1 /*- 2 * Copyright (c) 1989, 1992, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software developed by the Computer Systems 6 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract 7 * BG 91-66 and contributed to Berkeley. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. All advertising materials mentioning features or use of this software 18 * must display the following acknowledgement: 19 * This product includes software developed by the University of 20 * California, Berkeley and its contributors. 21 * 4. Neither the name of the University nor the names of its contributors 22 * may be used to endorse or promote products derived from this software 23 * without specific prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 28 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 35 * SUCH DAMAGE. 36 */ 37 38 #if defined(LIBC_SCCS) && !defined(lint) 39 static char sccsid[] = "@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93"; 40 #endif /* LIBC_SCCS and not lint */ 41 42 /* 43 * Proc traversal interface for kvm. ps and w are (probably) the exclusive 44 * users of this code, so we've factored it out into a separate module. 45 * Thus, we keep this grunge out of the other kvm applications (i.e., 46 * most other applications are interested only in open/close/read/nlist). 47 */ 48 49 #include <sys/param.h> 50 #include <sys/user.h> 51 #include <sys/proc.h> 52 #include <sys/exec.h> 53 #include <sys/stat.h> 54 #include <sys/ioctl.h> 55 #include <sys/tty.h> 56 #include <sys/file.h> 57 #include <stdio.h> 58 #include <stdlib.h> 59 #include <unistd.h> 60 #include <nlist.h> 61 #include <kvm.h> 62 63 #include <vm/vm.h> 64 #include <vm/vm_param.h> 65 #include <vm/swap_pager.h> 66 67 #include <sys/sysctl.h> 68 69 #include <limits.h> 70 #include <memory.h> 71 #include <db.h> 72 #include <paths.h> 73 74 #include "kvm_private.h" 75 76 #if used 77 static char * 78 kvm_readswap(kd, p, va, cnt) 79 kvm_t *kd; 80 const struct proc *p; 81 u_long va; 82 u_long *cnt; 83 { 84 #ifdef __FreeBSD__ 85 /* XXX Stubbed out, our vm system is differnet */ 86 _kvm_err(kd, kd->program, "kvm_readswap not implemented"); 87 return(0); 88 #endif /* __FreeBSD__ */ 89 } 90 #endif 91 92 #define KREAD(kd, addr, obj) \ 93 (kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj)) 94 95 /* 96 * Read proc's from memory file into buffer bp, which has space to hold 97 * at most maxcnt procs. 98 */ 99 static int 100 kvm_proclist(kd, what, arg, p, bp, maxcnt) 101 kvm_t *kd; 102 int what, arg; 103 struct proc *p; 104 struct kinfo_proc *bp; 105 int maxcnt; 106 { 107 register int cnt = 0; 108 struct eproc eproc; 109 struct pgrp pgrp; 110 struct session sess; 111 struct tty tty; 112 struct proc proc; 113 struct proc pproc; 114 115 for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) { 116 if (KREAD(kd, (u_long)p, &proc)) { 117 _kvm_err(kd, kd->program, "can't read proc at %x", p); 118 return (-1); 119 } 120 if (KREAD(kd, (u_long)proc.p_cred, &eproc.e_pcred) == 0) 121 (void)(KREAD(kd, (u_long)eproc.e_pcred.pc_ucred, 122 &eproc.e_ucred)); 123 124 switch(what) { 125 126 case KERN_PROC_PID: 127 if (proc.p_pid != (pid_t)arg) 128 continue; 129 break; 130 131 case KERN_PROC_UID: 132 if (eproc.e_ucred.cr_uid != (uid_t)arg) 133 continue; 134 break; 135 136 case KERN_PROC_RUID: 137 if (eproc.e_pcred.p_ruid != (uid_t)arg) 138 continue; 139 break; 140 } 141 /* 142 * We're going to add another proc to the set. If this 143 * will overflow the buffer, assume the reason is because 144 * nprocs (or the proc list) is corrupt and declare an error. 