1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1989, 1992, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software developed by the Computer Systems 8 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract 9 * BG 91-66 and contributed to Berkeley. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. Neither the name of the University nor the names of its contributors 20 * may be used to endorse or promote products derived from this software 21 * without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 33 * SUCH DAMAGE. 34 */ 35 36 37 /* 38 * Proc traversal interface for kvm. ps and w are (probably) the exclusive 39 * users of this code, so we've factored it out into a separate module. 40 * Thus, we keep this grunge out of the other kvm applications (i.e., 41 * most other applications are interested only in open/close/read/nlist). 42 */ 43 44 #include <sys/param.h> 45 #define _WANT_UCRED /* make ucred.h give us 'struct ucred' */ 46 #include <sys/ucred.h> 47 #include <sys/queue.h> 48 #include <sys/_lock.h> 49 #include <sys/_mutex.h> 50 #include <sys/_task.h> 51 #include <sys/cpuset.h> 52 #include <sys/user.h> 53 #include <sys/proc.h> 54 #define _WANT_PRISON /* make jail.h give us 'struct prison' */ 55 #include <sys/jail.h> 56 #include <sys/exec.h> 57 #include <sys/stat.h> 58 #include <sys/sysent.h> 59 #include <sys/ioctl.h> 60 #include <sys/tty.h> 61 #include <sys/file.h> 62 #include <sys/conf.h> 63 #define _WANT_KW_EXITCODE 64 #include <sys/wait.h> 65 #include <stdio.h> 66 #include <stdlib.h> 67 #include <stdbool.h> 68 #include <unistd.h> 69 #include <nlist.h> 70 #include <kvm.h> 71 72 #include <sys/sysctl.h> 73 74 #include <limits.h> 75 #include <memory.h> 76 #include <paths.h> 77 78 #include "kvm_private.h" 79 80 #define KREAD(kd, addr, obj) \ 81 (kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj)) 82 83 static int ticks; 84 static int hz; 85 static uint64_t cpu_tick_frequency; 86 87 /* 88 * From sys/kern/kern_tc.c. Depends on cpu_tick_frequency, which is 89 * read/initialized before this function is ever called. 90 */ 91 static uint64_t 92 cputick2usec(uint64_t tick) 93 { 94 if (cpu_tick_frequency == 0) 95 return (0); 96 return ((tick / cpu_tick_frequency) * 1000000ULL) + 97 ((tick % cpu_tick_frequency) * 1000000ULL) / cpu_tick_frequency; 98 } 99 100 /* 101 * Read proc's from memory file into buffer bp, which has space to hold 102 * at most maxcnt procs. 103 */ 104 static int 105 kvm_proclist(kvm_t *kd, int what, int arg, struct proc *p, 106 struct kinfo_proc *bp, int maxcnt) 107 { 108 int cnt = 0; 109 struct kinfo_proc kinfo_proc, *kp; 110 struct pgrp pgrp; 111 struct session sess; 112 struct cdev t_cdev; 113 struct tty tty; 114 struct vmspace vmspace; 115 struct sigacts sigacts; 116 #if 0 117 struct pstats pstats; 118 #endif 119 struct ucred ucred; 120 struct prison pr; 121 struct thread mtd; 122 struct proc proc; 123 struct proc pproc; 124 struct sysentvec sysent; 125 char svname[KI_EMULNAMELEN]; 126 struct thread *td = NULL; 127 bool first_thread; 128 129 kp = &kinfo_proc; 130 kp->ki_structsize = sizeof(kinfo_proc); 131 /* 132 * Loop on the processes, then threads within the process if requested. 