprocs"); 466 return (0); 467 } 468 /* 469 * We have to check the size again because sysctl() 470 * may "round up" oldlenp if oldp is NULL; hence it 471 * might've told us that there was data to get when 472 * there really isn't any. 473 */ 474 if (size > 0 && 475 kd->procbase->ki_structsize != sizeof(struct kinfo_proc)) { 476 _kvm_err(kd, kd->program, 477 "kinfo_proc size mismatch (expected %d, got %d)", 478 sizeof(struct kinfo_proc), 479 kd->procbase->ki_structsize); 480 return (0); 481 } 482 liveout: 483 nprocs = size == 0 ? 0 : size / kd->procbase->ki_structsize; 484 } else { 485 struct nlist nl[4], *p; 486 487 nl[0].n_name = "_nprocs"; 488 nl[1].n_name = "_allproc"; 489 nl[2].n_name = "_zombproc"; 490 nl[3].n_name = 0; 491 492 if (kvm_nlist(kd, nl) != 0) { 493 for (p = nl; p->n_type != 0; ++p) 494 ; 495 _kvm_err(kd, kd->program, 496 "%s: no such symbol", p->n_name); 497 return (0); 498 } 499 if (KREAD(kd, nl[0].n_value, &nprocs)) { 500 _kvm_err(kd, kd->program, "can't read nprocs"); 501 return (0); 502 } 503 size = nprocs * sizeof(struct kinfo_proc); 504 kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size); 505 if (kd->procbase == 0) 506 return (0); 507 508 nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value, 509 nl[2].n_value, nprocs); 510 #ifdef notdef 511 size = nprocs * sizeof(struct kinfo_proc); 512 (void)realloc(kd->procbase, size); 513 #endif 514 } 515 *cnt = nprocs; 516 return (kd->procbase); 517 } 518 519 void 520 _kvm_freeprocs(kd) 521 kvm_t *kd; 522 { 523 if (kd->procbase) { 524 free(kd->procbase); 525 kd->procbase = 0; 526 } 527 } 528 529 void * 530 _kvm_realloc(kd, p, n) 531 kvm_t *kd; 532 void *p; 533 size_t n; 534 { 535 void *np = (void *)realloc(p, n); 536 537 if (np == 0) { 538 free(p); 539 _kvm_err(kd, kd->program, "out of memory"); 540 } 541 return (np); 542 } 543 544 #ifndef MAX 545 #define MAX(a, b) ((a) > (b) ? (a) : (b)) 546 #endif 547 548 /* 549 * Read in an argument vector from the user address space of process kp. 550 * addr if the user-space base address of narg null-terminated contiguous 551 * strings. This is used to read in both the command arguments and 552 * environment strings. Read at most maxcnt characters of strings. 553 */ 554 static char ** 555 kvm_argv(kd, kp, addr, narg, maxcnt) 556 kvm_t *kd; 557 struct kinfo_proc *kp; 558 u_long addr; 559 int narg; 560 int maxcnt; 561 { 562 char *np, *cp, *ep, *ap; 563 u_long oaddr = -1; 564 int len, cc; 565 char **argv; 566 567 /* 568 * Check that there aren't an unreasonable number of agruments, 569 * and that the address is in user space. 570 */ 571 if (narg > 512 || addr < VM_MIN_ADDRESS || addr >= VM_MAXUSER_ADDRESS) 572 return (0); 573 574 /* 575 * kd->argv : work space for fetching the strings from the target 576 * process's space, and is converted for returning to caller 577 */ 578 if (kd->argv == 0) { 579 /* 580 * Try to avoid reallocs. 581 */ 582 kd->argc = MAX(narg + 1, 32); 583 kd->argv = (char **)_kvm_malloc(kd, kd->argc * 584 sizeof(*kd->argv)); 585 if (kd->argv == 0) 586 return (0); 587 } else if (narg + 1 > kd->argc) { 588 kd->argc = MAX(2 * kd->argc, narg + 1); 589 kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc * 590 sizeof(*kd->argv)); 591 if (kd->argv == 0) 592 return (0); 593 } 594 /* 595 * kd->argspc : returned to user, this is where the kd->argv 596 * arrays are left pointing to the collected strings. 597 */ 598 if (kd->argspc == 0) { 599 kd->argspc = (char *)_kvm_malloc(kd, PAGE_SIZE); 600 if (kd->argspc == 0) 601 return (0); 602 kd->arglen = PAGE_SIZE; 603 } 604 /* 605 * kd->argbuf : used to pull in pages from the target process. 606 * the strings are copied out of here. 607 */ 608 if (kd->argbuf == 0) { 609 kd->argbuf = (char *)_kvm_malloc(kd, PAGE_SIZE); 610 if (kd->argbuf == 0) 611 return (0); 612 } 613 614 /* Pull in the target process'es argv vector */ 615 cc = sizeof(char *) * narg; 616 if (kvm_uread(kd, kp, addr, (char *)kd->argv, cc) != cc) 617 return (0); 618 /* 619 * ap : saved start address of string we're working on in kd->argspc 620 * np : pointer to next place to write in kd->argspc 621 * len: length of data in kd->argspc 622 * argv: pointer to the argv vector that we are hunting around the 623 * target process space for, and converting to addresses in 624 * our address space (kd->argspc). 