145 */ 146 if (cnt >= maxcnt) { 147 _kvm_err(kd, kd->program, "nprocs corrupt"); 148 return (-1); 149 } 150 /* 151 * gather eproc 152 */ 153 eproc.e_paddr = p; 154 if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) { 155 _kvm_err(kd, kd->program, "can't read pgrp at %x", 156 proc.p_pgrp); 157 return (-1); 158 } 159 if (proc.p_oppid) 160 eproc.e_ppid = proc.p_oppid; 161 else if (proc.p_pptr) { 162 if (KREAD(kd, (u_long)proc.p_pptr, &pproc)) { 163 _kvm_err(kd, kd->program, "can't read pproc at %x", 164 proc.p_pptr); 165 return (-1); 166 } 167 eproc.e_ppid = pproc.p_pid; 168 } else 169 eproc.e_ppid = 0; 170 eproc.e_sess = pgrp.pg_session; 171 eproc.e_pgid = pgrp.pg_id; 172 eproc.e_jobc = pgrp.pg_jobc; 173 if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) { 174 _kvm_err(kd, kd->program, "can't read session at %x", 175 pgrp.pg_session); 176 return (-1); 177 } 178 (void)memcpy(eproc.e_login, sess.s_login, 179 sizeof(eproc.e_login)); 180 if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) { 181 if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) { 182 _kvm_err(kd, kd->program, 183 "can't read tty at %x", sess.s_ttyp); 184 return (-1); 185 } 186 eproc.e_tdev = tty.t_dev; 187 eproc.e_tsess = tty.t_session; 188 if (tty.t_pgrp != NULL) { 189 if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) { 190 _kvm_err(kd, kd->program, 191 "can't read tpgrp at &x", 192 tty.t_pgrp); 193 return (-1); 194 } 195 eproc.e_tpgid = pgrp.pg_id; 196 } else 197 eproc.e_tpgid = -1; 198 } else 199 eproc.e_tdev = NODEV; 200 eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0; 201 if (sess.s_leader == p) 202 eproc.e_flag |= EPROC_SLEADER; 203 if (proc.p_wmesg) 204 (void)kvm_read(kd, (u_long)proc.p_wmesg, 205 eproc.e_wmesg, WMESGLEN); 206 207 #ifdef sparc 208 (void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_rssize, 209 (char *)&eproc.e_vm.vm_rssize, 210 sizeof(eproc.e_vm.vm_rssize)); 211 (void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_tsize, 212 (char *)&eproc.e_vm.vm_tsize, 213 3 * sizeof(eproc.e_vm.vm_rssize)); /* XXX */ 214 #else 215 (void)kvm_read(kd, (u_long)proc.p_vmspace, 216 (char *)&eproc.e_vm, sizeof(eproc.e_vm)); 217 #endif 218 eproc.e_xsize = eproc.e_xrssize = 0; 219 eproc.e_xccount = eproc.e_xswrss = 0; 220 221 switch (what) { 222 223 case KERN_PROC_PGRP: 224 if (eproc.e_pgid != (pid_t)arg) 225 continue; 226 break; 227 228 case KERN_PROC_TTY: 229 if ((proc.p_flag & P_CONTROLT) == 0 || 230 eproc.e_tdev != (dev_t)arg) 231 continue; 232 break; 233 } 234 bcopy(&proc, &bp->kp_proc, sizeof(proc)); 235 bcopy(&eproc, &bp->kp_eproc, sizeof(eproc)); 236 ++bp; 237 ++cnt; 238 } 239 return (cnt); 240 } 241 242 /* 243 * Build proc info array by reading in proc list from a crash