xref: /freebsd/lib/libkvm/kvm_private.c (revision fd5e3f3ec6c6248e892c9e7b2f17da3bfe7b6837)
1 /*-
2  * Copyright (c) 1989, 1992, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software developed by the Computer Systems
6  * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
7  * BG 91-66 and contributed to Berkeley.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include <sys/param.h>
38 #include <sys/fnv_hash.h>
39 
40 #define	_WANT_VNET
41 
42 #include <sys/user.h>
43 #include <sys/linker.h>
44 #include <sys/pcpu.h>
45 #include <sys/stat.h>
46 
47 #include <net/vnet.h>
48 
49 #include <assert.h>
50 #include <fcntl.h>
51 #include <kvm.h>
52 #include <limits.h>
53 #include <paths.h>
54 #include <stdint.h>
55 #include <stdio.h>
56 #include <stdlib.h>
57 #include <string.h>
58 #include <unistd.h>
59 #include <stdarg.h>
60 
61 #include "kvm_private.h"
62 
63 /*
64  * Routines private to libkvm.
65  */
66 
67 /* from src/lib/libc/gen/nlist.c */
68 int __fdnlist(int, struct nlist *);
69 
70 /*
71  * Report an error using printf style arguments.  "program" is kd->program
72  * on hard errors, and 0 on soft errors, so that under sun error emulation,
73  * only hard errors are printed out (otherwise, programs like gdb will
74  * generate tons of error messages when trying to access bogus pointers).
75  */
76 void
77 _kvm_err(kvm_t *kd, const char *program, const char *fmt, ...)
78 {
79 	va_list ap;
80 
81 	va_start(ap, fmt);
82 	if (program != NULL) {
83 		(void)fprintf(stderr, "%s: ", program);
84 		(void)vfprintf(stderr, fmt, ap);
85 		(void)fputc('\n', stderr);
86 	} else
87 		(void)vsnprintf(kd->errbuf,
88 		    sizeof(kd->errbuf), fmt, ap);
89 
90 	va_end(ap);
91 }
92 
93 void
94 _kvm_syserr(kvm_t *kd, const char *program, const char *fmt, ...)
95 {
96 	va_list ap;
97 	int n;
98 
99 	va_start(ap, fmt);
100 	if (program != NULL) {
101 		(void)fprintf(stderr, "%s: ", program);
102 		(void)vfprintf(stderr, fmt, ap);
103 		(void)fprintf(stderr, ": %s\n", strerror(errno));
104 	} else {
105 		char *cp = kd->errbuf;
106 
107 		(void)vsnprintf(cp, sizeof(kd->errbuf), fmt, ap);
108 		n = strlen(cp);
109 		(void)snprintf(&cp[n], sizeof(kd->errbuf) - n, ": %s",
110 		    strerror(errno));
111 	}
112 	va_end(ap);
113 }
114 
115 void *
116 _kvm_malloc(kvm_t *kd, size_t n)
117 {
118 	void *p;
119 
120 	if ((p = calloc(n, sizeof(char))) == NULL)
121 		_kvm_err(kd, kd->program, "can't allocate %zu bytes: %s",
122 			 n, strerror(errno));
123 	return (p);
124 }
125 
126 int
127 _kvm_probe_elf_kernel(kvm_t *kd, int class, int machine)
128 {
129 
130 	return (kd->nlehdr.e_ident[EI_CLASS] == class &&
131 	    kd->nlehdr.e_type == ET_EXEC &&
132 	    kd->nlehdr.e_machine == machine);
133 }
134 
135 int
136 _kvm_is_minidump(kvm_t *kd)
137 {
138 	char minihdr[8];
139 
140 	if (kd->rawdump)
141 		return (0);
142 	if (pread(kd->pmfd, &minihdr, 8, 0) == 8 &&
143 	    memcmp(&minihdr, "minidump", 8) == 0)
144 		return (1);
145 	return (0);
146 }
147 
148 /*
149  * The powerpc backend has a hack to strip a leading kerneldump
150  * header from the core before treating it as an ELF header.