133 */ 134 if (what == KERN_PROC_ALL) 135 what |= KERN_PROC_INC_THREAD; 136 for (; cnt < maxcnt && p != NULL; p = LIST_NEXT(&proc, p_list)) { 137 memset(kp, 0, sizeof *kp); 138 if (KREAD(kd, (u_long)p, &proc)) { 139 _kvm_err(kd, kd->program, "can't read proc at %p", p); 140 return (-1); 141 } 142 if (proc.p_state == PRS_NEW) 143 continue; 144 if (KREAD(kd, (u_long)proc.p_ucred, &ucred) == 0) { 145 kp->ki_ruid = ucred.cr_ruid; 146 kp->ki_svuid = ucred.cr_svuid; 147 kp->ki_rgid = ucred.cr_rgid; 148 kp->ki_svgid = ucred.cr_svgid; 149 kp->ki_cr_flags = ucred.cr_flags; 150 if (ucred.cr_ngroups > KI_NGROUPS) { 151 kp->ki_ngroups = KI_NGROUPS; 152 kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW; 153 } else 154 kp->ki_ngroups = ucred.cr_ngroups; 155 kvm_read(kd, (u_long)ucred.cr_groups, kp->ki_groups, 156 kp->ki_ngroups * sizeof(gid_t)); 157 kp->ki_uid = ucred.cr_uid; 158 if (ucred.cr_prison != NULL) { 159 if (KREAD(kd, (u_long)ucred.cr_prison, &pr)) { 160 _kvm_err(kd, kd->program, 161 "can't read prison at %p", 162 ucred.cr_prison); 163 return (-1); 164 } 165 kp->ki_jid = pr.pr_id; 166 } 167 } 168 169 switch(what & ~KERN_PROC_INC_THREAD) { 170 171 case KERN_PROC_GID: 172 if (kp->ki_groups[0] != (gid_t)arg) 173 continue; 174 break; 175 176 case KERN_PROC_PID: 177 if (proc.p_pid != (pid_t)arg) 178 continue; 179 break; 180 181 case KERN_PROC_RGID: 182 if (kp->ki_rgid != (gid_t)arg) 183 continue; 184 break; 185 186 case KERN_PROC_UID: 187 if (kp->ki_uid != (uid_t)arg) 188 continue; 189 break; 190 191 case KERN_PROC_RUID: 192 if (kp->ki_ruid != (uid_t)arg) 193 continue; 194 break; 195 } 196 /* 197 * We're going to add another proc to the set. If this 198 * will overflow the buffer, assume the reason is because 199 * nprocs (or the proc list) is corrupt and declare an error. 200 */ 201 if (cnt >= maxcnt) { 202 _kvm_err(kd, kd->program, "nprocs corrupt"); 203 return (-1); 204 } 205 /* 206 * gather kinfo_proc 207 */ 208 kp->ki_paddr = p; 209 kp->ki_addr = 0; /* XXX uarea */ 210 /* kp->ki_kstack = proc.p_thread.td_kstack; XXXKSE */ 211 kp->ki_args = proc.p_args; 212 kp->ki_numthreads = proc.p_numthreads; 213 kp->ki_tracep = NULL; /* XXXKIB do not expose ktr_io_params */ 214 kp->ki_textvp = proc.p_textvp; 215 kp->ki_fd = proc.p_fd; 216 kp->ki_pd = proc.p_pd; 217 kp->ki_vmspace = proc.p_vmspace; 218 if (proc.p_sigacts != NULL) { 219 if (KREAD(kd, (u_long)proc.p_sigacts, &sigacts)) { 220 _kvm_err(kd, kd->program, 221 "can't read sigacts at %p", proc.p_sigacts); 222 return (-1); 223 } 224 kp->ki_sigignore = sigacts.ps_sigignore; 225 kp->ki_sigcatch = sigacts.ps_sigcatch; 226 } 227 #if 0 228 if ((proc.p_flag & P_INMEM) && proc.p_stats != NULL) { 229 if (KREAD(kd, (u_long)proc.p_stats, &pstats)) { 