dump. 244 * Return number of procs read. maxcnt is the max we will read. 245 */ 246 static int 247 kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt) 248 kvm_t *kd; 249 int what, arg; 250 u_long a_allproc; 251 u_long a_zombproc; 252 int maxcnt; 253 { 254 register struct kinfo_proc *bp = kd->procbase; 255 register int acnt, zcnt; 256 struct proc *p; 257 258 if (KREAD(kd, a_allproc, &p)) { 259 _kvm_err(kd, kd->program, "cannot read allproc"); 260 return (-1); 261 } 262 acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt); 263 if (acnt < 0) 264 return (acnt); 265 266 if (KREAD(kd, a_zombproc, &p)) { 267 _kvm_err(kd, kd->program, "cannot read zombproc"); 268 return (-1); 269 } 270 zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt); 271 if (zcnt < 0) 272 zcnt = 0; 273 274 return (acnt + zcnt); 275 } 276 277 struct kinfo_proc * 278 kvm_getprocs(kd, op, arg, cnt) 279 kvm_t *kd; 280 int op, arg; 281 int *cnt; 282 { 283 int mib[4], st, nprocs; 284 size_t size; 285 286 if (kd->procbase != 0) { 287 free((void *)kd->procbase); 288 /* 289 * Clear this pointer in case this call fails. Otherwise, 290 * kvm_close() will free it again. 291 */ 292 kd->procbase = 0; 293 } 294 if (ISALIVE(kd)) { 295 size = 0; 296 mib[0] = CTL_KERN; 297 mib[1] = KERN_PROC; 298 mib[2] = op; 299 mib[3] = arg; 300 st = sysctl(mib, op == KERN_PROC_ALL ? 3 : 4, NULL, &size, NULL, 0); 301 if (st == -1) { 302 _kvm_syserr(kd, kd->program, "kvm_getprocs"); 303 return (0); 304 } 305 kd->procbase = 0; 306 do { 307 size += size / 10; 308 kd->procbase = (struct kinfo_proc *) 309 _kvm_realloc(kd, kd->procbase, size); 310 if (kd->procbase == 0) 311 return (0); 312 st = sysctl(mib, op == KERN_PROC_ALL ? 3 : 4, 313 kd->procbase, &size, NULL, 0); 314 } while (st == -1 && errno == ENOMEM); 315 if (st == -1) { 316 _kvm_syserr(kd, kd->program, "kvm_getprocs"); 317 return (0); 318 } 319 if (size % sizeof(struct kinfo_proc) != 0) { 320 _kvm_err(kd, kd->program, 321 "proc size mismatch (%d total, %d chunks)", 322 size, sizeof(struct kinfo_proc)); 323 return (0); 324 } 325 nprocs = size / sizeof(struct kinfo_proc); 326 } else { 327 struct nlist nl[4], *p; 328 329 nl[0].n_name = "_nprocs"; 330 nl[1].n_name = "_allproc"; 331 nl[2].n_name = "_zombproc"; 332 nl[3].n_name = 0; 333 334 if (kvm_nlist(kd, nl) != 0) { 335 for (p = nl; p->n_type != 0; ++p) 336 ; 337 _kvm_err(kd, kd->program, 338 "%s: no such symbol", p->n_name); 339 return (0); 340 } 341 if (KREAD(kd, nl[0].n_value, &nprocs)) { 342 _kvm_err(kd, kd->program, "can't read nprocs"); 343 return (0); 344 } 345 size = nprocs * sizeof(struct kinfo_proc); 346 kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size); 347 if (kd->procbase == 0) 348 return (0); 349 350 nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value, 351 nl[2].n_value, nprocs); 352 #ifdef notdef 353 size = nprocs * sizeof(struct kinfo_proc); 354 (void)realloc(kd->procbase, size); 355 #endif 356 } 357 *cnt = nprocs; 358 return (kd->procbase); 359 } 360 361 void 362 _kvm_freeprocs(kd) 363 kvm_t *kd; 364 { 365 if (kd->procbase) { 366 free(kd->procbase); 367 kd->procbase = 0; 368 } 369 } 370 371 void * 372 _kvm_realloc(kd, p, n) 