151  *
152  * We can add that here if we can get a change to libelf to support
153  * an initial offset into the file.  Alternatively we could patch
154  * savecore to extract cores from a regular file instead.
155  */
156 int
157 _kvm_read_core_phdrs(kvm_t *kd, size_t *phnump, GElf_Phdr **phdrp)
158 {
159 	GElf_Ehdr ehdr;
160 	GElf_Phdr *phdr;
161 	Elf *elf;
162 	size_t i, phnum;
163 
164 	elf = elf_begin(kd->pmfd, ELF_C_READ, NULL);
165 	if (elf == NULL) {
166 		_kvm_err(kd, kd->program, "%s", elf_errmsg(0));
167 		return (-1);
168 	}
169 	if (elf_kind(elf) != ELF_K_ELF) {
170 		_kvm_err(kd, kd->program, "invalid core");
171 		goto bad;
172 	}
173 	if (gelf_getclass(elf) != kd->nlehdr.e_ident[EI_CLASS]) {
174 		_kvm_err(kd, kd->program, "invalid core");
175 		goto bad;
176 	}
177 	if (gelf_getehdr(elf, &ehdr) == NULL) {
178 		_kvm_err(kd, kd->program, "%s", elf_errmsg(0));
179 		goto bad;
180 	}
181 	if (ehdr.e_type != ET_CORE) {
182 		_kvm_err(kd, kd->program, "invalid core");
183 		goto bad;
184 	}
185 	if (ehdr.e_machine != kd->nlehdr.e_machine) {
186 		_kvm_err(kd, kd->program, "invalid core");
187 		goto bad;
188 	}
189 
190 	if (elf_getphdrnum(elf, &phnum) == -1) {
191 		_kvm_err(kd, kd->program, "%s", elf_errmsg(0));
192 		goto bad;
193 	}
194 
195 	phdr = calloc(phnum, sizeof(*phdr));
196 	if (phdr == NULL) {
197 		_kvm_err(kd, kd->program, "failed to allocate phdrs");
198 		goto bad;
199 	}
200 
201 	for (i = 0; i < phnum; i++) {
202 		if (gelf_getphdr(elf, i, &phdr[i]) == NULL) {
203 			free(phdr);
204 			_kvm_err(kd, kd->program, "%s", elf_errmsg(0));
205 			goto bad;
206 		}
207 	}
208 	elf_end(elf);
209 	*phnump = phnum;
210 	*phdrp = phdr;
211 	return (0);
212 
213 bad:
214 	elf_end(elf);
215 	return (-1);
216 }
217 
218 /*
219  * Transform v such that only bits [bit0, bitN) may be set.  Generates a
220  * bitmask covering the number of bits, then shifts so +bit0+ is the first.
221  */
222 static uint64_t
223 bitmask_range(uint64_t v, uint64_t bit0, uint64_t bitN)
224 {
225 	if (bit0 == 0 && bitN == BITS_IN(v))
226 		return (v);
227 
228 	return (v & (((1ULL << (bitN - bit0)) - 1ULL) << bit0));
229 }
230 
231 /*
232  * Returns the number of bits in a given byte array range starting at a
233  * given base, from bit0 to bitN.  bit0 may be non-zero in the case of
234  * counting backwards from bitN.