625 */ 626 ap = np = kd->argspc; 627 argv = kd->argv; 628 len = 0; 629 /* 630 * Loop over pages, filling in the argument vector. 631 * Note that the argv strings could be pointing *anywhere* in 632 * the user address space and are no longer contiguous. 633 * Note that *argv is modified when we are going to fetch a string 634 * that crosses a page boundary. We copy the next part of the string 635 * into to "np" and eventually convert the pointer. 636 */ 637 while (argv < kd->argv + narg && *argv != 0) { 638 639 /* get the address that the current argv string is on */ 640 addr = (u_long)*argv & ~(PAGE_SIZE - 1); 641 642 /* is it the same page as the last one? */ 643 if (addr != oaddr) { 644 if (kvm_uread(kd, kp, addr, kd->argbuf, PAGE_SIZE) != 645 PAGE_SIZE) 646 return (0); 647 oaddr = addr; 648 } 649 650 /* offset within the page... kd->argbuf */ 651 addr = (u_long)*argv & (PAGE_SIZE - 1); 652 653 /* cp = start of string, cc = count of chars in this chunk */ 654 cp = kd->argbuf + addr; 655 cc = PAGE_SIZE - addr; 656 657 /* dont get more than asked for by user process */ 658 if (maxcnt > 0 && cc > maxcnt - len) 659 cc = maxcnt - len; 660 661 /* pointer to end of string if we found it in this page */ 662 ep = memchr(cp, '\0', cc); 663 if (ep != 0) 664 cc = ep - cp + 1; 665 /* 666 * at this point, cc is the count of the chars that we are 667 * going to retrieve this time. we may or may not have found 668 * the end of it. (ep points to the null if the end is known) 669 */ 670 671 /* will we exceed the malloc/realloced buffer? */ 672 if (len + cc > kd->arglen) { 673 int off; 674 char **pp; 675 char *op = kd->argspc; 676 677 kd->arglen *= 2; 678 kd->argspc = (char *)_kvm_realloc(kd, kd->argspc, 679 kd->arglen); 680 if (kd->argspc == 0) 681 return (0); 682 /* 683 * Adjust argv pointers in case realloc moved 684 * the string space. 685 */ 686 off = kd->argspc - op; 687 for (pp = kd->argv; pp < argv; pp++) 688 *pp += off; 689 ap += off; 690 np += off; 691 } 692 /* np = where to put the next part of the string in kd->argspc*/ 693 /* np is kinda redundant.. could use "kd->argspc + len" */ 694 memcpy(np, cp, cc); 695 np += cc; /* inc counters */ 696 len += cc; 697 698 /* 699 * if end of string found, set the *argv pointer to the 700 * saved beginning of string, and advance. argv points to 701 * somewhere in kd->argv.. This is initially relative 702 * to the target process, but when we close it off, we set 703 * it to point in our address space. 704 */ 705 if (ep != 0) { 706 *argv++ = ap; 707 ap = np; 708 } else { 709 /* update the address relative to the target process */ 710 *argv += cc; 711 } 712 713 if (maxcnt > 0 && len >= maxcnt) { 714 /* 715 * We're stopping prematurely. Terminate the 716 * current string. 717 */ 718 if (ep == 0) { 719 *np = '\0'; 720 *argv++ = ap; 721 } 722 break; 723 } 724 } 725 /* Make sure argv is terminated. */ 726 *argv = 0; 727 return (kd->argv); 728 } 729 730 static void 731 ps_str_a(p, addr, n) 732 struct ps_strings *p; 733 u_long *addr; 734 int *n; 735 { 736 *addr = (u_long)p->ps_argvstr; 737 *n = p->ps_nargvstr; 738 } 739 740 static void 741 ps_str_e(p, addr, n) 742 struct ps_strings *p; 743 u_long *addr; 744 int *n; 745 { 746 *addr = (u_long)p->ps_envstr; 747 *n = p->ps_nenvstr; 748 } 749 750 /* 751 * Determine if the proc indicated by p is still active. 