373 kvm_t *kd; 374 void *p; 375 size_t n; 376 { 377 void *np = (void *)realloc(p, n); 378 379 if (np == 0) { 380 free(p); 381 _kvm_err(kd, kd->program, "out of memory"); 382 } 383 return (np); 384 } 385 386 #ifndef MAX 387 #define MAX(a, b) ((a) > (b) ? (a) : (b)) 388 #endif 389 390 /* 391 * Read in an argument vector from the user address space of process p. 392 * addr if the user-space base address of narg null-terminated contiguous 393 * strings. This is used to read in both the command arguments and 394 * environment strings. Read at most maxcnt characters of strings. 395 */ 396 static char ** 397 kvm_argv(kd, p, addr, narg, maxcnt) 398 kvm_t *kd; 399 const struct proc *p; 400 register u_long addr; 401 register int narg; 402 register int maxcnt; 403 { 404 register char *np, *cp, *ep, *ap; 405 register u_long oaddr = -1; 406 register int len, cc; 407 register char **argv; 408 409 /* 410 * Check that there aren't an unreasonable number of agruments, 411 * and that the address is in user space. 412 */ 413 if (narg > 512 || addr < VM_MIN_ADDRESS || addr >= VM_MAXUSER_ADDRESS) 414 return (0); 415 416 /* 417 * kd->argv : work space for fetching the strings from the target 418 * process's space, and is converted for returning to caller 419 */ 420 if (kd->argv == 0) { 421 /* 422 * Try to avoid reallocs. 423 */ 424 kd->argc = MAX(narg + 1, 32); 425 kd->argv = (char **)_kvm_malloc(kd, kd->argc * 426 sizeof(*kd->argv)); 427 if (kd->argv == 0) 428 return (0); 429 } else if (narg + 1 > kd->argc) { 430 kd->argc = MAX(2 * kd->argc, narg + 1); 431 kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc * 432 sizeof(*kd->argv)); 433 if (kd->argv == 0) 434 return (0); 435 } 436 /* 437 * kd->argspc : returned to user, this is where the kd->argv 438 * arrays are left pointing to the collected strings. 439 */ 440 if (kd->argspc == 0) { 441 kd->argspc = (char *)_kvm_malloc(kd, PAGE_SIZE); 442 if (kd->argspc == 0) 443 return (0); 444 kd->arglen = PAGE_SIZE; 445 } 446 /* 447 * kd->argbuf : used to pull in pages from the target process. 448 * the strings are copied out of here. 449 */ 450 if (kd->argbuf == 0) { 451 kd->argbuf = (char *)_kvm_malloc(kd, PAGE_SIZE); 452 if (kd->argbuf == 0) 453 return (0); 454 } 455 456 /* Pull in the target process'es argv vector */ 457 cc = sizeof(char *) * narg; 458 if (kvm_uread(kd, p, addr, (char *)kd->argv, cc) != cc) 459 return (0); 460 /* 461 * ap : saved start address of string we're working on in kd->argspc 462 * np : pointer to next place to write in kd->argspc 463 * len: length of data in kd->argspc 464 * argv: pointer to the argv vector that we are hunting around the 465 * target process space for, and converting to addresses in 466 * our address space (kd->argspc). 467 */ 468 ap = np = kd->argspc; 469 argv = kd->argv; 470 len = 0; 471 /* 472 * Loop over pages, filling in the argument vector. 473 * Note that the argv strings could be pointing *anywhere* in 474 * the user address space and are no longer contiguous. 475 * Note that *argv is modified when we are going to fetch a string 476 * that crosses a page boundary. We copy the next part of the string 477 * into to "np" and eventually convert the pointer. 