235  */
236 static uint64_t
237 popcount_bytes(uint64_t *addr, uint32_t bit0, uint32_t bitN)
238 {
239 	uint32_t res = bitN - bit0;
240 	uint64_t count = 0;
241 	uint32_t bound;
242 
243 	/* Align to 64-bit boundary on the left side if needed. */
244 	if ((bit0 % BITS_IN(*addr)) != 0) {
245 		bound = MIN(bitN, roundup2(bit0, BITS_IN(*addr)));
246 		count += __bitcount64(bitmask_range(*addr, bit0, bound));
247 		res -= (bound - bit0);
248 		addr++;
249 	}
250 
251 	while (res > 0) {
252 		bound = MIN(res, BITS_IN(*addr));
253 		count += __bitcount64(bitmask_range(*addr, 0, bound));
254 		res -= bound;
255 		addr++;
256 	}
257 
258 	return (count);
259 }
260 
261 int
262 _kvm_pt_init(kvm_t *kd, size_t map_len, off_t map_off, off_t sparse_off,
263     int page_size, int word_size)
264 {
265 	uint64_t *addr;
266 	uint32_t *popcount_bin;
267 	int bin_popcounts = 0;
268 	uint64_t pc_bins, res;
269 	ssize_t rd;
270 
271 	/*
272 	 * Map the bitmap specified by the arguments.
273 	 */
274 	kd->pt_map = _kvm_malloc(kd, map_len);
275 	if (kd->pt_map == NULL) {
276 		_kvm_err(kd, kd->program, "cannot allocate %zu bytes for bitmap",
277 		    map_len);
278 		return (-1);
279 	}
280 	rd = pread(kd->pmfd, kd->pt_map, map_len, map_off);
281 	if (rd < 0 || rd != (ssize_t)map_len) {
282 		_kvm_err(kd, kd->program, "cannot read %zu bytes for bitmap",
283 		    map_len);
284 		return (-1);
285 	}
286 	kd->pt_map_size = map_len;
287 
288 	/*
289 	 * Generate a popcount cache for every POPCOUNT_BITS in the bitmap,
290 	 * so lookups only have to calculate the number of bits set between
291 	 * a cache point and their bit.  This reduces lookups to O(1),
292 	 * without significantly increasing memory requirements.
293 	 *
294 	 * Round up the number of bins so that 'upper half' lookups work for
295 	 * the final bin, if needed.  The first popcount is 0, since no bits
296 	 * precede bit 0, so add 1 for that also.  Without this, extra work
297 	 * would be needed to handle the first PTEs in _kvm_pt_find().
298 	 */
299 	addr = kd->pt_map;
300 	res = map_len;
301 	pc_bins = 1 + (res * NBBY + POPCOUNT_BITS / 2) / POPCOUNT_BITS;
302 	kd->pt_popcounts = calloc(pc_bins, sizeof(uint32_t));
303 	if (kd->pt_popcounts == NULL)
304 		return (-1);
305 
306 	for (popcount_bin = &kd->pt_popcounts[1]; res > 0;
307 	    addr++, res -= sizeof(*addr)) {
308 		*popcount_bin += popcount_bytes(addr, 0,
309 		    MIN(res * NBBY, BITS_IN(*addr)));
310 		if (++bin_popcounts == POPCOUNTS_IN(*addr)) {
311 			popcount_bin++;
312 			*popcount_bin = *(popcount_bin - 1);
313 			bin_popcounts = 0;
314 		}
315 	}
316 
317 	assert(pc_bins * sizeof(*popcount_bin) ==
318 	    ((uintptr_t)popcount_bin - (uintptr_t)kd->pt_popcounts));
319 
320 	kd->pt_sparse_off = sparse_off;
321 	kd->pt_sparse_size = (uint64_t)*popcount_bin * PAGE_SIZE;
322 	kd->pt_page_size = page_size;
323 	kd->pt_word_size = word_size;
324 	return (0);
325 }
326 
327 /*
328  * Find the offset for the given physical page address; returns -1 otherwise.
329  *
330  * A page's offset is represented by the sparse page base offset plus the
331  * number of bits set before its bit multiplied by PAGE_SIZE.  This means
332  * that if a page exists in the dump, it's necessary to know how many pages
333  * in the dump precede it.  Reduce this O(n) counting to O(1) by caching the
334  * number of bits set at POPCOUNT_BITS intervals.
335  *
336  * Then to find the number of pages before the requested address, simply
337  * index into the cache and count the number of bits set between that cache
338  * bin and the page's bit.  Halve the number of bytes that have to be
339  * checked by also counting down from the next higher bin if it's closer.