752 * This test is not 100% foolproof in theory, but chances of 753 * being wrong are very low. 754 */ 755 static int 756 proc_verify(curkp) 757 struct kinfo_proc *curkp; 758 { 759 struct kinfo_proc newkp; 760 int mib[4]; 761 size_t len; 762 763 mib[0] = CTL_KERN; 764 mib[1] = KERN_PROC; 765 mib[2] = KERN_PROC_PID; 766 mib[3] = curkp->ki_pid; 767 len = sizeof(newkp); 768 if (sysctl(mib, 4, &newkp, &len, NULL, 0) == -1) 769 return (0); 770 return (curkp->ki_pid == newkp.ki_pid && 771 (newkp.ki_stat != SZOMB || curkp->ki_stat == SZOMB)); 772 } 773 774 static char ** 775 kvm_doargv(kd, kp, nchr, info) 776 kvm_t *kd; 777 struct kinfo_proc *kp; 778 int nchr; 779 void (*info)(struct ps_strings *, u_long *, int *); 780 { 781 char **ap; 782 u_long addr; 783 int cnt; 784 static struct ps_strings arginfo; 785 static u_long ps_strings; 786 size_t len; 787 788 if (ps_strings == NULL) { 789 len = sizeof(ps_strings); 790 if (sysctlbyname("kern.ps_strings", &ps_strings, &len, NULL, 791 0) == -1) 792 ps_strings = PS_STRINGS; 793 } 794 795 /* 796 * Pointers are stored at the top of the user stack. 797 */ 798 if (kp->ki_stat == SZOMB || 799 kvm_uread(kd, kp, ps_strings, (char *)&arginfo, 800 sizeof(arginfo)) != sizeof(arginfo)) 801 return (0); 802 803 (*info)(&arginfo, &addr, &cnt); 804 if (cnt == 0) 805 return (0); 806 ap = kvm_argv(kd, kp, addr, cnt, nchr); 807 /* 808 * For live kernels, make sure this process didn't go away. 809 */ 810 if (ap != 0 && ISALIVE(kd) && !proc_verify(kp)) 811 ap = 0; 812 return (ap); 813 } 814 815 /* 816 * Get the command args. This code is now machine independent. 817 */ 818 char ** 819 kvm_getargv(kd, kp, nchr) 820 kvm_t *kd; 821 const struct kinfo_proc *kp; 822 int nchr; 823 { 824 int oid[4]; 825 int i; 826 size_t bufsz; 827 static unsigned long buflen; 828 static char *buf, *p; 829 static char **bufp; 830 static int argc; 831 832 if (!ISALIVE(kd)) { 833 _kvm_err(kd, kd->program, 834 "cannot read user space from dead kernel"); 835 return (0); 836 } 837 838 if (!buflen) { 839 bufsz = sizeof(buflen); 840 i = sysctlbyname("kern.ps_arg_cache_limit", 841 &buflen, &bufsz, NULL, 0); 842 if (i == -1) { 843 buflen = 0; 844 } else { 845 buf = malloc(buflen); 846 if (buf == NULL) 847 buflen = 0; 848 argc = 32; 849 bufp = malloc(sizeof(char *) * argc); 850 } 851 } 852 if (buf != NULL) { 853 oid[0] = CTL_KERN; 854 oid[1] = KERN_PROC; 855 oid[2] = KERN_PROC_ARGS; 856 oid[3] = kp->ki_pid; 857 bufsz = buflen; 858 i = sysctl(oid, 4, buf, &bufsz, 0, 0); 859 if (i == 0 && bufsz > 0) { 860 i = 0; 861 p = buf; 862 do { 863 bufp[i++] = p; 864 p += strlen(p) + 1; 865 if (i >= argc) { 866 argc += argc; 867 bufp = realloc(bufp, 868 sizeof(char *) * argc); 869 } 870 } while (p < buf + bufsz); 871 bufp[i++] = 0; 872 return (bufp); 873 } 874 } 875 if (kp->ki_flag & P_SYSTEM) 876 return (NULL); 877 return (kvm_doargv(kd, kp, nchr, ps_str_a)); 878 } 879 880 char ** 881 kvm_getenvv(kd, kp, nchr) 882 kvm_t *kd; 883 const struct kinfo_proc *kp; 884 int nchr; 885 { 886 return (kvm_doargv(kd, kp, nchr, ps_str_e)); 887 } 888 889 /* 890 * Read from user space. The user context is given by p. 891 */ 892 ssize_t 893 kvm_uread(kd, kp, uva, buf, len) 894 kvm_t *kd; 895 struct kinfo_proc *kp; 896 u_long uva; 897 char *buf; 898 size_t len; 899 { 900 char *cp; 901 char procfile[MAXPATHLEN]; 902 ssize_t amount; 903 int fd; 904 905 if (!ISALIVE(kd)) { 906 _kvm_err(kd, kd->program, 907 "cannot read user space from dead kernel"); 908 return (0); 909 } 910 911 sprintf(procfile, "/proc/%d/mem", kp->ki_pid); 912 fd = open(procfile, O_RDONLY, 0); 913 if (fd < 0) { 914 _kvm_err(kd, kd->program, "cannot open %s", procfile); 915 close(fd); 916 return (0); 917 } 918 919 cp = buf; 920 while (len > 0) { 921 errno = 0; 922 if (lseek(fd, (off_t)uva, 0) == -1 && errno != 0) { 923 _kvm_err(kd, kd->program, "invalid address (%x) in %s", 924 uva, procfile); 925 break; 926 } 927 amount = read(fd, cp, len); 928 if (amount < 0) { 929 _kvm_syserr(kd, kd->program, "error reading %s", 930 procfile); 931 break; 932 } 933 if (amount == 0) { 934 _kvm_err(kd, kd->program, "EOF reading %s", procfile); 935 break; 936 } 937 cp += amount; 938 uva += amount; 939 len -= amount; 940 } 941 942 close(fd); 943 return ((ssize_t)(cp - buf)); 944 } 945