478 */ 479 while (argv < kd->argv + narg && *argv != 0) { 480 481 /* get the address that the current argv string is on */ 482 addr = (u_long)*argv & ~(PAGE_SIZE - 1); 483 484 /* is it the same page as the last one? */ 485 if (addr != oaddr) { 486 if (kvm_uread(kd, p, addr, kd->argbuf, PAGE_SIZE) != 487 PAGE_SIZE) 488 return (0); 489 oaddr = addr; 490 } 491 492 /* offset within the page... kd->argbuf */ 493 addr = (u_long)*argv & (PAGE_SIZE - 1); 494 495 /* cp = start of string, cc = count of chars in this chunk */ 496 cp = kd->argbuf + addr; 497 cc = PAGE_SIZE - addr; 498 499 /* dont get more than asked for by user process */ 500 if (maxcnt > 0 && cc > maxcnt - len) 501 cc = maxcnt - len; 502 503 /* pointer to end of string if we found it in this page */ 504 ep = memchr(cp, '\0', cc); 505 if (ep != 0) 506 cc = ep - cp + 1; 507 /* 508 * at this point, cc is the count of the chars that we are 509 * going to retrieve this time. we may or may not have found 510 * the end of it. (ep points to the null if the end is known) 511 */ 512 513 /* will we exceed the malloc/realloced buffer? */ 514 if (len + cc > kd->arglen) { 515 register int off; 516 register char **pp; 517 register char *op = kd->argspc; 518 519 kd->arglen *= 2; 520 kd->argspc = (char *)_kvm_realloc(kd, kd->argspc, 521 kd->arglen); 522 if (kd->argspc == 0) 523 return (0); 524 /* 525 * Adjust argv pointers in case realloc moved 526 * the string space. 527 */ 528 off = kd->argspc - op; 529 for (pp = kd->argv; pp < argv; pp++) 530 *pp += off; 531 ap += off; 532 np += off; 533 } 534 /* np = where to put the next part of the string in kd->argspc*/ 535 /* np is kinda redundant.. could use "kd->argspc + len" */ 536 memcpy(np, cp, cc); 537 np += cc; /* inc counters */ 538 len += cc; 539 540 /* 541 * if end of string found, set the *argv pointer to the 542 * saved beginning of string, and advance. argv points to 543 * somewhere in kd->argv.. This is initially relative 544 * to the target process, but when we close it off, we set 545 * it to point in our address space. 546 */ 547 if (ep != 0) { 548 *argv++ = ap; 549 ap = np; 550 } else { 551 /* update the address relative to the target process */ 552 *argv += cc; 553 } 554 555 if (maxcnt > 0 && len >= maxcnt) { 556 /* 557 * We're stopping prematurely. Terminate the 558 * current string. 559 */ 560 if (ep == 0) { 561 *np = '\0'; 562 *argv++ = ap; 563 } 564 break; 565 } 566 } 567 /* Make sure argv is terminated. */ 568 *argv = 0; 569 return (kd->argv); 570 } 571 572 static void 573 ps_str_a(p, addr, n) 574 struct ps_strings *p; 575 u_long *addr; 576 int *n; 577 { 578 *addr = (u_long)p->ps_argvstr; 579 *n = p->ps_nargvstr; 580 } 581 582 static void 583 ps_str_e(p, addr, n) 584 struct ps_strings *p; 585 u_long *addr; 586 int *n; 587 { 588 *addr = (u_long)p->ps_envstr; 589 *n = p->ps_nenvstr; 590 } 591 592 /* 593 * Determine if the proc indicated by p is still active. 