340  */
341 off_t
342 _kvm_pt_find(kvm_t *kd, uint64_t pa)
343 {
344 	uint64_t *bitmap = kd->pt_map;
345 	uint64_t pte_bit_id = pa / PAGE_SIZE;
346 	uint64_t pte_u64 = pte_bit_id / BITS_IN(*bitmap);
347 	uint64_t popcount_id = pte_bit_id / POPCOUNT_BITS;
348 	uint64_t pte_mask = 1ULL << (pte_bit_id % BITS_IN(*bitmap));
349 	uint64_t bitN;
350 	uint32_t count;
351 
352 	/* Check whether the page address requested is in the dump. */
353 	if (pte_bit_id >= (kd->pt_map_size * NBBY) ||
354 	    (bitmap[pte_u64] & pte_mask) == 0)
355 		return (-1);
356 
357 	/*
358 	 * Add/sub popcounts from the bitmap until the PTE's bit is reached.
359 	 * For bits that are in the upper half between the calculated
360 	 * popcount id and the next one, use the next one and subtract to
361 	 * minimize the number of popcounts required.
362 	 */
363 	if ((pte_bit_id % POPCOUNT_BITS) < (POPCOUNT_BITS / 2)) {
364 		count = kd->pt_popcounts[popcount_id] + popcount_bytes(
365 		    bitmap + popcount_id * POPCOUNTS_IN(*bitmap),
366 		    0, pte_bit_id - popcount_id * POPCOUNT_BITS);
367 	} else {
368 		/*
369 		 * Counting in reverse is trickier, since we must avoid
370 		 * reading from bytes that are not in range, and invert.
371 		 */
372 		uint64_t pte_u64_bit_off = pte_u64 * BITS_IN(*bitmap);
373 
374 		popcount_id++;
375 		bitN = MIN(popcount_id * POPCOUNT_BITS,
376 		    kd->pt_map_size * BITS_IN(uint8_t));
377 		count = kd->pt_popcounts[popcount_id] - popcount_bytes(
378 		    bitmap + pte_u64,
379 		    pte_bit_id - pte_u64_bit_off, bitN - pte_u64_bit_off);
380 	}
381 
382 	/*
383 	 * This can only happen if the core is truncated.  Treat these
384 	 * entries as if they don't exist, since their backing doesn't.
385 	 */
386 	if (count >= (kd->pt_sparse_size / PAGE_SIZE))
387 		return (-1);
388 
389 	return (kd->pt_sparse_off + (uint64_t)count * PAGE_SIZE);
390 }
391 
392 static int
393 kvm_fdnlist(kvm_t *kd, struct kvm_nlist *list)
394 {
395 	kvaddr_t addr;
396 	int error, nfail;
397 
398 	if (kd->resolve_symbol == NULL) {
399 		struct nlist *nl;
400 		int count, i;
401 
402 		for (count = 0; list[count].n_name != NULL &&
403 		     list[count].n_name[0] != '\0'; count++)
404 			;
405 		nl = calloc(count + 1, sizeof(*nl));
406 		for (i = 0; i < count; i++)
407 			nl[i].n_name = list[i].n_name;
408 		nfail = __fdnlist(kd->nlfd, nl);
409 		for (i = 0; i < count; i++) {
410 			list[i].n_type = nl[i].n_type;
411 			list[i].n_value = nl[i].n_value;
412 		}
413 		free(nl);
414 		return (nfail);
415 	}
416 
417 	nfail = 0;
418 	while (list->n_name != NULL && list->n_name[0] != '\0') {
419 		error = kd->resolve_symbol(list->n_name, &addr);
420 		if (error != 0) {
421 			nfail++;
422 			list->n_value = 0;
423 			list->n_type = 0;
424 		} else {
425 			list->n_value = addr;
426 			list->n_type = N_DATA | N_EXT;
427 		}
428 		list++;
429 	}
430 	return (nfail);
431 }
432 
433 /*
434  * Walk the list of unresolved symbols, generate a new list and prefix the
435  * symbol names, try again, and merge back what we could resolve.