230 _kvm_err(kd, kd->program, 231 "can't read stats at %x", proc.p_stats); 232 return (-1); 233 } 234 kp->ki_start = pstats.p_start; 235 236 /* 237 * XXX: The times here are probably zero and need 238 * to be calculated from the raw data in p_rux and 239 * p_crux. 240 */ 241 kp->ki_rusage = pstats.p_ru; 242 kp->ki_childstime = pstats.p_cru.ru_stime; 243 kp->ki_childutime = pstats.p_cru.ru_utime; 244 /* Some callers want child-times in a single value */ 245 timeradd(&kp->ki_childstime, &kp->ki_childutime, 246 &kp->ki_childtime); 247 } 248 #endif 249 if (proc.p_oppid) 250 kp->ki_ppid = proc.p_oppid; 251 else if (proc.p_pptr) { 252 if (KREAD(kd, (u_long)proc.p_pptr, &pproc)) { 253 _kvm_err(kd, kd->program, 254 "can't read pproc at %p", proc.p_pptr); 255 return (-1); 256 } 257 kp->ki_ppid = pproc.p_pid; 258 } else 259 kp->ki_ppid = 0; 260 if (proc.p_pgrp == NULL) 261 goto nopgrp; 262 if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) { 263 _kvm_err(kd, kd->program, "can't read pgrp at %p", 264 proc.p_pgrp); 265 return (-1); 266 } 267 kp->ki_pgid = pgrp.pg_id; 268 kp->ki_jobc = -1; /* Or calculate? Arguably not. */ 269 if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) { 270 _kvm_err(kd, kd->program, "can't read session at %p", 271 pgrp.pg_session); 272 return (-1); 273 } 274 kp->ki_sid = sess.s_sid; 275 (void)memcpy(kp->ki_login, sess.s_login, 276 sizeof(kp->ki_login)); 277 if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) { 278 if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) { 279 _kvm_err(kd, kd->program, 280 "can't read tty at %p", sess.s_ttyp); 281 return (-1); 282 } 283 if (tty.t_dev != NULL) { 284 if (KREAD(kd, (u_long)tty.t_dev, &t_cdev)) { 285 _kvm_err(kd, kd->program, 286 "can't read cdev at %p", 287 tty.t_dev); 288 return (-1); 289 } 290 #if 0 291 kp->ki_tdev = t_cdev.si_udev; 292 #else 293 kp->ki_tdev = NODEV; 294 #endif 295 } 296 if (tty.t_pgrp != NULL) { 297 if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) { 298 _kvm_err(kd, kd->program, 299 "can't read tpgrp at %p", 300 tty.t_pgrp); 301 return (-1); 302 } 303 kp->ki_tpgid = pgrp.pg_id; 304 } else 305 kp->ki_tpgid = -1; 306 if (tty.t_session != NULL) { 307 if (KREAD(kd, (u_long)tty.t_session, &sess)) { 308 _kvm_err(kd, kd->program, 309 "can't read session at %p", 310 tty.t_session); 311 return (-1); 312 } 313 kp->ki_tsid = sess.s_sid; 314 } 315 } else { 316 nopgrp: 317 kp->ki_tdev = NODEV; 318 } 319 320 (void)kvm_read(kd, (u_long)proc.p_vmspace, 321 (char *)&vmspace, sizeof(vmspace)); 322 kp->ki_size = vmspace.vm_map.size; 323 /* 324 * Approximate the kernel's method of calculating 325 * this field. 