594 * This test is not 100% foolproof in theory, but chances of 595 * being wrong are very low. 596 */ 597 static int 598 proc_verify(kd, kernp, p) 599 kvm_t *kd; 600 u_long kernp; 601 const struct proc *p; 602 { 603 struct kinfo_proc kp; 604 int mib[4], st; 605 size_t len; 606 607 mib[0] = CTL_KERN; 608 mib[1] = KERN_PROC; 609 mib[2] = KERN_PROC_PID; 610 mib[3] = p->p_pid; 611 612 len = sizeof kp; 613 614 st = sysctl(mib, 4, &kp, &len, NULL, 0); 615 if (st < 0) 616 return(0); 617 return (p->p_pid == kp.kp_proc.p_pid && 618 (kp.kp_proc.p_stat != SZOMB || p->p_stat == SZOMB)); 619 } 620 621 static char ** 622 kvm_doargv(kd, kp, nchr, info) 623 kvm_t *kd; 624 const struct kinfo_proc *kp; 625 int nchr; 626 void (*info)(struct ps_strings *, u_long *, int *); 627 { 628 register const struct proc *p = &kp->kp_proc; 629 register char **ap; 630 u_long addr; 631 int cnt; 632 static struct ps_strings arginfo, *ps_strings; 633 size_t len; 634 int i; 635 636 if (ps_strings == NULL) { 637 len = sizeof ps_strings; 638 i = sysctlbyname("kern.ps_strings", 639 &ps_strings, &len, 0, 0); 640 if (i < 0 || ps_strings == NULL) 641 ps_strings = PS_STRINGS; 642 } 643 644 /* 645 * Pointers are stored at the top of the user stack. 646 */ 647 if (p->p_stat == SZOMB || 648 kvm_uread(kd, p, ps_strings, (char *)&arginfo, 649 sizeof(arginfo)) != sizeof(arginfo)) 650 return (0); 651 652 (*info)(&arginfo, &addr, &cnt); 653 if (cnt == 0) 654 return (0); 655 ap = kvm_argv(kd, p, addr, cnt, nchr); 656 /* 657 * For live kernels, make sure this process didn't go away. 658 */ 659 if (ap != 0 && ISALIVE(kd) && 660 !proc_verify(kd, (u_long)kp->kp_eproc.e_paddr, p)) 661 ap = 0; 662 return (ap); 663 } 664 665 /* 666 * Get the command args. This code is now machine independent. 667 */ 668 char ** 669 kvm_getargv(kd, kp, nchr) 670 kvm_t *kd; 671 const struct kinfo_proc *kp; 672 int nchr; 673 { 674 return (kvm_doargv(kd, kp, nchr, ps_str_a)); 675 } 676 677 char ** 678 kvm_getenvv(kd, kp, nchr) 679 kvm_t *kd; 680 const struct kinfo_proc *kp; 681 int nchr; 682 { 683 return (kvm_doargv(kd, kp, nchr, ps_str_e)); 684 } 685 686 /* 687 * Read from user space. The user context is given by p. 688 */ 689 ssize_t 690 kvm_uread(kd, p, uva, buf, len) 691 kvm_t *kd; 692 register const struct proc *p; 693 register u_long uva; 694 register char *buf; 695 register size_t len; 696 { 697 register char *cp; 698 char procfile[MAXPATHLEN]; 699 ssize_t amount; 700 int fd; 701 702 if (!ISALIVE(kd)) { 703 _kvm_err(kd, kd->program, 704 "cannot read user space from dead kernel"); 705 return (0); 706 } 707 708 sprintf(procfile, "/proc/%d/mem", p->p_pid); 709 fd = open(procfile, O_RDONLY, 0); 710 if (fd < 0) { 711 _kvm_err(kd, kd->program, "cannot open %s", procfile); 712 close(fd); 713 return (0); 714 } 715 716 cp = buf; 717 while (len > 0) { 718 errno = 0; 719 if (lseek(fd, (off_t)uva, 0) == -1 && errno != 0) { 720 _kvm_err(kd, kd->program, "invalid address (%x) in %s", 721 uva, procfile); 722 break; 723 } 724 amount = read(fd, cp, len); 725 if (amount < 0) { 726 _kvm_syserr(kd, kd->program, "error reading %s", 727 procfile); 728 break; 729 } 730 if (amount == 0) { 731 _kvm_err(kd, kd->program, "EOF reading %s", procfile); 732 break; 733 } 734 cp += amount; 735 uva += amount; 736 len -= amount; 737 } 738 739 close(fd); 740 return ((ssize_t)(cp - buf)); 741 } 742