436  */
437 static int
438 kvm_fdnlist_prefix(kvm_t *kd, struct kvm_nlist *nl, int missing,
439     const char *prefix, kvaddr_t (*validate_fn)(kvm_t *, kvaddr_t))
440 {
441 	struct kvm_nlist *n, *np, *p;
442 	char *cp, *ce;
443 	const char *ccp;
444 	size_t len;
445 	int slen, unresolved;
446 
447 	/*
448 	 * Calculate the space we need to malloc for nlist and names.
449 	 * We are going to store the name twice for later lookups: once
450 	 * with the prefix and once the unmodified name delmited by \0.
451 	 */
452 	len = 0;
453 	unresolved = 0;
454 	for (p = nl; p->n_name && p->n_name[0]; ++p) {
455 		if (p->n_type != N_UNDF)
456 			continue;
457 		len += sizeof(struct kvm_nlist) + strlen(prefix) +
458 		    2 * (strlen(p->n_name) + 1);
459 		unresolved++;
460 	}
461 	if (unresolved == 0)
462 		return (unresolved);
463 	/* Add space for the terminating nlist entry. */
464 	len += sizeof(struct kvm_nlist);
465 	unresolved++;
466 
467 	/* Alloc one chunk for (nlist, [names]) and setup pointers. */
468 	n = np = malloc(len);
469 	bzero(n, len);
470 	if (n == NULL)
471 		return (missing);
472 	cp = ce = (char *)np;
473 	cp += unresolved * sizeof(struct kvm_nlist);
474 	ce += len;
475 
476 	/* Generate shortened nlist with special prefix. */
477 	unresolved = 0;
478 	for (p = nl; p->n_name && p->n_name[0]; ++p) {
479 		if (p->n_type != N_UNDF)
480 			continue;
481 		*np = *p;
482 		/* Save the new\0orig. name so we can later match it again. */
483 		slen = snprintf(cp, ce - cp, "%s%s%c%s", prefix,
484 		    (prefix[0] != '\0' && p->n_name[0] == '_') ?
485 			(p->n_name + 1) : p->n_name, '\0', p->n_name);
486 		if (slen < 0 || slen >= ce - cp)
487 			continue;
488 		np->n_name = cp;
489 		cp += slen + 1;
490 		np++;
491 		unresolved++;
492 	}
493 
494 	/* Do lookup on the reduced list. */
495 	np = n;
496 	unresolved = kvm_fdnlist(kd, np);
497 
498 	/* Check if we could resolve further symbols and update the list. */
499 	if (unresolved >= 0 && unresolved < missing) {
500 		/* Find the first freshly resolved entry. */
501 		for (; np->n_name && np->n_name[0]; np++)
502 			if (np->n_type != N_UNDF)
503 				break;
504 		/*
505 		 * The lists are both in the same order,
506 		 * so we can walk them in parallel.
507 		 */
508 		for (p = nl; np->n_name && np->n_name[0] &&
509 		    p->n_name && p->n_name[0]; ++p) {
510 			if (p->n_type != N_UNDF)
511 				continue;
512 			/* Skip expanded name and compare to orig. one. */
513 			ccp = np->n_name + strlen(np->n_name) + 1;
514 			if (strcmp(ccp, p->n_name) != 0)
515 				continue;
516 			/* Update nlist with new, translated results. */
517 			p->n_type = np->n_type;
518 			if (validate_fn)
519 				p->n_value = (*validate_fn)(kd, np->n_value);
520 			else
521 				p->n_value = np->n_value;
522 			missing--;
523 			/* Find next freshly resolved entry. */
524 			for (np++; np->n_name && np->n_name[0]; np++)
525 				if (np->n_type != N_UNDF)
526 					break;
527 		}
528 	}
529 	/* We could assert missing = unresolved here. */
530 
531 	free(n);
532 	return (unresolved);
533 }
534 
535 int
536 _kvm_nlist(kvm_t *kd, struct kvm_nlist *nl, int initialize)
537 {
538 	struct kvm_nlist *p;
539 	int nvalid;
540 	struct kld_sym_lookup lookup;
541 	int error;
542 	const char *prefix = "";
543 	char symname[1024]; /* XXX-BZ symbol name length limit? */
544 	int tried_vnet, tried_dpcpu;
545 
546 	/*
547 	 * If we can't use the kld symbol lookup, revert to the
548 	 * slow library call.