326 */ 327 #define pmap_resident_count(pm) ((pm)->pm_stats.resident_count) 328 kp->ki_rssize = pmap_resident_count(&vmspace.vm_pmap); 329 kp->ki_swrss = vmspace.vm_swrss; 330 kp->ki_tsize = vmspace.vm_tsize; 331 kp->ki_dsize = vmspace.vm_dsize; 332 kp->ki_ssize = vmspace.vm_ssize; 333 334 switch (what & ~KERN_PROC_INC_THREAD) { 335 336 case KERN_PROC_PGRP: 337 if (kp->ki_pgid != (pid_t)arg) 338 continue; 339 break; 340 341 case KERN_PROC_SESSION: 342 if (kp->ki_sid != (pid_t)arg) 343 continue; 344 break; 345 346 case KERN_PROC_TTY: 347 if ((proc.p_flag & P_CONTROLT) == 0 || 348 kp->ki_tdev != (dev_t)arg) 349 continue; 350 break; 351 } 352 if (proc.p_comm[0] != 0) 353 strlcpy(kp->ki_comm, proc.p_comm, MAXCOMLEN); 354 (void)kvm_read(kd, (u_long)proc.p_sysent, (char *)&sysent, 355 sizeof(sysent)); 356 (void)kvm_read(kd, (u_long)sysent.sv_name, (char *)&svname, 357 sizeof(svname)); 358 if (svname[0] != 0) 359 strlcpy(kp->ki_emul, svname, KI_EMULNAMELEN); 360 kp->ki_runtime = cputick2usec(proc.p_rux.rux_runtime); 361 kp->ki_pid = proc.p_pid; 362 kp->ki_xstat = KW_EXITCODE(proc.p_xexit, proc.p_xsig); 363 kp->ki_acflag = proc.p_acflag; 364 kp->ki_lock = proc.p_lock; 365 kp->ki_tdev_freebsd11 = kp->ki_tdev; /* truncate */ 366 367 /* Per-thread items; iterate as appropriate. */ 368 td = TAILQ_FIRST(&proc.p_threads); 369 for (first_thread = true; cnt < maxcnt && td != NULL && 370 (first_thread || (what & KERN_PROC_INC_THREAD)); 371 first_thread = false) { 372 if (proc.p_state != PRS_ZOMBIE) { 373 if (KREAD(kd, (u_long)td, &mtd)) { 374 _kvm_err(kd, kd->program, 375 "can't read thread at %p", td); 376 return (-1); 377 } 378 if (what & KERN_PROC_INC_THREAD) 379 td = TAILQ_NEXT(&mtd, td_plist); 380 } else 381 td = NULL; 382 if ((proc.p_state != PRS_ZOMBIE) && mtd.td_wmesg) 383 (void)kvm_read(kd, (u_long)mtd.td_wmesg, 384 kp->ki_wmesg, WMESGLEN); 385 else 386 memset(kp->ki_wmesg, 0, WMESGLEN); 387 if (proc.p_pgrp == NULL) { 388 kp->ki_kiflag = 0; 389 } else { 390 kp->ki_kiflag = sess.s_ttyvp ? KI_CTTY : 0; 391 if (sess.s_leader == p) 392 kp->ki_kiflag |= KI_SLEADER; 393 } 394 if ((proc.p_state != PRS_ZOMBIE) && 395 (mtd.td_blocked != 0)) { 396 kp->ki_kiflag |= KI_LOCKBLOCK; 397 if (mtd.td_lockname) 398 (void)kvm_read(kd, 399 (u_long)mtd.td_lockname, 400 kp->ki_lockname, LOCKNAMELEN); 401 else 402 memset(kp->ki_lockname, 0, 403 LOCKNAMELEN); 404 kp->ki_lockname[LOCKNAMELEN] = 0; 405 } else 406 kp->ki_kiflag &= ~KI_LOCKBLOCK; 407 kp->ki_siglist = proc.p_siglist; 408 if (proc.p_state != PRS_ZOMBIE) { 409 SIGSETOR(kp->ki_siglist, mtd.td_siglist); 410 kp->ki_sigmask = mtd.td_sigmask; 411 kp->ki_swtime = (ticks - proc.p_swtick) / hz; 412 kp->ki_flag = proc.p_flag; 413 kp->ki_sflag = 0; 414 kp->ki_nice = proc.p_nice; 415 kp->ki_traceflag = proc.p_traceflag; 416 if (proc.p_state == PRS_NORMAL) { 417 if (TD_ON_RUNQ(&mtd) || 418 TD_CAN_RUN(&mtd) || 419 TD_IS_RUNNING(&mtd)) { 420 kp->ki_stat = SRUN; 421 } else if (TD_GET_STATE(&mtd) == 422 TDS_INHIBITED) { 423 if (P_SHOULDSTOP(&proc)) { 424 kp->ki_stat = SSTOP; 425 } else if ( 426 TD_IS_SLEEPING(&mtd)) { 427 kp->ki_stat = SSLEEP; 428 } else if (TD_ON_LOCK(&mtd)) { 429 kp->ki_stat = SLOCK; 430 } else { 431 kp->ki_stat = SWAIT; 432 } 433 } 434 } else { 435 kp->ki_stat = SIDL; 436 } 437 /* Stuff from the thread */ 438 kp->ki_pri.pri_level = mtd.td_priority; 439 kp->ki_pri.pri_native = mtd.td_base_pri; 440 kp->ki_lastcpu = mtd.td_lastcpu; 441 kp->ki_wchan = mtd.td_wchan; 442 kp->ki_oncpu = mtd.td_oncpu; 443 if (mtd.td_name[0] != '\0') 444 strlcpy(kp->ki_tdname, mtd.td_name, 445 sizeof(kp->ki_tdname)); 446 else 447 memset(kp->ki_tdname, 0, 448 sizeof(kp->ki_tdname)); 449 kp->ki_pctcpu = 0; 450 kp->ki_rqindex = 0; 451 452 /* 453 * Note: legacy fields; wraps at NO_CPU_OLD 454 * or the old max CPU value as appropriate 455 */ 456 if (mtd.td_lastcpu == NOCPU) 457 kp->ki_lastcpu_old = NOCPU_OLD; 458 else if (mtd.td_lastcpu > MAXCPU_OLD) 459 kp->ki_lastcpu_old = MAXCPU_OLD; 460 else 461 kp->ki_lastcpu_old = mtd.td_lastcpu; 462 463 if (mtd.td_oncpu == NOCPU) 464 kp->ki_oncpu_old = NOCPU_OLD; 465 else if (mtd.td_oncpu > MAXCPU_OLD) 466 kp->ki_oncpu_old = MAXCPU_OLD; 467 else 468 kp->ki_oncpu_old = mtd.td_oncpu; 469 kp->ki_tid = mtd.td_tid; 470 } else { 471 memset(&kp->ki_sigmask, 0, 472 sizeof(kp->ki_sigmask)); 473 kp->ki_stat = SZOMB; 474 kp->ki_tid = 0; 475 } 476 477 bcopy(&kinfo_proc, bp, sizeof(kinfo_proc)); 478 ++bp; 479 ++cnt; 480 } 481 } 482 return (cnt); 483 } 484 485 /* 486 * Build proc info array by reading in proc list from a crash dump. 487 * Return number of procs read. maxcnt is the max we will read. 488 */ 489 static int 490 kvm_deadprocs(kvm_t *kd, int what, int arg, u_long a_allproc, 491 u_long a_zombproc, int maxcnt) 492 { 493 struct kinfo_proc *bp = kd->procbase; 494 int acnt, zcnt = 0; 495 struct proc *p; 496 497 if (KREAD(kd, a_allproc, &p)) { 498 _kvm_err(kd, kd->program, "cannot read allproc"); 499 return (-1); 500 } 501 acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt); 502 if (acnt < 0) 503 return (acnt); 504 505 if (a_zombproc != 0) { 506 if (KREAD(kd, a_zombproc, &p)) { 507 _kvm_err(kd, kd->program, "cannot read zombproc"); 508 return (-1); 509 } 510 zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt); 511 if (zcnt < 0) 512 zcnt = 0; 513 } 514 515 return (acnt + zcnt); 516 } 517 518 struct kinfo_proc * 519 kvm_getprocs(kvm_t *kd, int op, int arg, int *cnt) 520 { 521 int mib[4], st, nprocs; 522 size_t size, osize; 523 int temp_op; 524 525 if (kd->procbase != 0) { 526 free((void *)kd->procbase); 527 /* 528 * Clear this pointer in case this call fails. Otherwise, 529 * kvm_close() will free it again. 530 */ 531 kd->procbase = 0; 532 } 533 if (ISALIVE(kd)) { 534 size = 0; 535 mib[0] = CTL_KERN; 536 mib[1] = KERN_PROC; 537 mib[2] = op; 538 mib[3] = arg; 539 temp_op = op & ~KERN_PROC_INC_THREAD; 540 st = sysctl(mib, 541 temp_op == KERN_PROC_ALL || temp_op == KERN_PROC_PROC ? 542 3 : 4, NULL, &size, NULL, 0); 543 if (st == -1) { 544 _kvm_syserr(kd, kd->program, "kvm_getprocs"); 545 return (0); 546 } 547 /* 548 * We can't continue with a size of 0 because we pass 549 * it to realloc() (via _kvm_realloc()), and passing 0 550 * to realloc() results in undefined behavior. 