549 	 */
550 	if (!ISALIVE(kd)) {
551 		error = kvm_fdnlist(kd, nl);
552 		if (error <= 0)			/* Hard error or success. */
553 			return (error);
554 
555 		if (_kvm_vnet_initialized(kd, initialize))
556 			error = kvm_fdnlist_prefix(kd, nl, error,
557 			    VNET_SYMPREFIX, _kvm_vnet_validaddr);
558 
559 		if (error > 0 && _kvm_dpcpu_initialized(kd, initialize))
560 			error = kvm_fdnlist_prefix(kd, nl, error,
561 			    DPCPU_SYMPREFIX, _kvm_dpcpu_validaddr);
562 
563 		return (error);
564 	}
565 
566 	/*
567 	 * We can use the kld lookup syscall.  Go through each nlist entry
568 	 * and look it up with a kldsym(2) syscall.
569 	 */
570 	nvalid = 0;
571 	tried_vnet = 0;
572 	tried_dpcpu = 0;
573 again:
574 	for (p = nl; p->n_name && p->n_name[0]; ++p) {
575 		if (p->n_type != N_UNDF)
576 			continue;
577 
578 		lookup.version = sizeof(lookup);
579 		lookup.symvalue = 0;
580 		lookup.symsize = 0;
581 
582 		error = snprintf(symname, sizeof(symname), "%s%s", prefix,
583 		    (prefix[0] != '\0' && p->n_name[0] == '_') ?
584 			(p->n_name + 1) : p->n_name);
585 		if (error < 0 || error >= (int)sizeof(symname))
586 			continue;
587 		lookup.symname = symname;
588 		if (lookup.symname[0] == '_')
589 			lookup.symname++;
590 
591 		if (kldsym(0, KLDSYM_LOOKUP, &lookup) != -1) {
592 			p->n_type = N_TEXT;
593 			if (_kvm_vnet_initialized(kd, initialize) &&
594 			    strcmp(prefix, VNET_SYMPREFIX) == 0)
595 				p->n_value =
596 				    _kvm_vnet_validaddr(kd, lookup.symvalue);
597 			else if (_kvm_dpcpu_initialized(kd, initialize) &&
598 			    strcmp(prefix, DPCPU_SYMPREFIX) == 0)
599 				p->n_value =
600 				    _kvm_dpcpu_validaddr(kd, lookup.symvalue);
601 			else
602 				p->n_value = lookup.symvalue;
603 			++nvalid;
604 			/* lookup.symsize */
605 		}
606 	}
607 
608 	/*
609 	 * Check the number of entries that weren't found. If they exist,
610 	 * try again with a prefix for virtualized or DPCPU symbol names.
611 	 */
612 	error = ((p - nl) - nvalid);
613 	if (error && _kvm_vnet_initialized(kd, initialize) && !tried_vnet) {
614 		tried_vnet = 1;
615 		prefix = VNET_SYMPREFIX;
616 		goto again;
617 	}
618 	if (error && _kvm_dpcpu_initialized(kd, initialize) && !tried_dpcpu) {
619 		tried_dpcpu = 1;
620 		prefix = DPCPU_SYMPREFIX;
621 		goto again;
622 	}
623 
624 	/*
625 	 * Return the number of entries that weren't found. If they exist,
626 	 * also fill internal error buffer.
627 	 */
628 	error = ((p - nl) - nvalid);
629 	if (error)
630 		_kvm_syserr(kd, kd->program, "kvm_nlist");
631 	return (error);
632 }
633