551 */ 552 if (size == 0) { 553 /* 554 * XXX: We should probably return an invalid, 555 * but non-NULL, pointer here so any client 556 * program trying to dereference it will 557 * crash. However, _kvm_freeprocs() calls 558 * free() on kd->procbase if it isn't NULL, 559 * and free()'ing a junk pointer isn't good. 560 * Then again, _kvm_freeprocs() isn't used 561 * anywhere . . . 562 */ 563 kd->procbase = _kvm_malloc(kd, 1); 564 goto liveout; 565 } 566 do { 567 size += size / 10; 568 kd->procbase = (struct kinfo_proc *) 569 _kvm_realloc(kd, kd->procbase, size); 570 if (kd->procbase == NULL) 571 return (0); 572 osize = size; 573 st = sysctl(mib, temp_op == KERN_PROC_ALL || 574 temp_op == KERN_PROC_PROC ? 3 : 4, 575 kd->procbase, &size, NULL, 0); 576 } while (st == -1 && errno == ENOMEM && size == osize); 577 if (st == -1) { 578 _kvm_syserr(kd, kd->program, "kvm_getprocs"); 579 return (0); 580 } 581 /* 582 * We have to check the size again because sysctl() 583 * may "round up" oldlenp if oldp is NULL; hence it 584 * might've told us that there was data to get when 585 * there really isn't any. 586 */ 587 if (size > 0 && 588 kd->procbase->ki_structsize != sizeof(struct kinfo_proc)) { 589 _kvm_err(kd, kd->program, 590 "kinfo_proc size mismatch (expected %zu, got %d)", 591 sizeof(struct kinfo_proc), 592 kd->procbase->ki_structsize); 593 return (0); 594 } 595 liveout: 596 nprocs = size == 0 ? 0 : size / kd->procbase->ki_structsize; 597 } else { 598 struct nlist nl[6], *p; 599 struct nlist nlz[2]; 600 601 nl[0].n_name = "_nprocs"; 602 nl[1].n_name = "_allproc"; 603 nl[2].n_name = "_ticks"; 604 nl[3].n_name = "_hz"; 605 nl[4].n_name = "_cpu_tick_frequency"; 606 nl[5].n_name = 0; 607 608 nlz[0].n_name = "_zombproc"; 609 nlz[1].n_name = 0; 610 611 if (!kd->arch->ka_native(kd)) { 612 _kvm_err(kd, kd->program, 613 "cannot read procs from non-native core"); 614 return (0); 615 } 616 617 if (kvm_nlist(kd, nl) != 0) { 618 for (p = nl; p->n_type != 0; ++p) 619 ; 620 _kvm_err(kd, kd->program, 621 "%s: no such symbol", p->n_name); 622 return (0); 623 } 624 (void) kvm_nlist(kd, nlz); /* attempt to get zombproc */ 625 if (KREAD(kd, nl[0].n_value, &nprocs)) { 626 _kvm_err(kd, kd->program, "can't read nprocs"); 627 return (0); 628 } 629 /* 630 * If returning all threads, we don't know how many that 631 * might be. Presume that there are, on average, no more 632 * than 10 threads per process. 633 */ 634 if (op == KERN_PROC_ALL || (op & KERN_PROC_INC_THREAD)) 635 nprocs *= 10; /* XXX */ 636 if (KREAD(kd, nl[2].n_value, &ticks)) { 637 _kvm_err(kd, kd->program, "can't read ticks"); 638 return (0); 639 } 640 if (KREAD(kd, nl[3].n_value, &hz)) { 641 _kvm_err(kd, kd->program, "can't read hz"); 642 return (0); 643 } 644 if (KREAD(kd, nl[4].n_value, &cpu_tick_frequency)) { 645 _kvm_err(kd, kd->program, 646 "can't read cpu_tick_frequency"); 647 return (0); 648 } 649 size = nprocs * sizeof(struct kinfo_proc); 650 kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size); 651 if (kd->procbase == NULL) 652 return (0); 653 654 nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value, 655 nlz[0].n_value, nprocs); 656 if (nprocs <= 0) { 657 _kvm_freeprocs(kd); 658 nprocs = 0; 659 } 660 #ifdef notdef 661 else { 662 size = nprocs * sizeof(struct kinfo_proc); 663 kd->procbase = realloc(kd->procbase, size); 664 } 665 #endif 666 } 667 *cnt = nprocs; 668 return (kd->procbase); 669 } 670 671 void 672 _kvm_freeprocs(kvm_t *kd) 673 { 674 675 free(kd->procbase); 676 kd->procbase = NULL; 677 } 678 679 void * 680 _kvm_realloc(kvm_t *kd, void *p, size_t n) 681 { 682 void *np; 683 684 np = reallocf(p, n); 685 if (np == NULL) 686 _kvm_err(kd, kd->program, "out of memory"); 687 return (np); 688 } 689 690 /* 691 * Get the command args or environment. 692 */ 693 static char ** 694 kvm_argv(kvm_t *kd, const struct kinfo_proc *kp, int env, int nchr) 695 { 696 int oid[4]; 697 int i; 698 size_t bufsz; 699 static int buflen; 700 static char *buf, *p; 701 static char **bufp; 702 static int argc; 703 char **nbufp; 704 705 if (!ISALIVE(kd)) { 706 _kvm_err(kd, kd->program, 707 "cannot read user space from dead kernel"); 708 return (NULL); 709 } 710 711 if (nchr == 0 || nchr > ARG_MAX) 712 nchr = ARG_MAX; 713 if (buflen == 0) { 714 buf = malloc(nchr); 715 if (buf == NULL) { 716 _kvm_err(kd, kd->program, "cannot allocate memory"); 717 return (NULL); 718 } 719 argc = 32; 720 bufp = malloc(sizeof(char *) * argc); 721 if (bufp == NULL) { 722 free(buf); 723 buf = NULL; 724 _kvm_err(kd, kd->program, "cannot allocate memory"); 725 return (NULL); 726 } 727 buflen = nchr; 728 } else if (nchr > buflen) { 729 p = realloc(buf, nchr); 730 if (p != NULL) { 731 buf = p; 732 buflen = nchr; 733 } 734 } 735 oid[0] = CTL_KERN; 736 oid[1] = KERN_PROC; 737 oid[2] = env ? KERN_PROC_ENV : KERN_PROC_ARGS; 738 oid[3] = kp->ki_pid; 739 bufsz = buflen; 740 if (sysctl(oid, 4, buf, &bufsz, 0, 0) == -1) { 741 /* 742 * If the supplied buf is too short to hold the requested 743 * value the sysctl returns with ENOMEM. The buf is filled 744 * with the truncated value and the returned bufsz is equal 745 * to the requested len. 746 */ 747 if (errno != ENOMEM || bufsz != (size_t)buflen) 748 return (NULL); 749 buf[bufsz - 1] = '\0'; 750 errno = 0; 751 } else if (bufsz == 0) 752 return (NULL); 753 i = 0; 754 p = buf; 755 do { 756 bufp[i++] = p; 757 p += strlen(p) + 1; 758 if (i >= argc) { 759 argc += argc; 760 nbufp = realloc(bufp, sizeof(char *) * argc); 761 if (nbufp == NULL) 762 return (NULL); 763 bufp = nbufp; 764 } 765 } while (p < buf + bufsz); 766 bufp[i++] = 0; 767 return (bufp); 768 } 769 770 char ** 771 kvm_getargv(kvm_t *kd, const struct kinfo_proc *kp, int nchr) 772 { 773 return (kvm_argv(kd, kp, 0, nchr)); 774 } 775 776 char ** 777 kvm_getenvv(kvm_t *kd, const struct kinfo_proc *kp, int nchr) 778 { 779 return (kvm_argv(kd, kp, 1, nchr)); 780 } 781