1 /*- 2 * Copyright (c) 1989, 1992, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software developed by the Computer Systems 6 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract 7 * BG 91-66 and contributed to Berkeley. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include <sys/param.h> 38 #include <sys/fnv_hash.h> 39 40 #define _WANT_VNET 41 42 #include <sys/user.h> 43 #include <sys/linker.h> 44 #include <sys/pcpu.h> 45 #include <sys/stat.h> 46 #include <sys/mman.h> 47 48 #include <stdbool.h> 49 #include <net/vnet.h> 50 51 #include <assert.h> 52 #include <fcntl.h> 53 #include <vm/vm.h> 54 #include <kvm.h> 55 #include <limits.h> 56 #include <paths.h> 57 #include <stdint.h> 58 #include <stdio.h> 59 #include <stdlib.h> 60 #include <string.h> 61 #include <unistd.h> 62 #include <stdarg.h> 63 #include <inttypes.h> 64 65 #include "kvm_private.h" 66 67 /* 68 * Routines private to libkvm. 69 */ 70 71 /* from src/lib/libc/gen/nlist.c */ 72 int __fdnlist(int, struct nlist *); 73 74 /* 75 * Report an error using printf style arguments. "program" is kd->program 76 * on hard errors, and 0 on soft errors, so that under sun error emulation, 77 * only hard errors are printed out (otherwise, programs like gdb will 78 * generate tons of error messages when trying to access bogus pointers). 79 */ 80 void 81 _kvm_err(kvm_t *kd, const char *program, const char *fmt, ...) 82 { 83 va_list ap; 84 85 va_start(ap, fmt); 86 if (program != NULL) { 87 (void)fprintf(stderr, "%s: ", program); 88 (void)vfprintf(stderr, fmt, ap); 89 (void)fputc('\n', stderr); 90 } else 91 (void)vsnprintf(kd->errbuf, 92 sizeof(kd->errbuf), fmt, ap); 93 94 va_end(ap); 95 } 96 97 void 98 _kvm_syserr(kvm_t *kd, const char *program, const char *fmt, ...) 99 { 100 va_list ap; 101 int n; 102 103 va_start(ap, fmt); 104 if (program != NULL) { 105 (void)fprintf(stderr, "%s: ", program); 106 (void)vfprintf(stderr, fmt, ap); 107 (void)fprintf(stderr, ": %s\n", strerror(errno)); 108 } else { 109 char *cp = kd->errbuf; 110 111 (void)vsnprintf(cp, sizeof(kd->errbuf), fmt, ap); 112 n = strlen(cp); 113 (void)snprintf(&cp[n], sizeof(kd->errbuf) - n, ": %s", 114 strerror(errno)); 115 } 116 va_end(ap); 117 } 118 119 void * 120 _kvm_malloc(kvm_t *kd, size_t n) 121 { 122 void *p; 123 124 if ((p = calloc(n, sizeof(char))) == NULL) 125 _kvm_err(kd, kd->program, "can't allocate %zu bytes: %s", 126 n, strerror(errno)); 127 return (p); 128 } 129 130 int 131 _kvm_probe_elf_kernel(kvm_t *kd, int class, int machine) 132 { 133 134 return (kd->nlehdr.e_ident[EI_CLASS] == class && 135 ((machine == EM_PPC || machine == EM_PPC64) ? 136 kd->nlehdr.e_type == ET_DYN : kd->nlehdr.e_type == ET_EXEC) && 137 kd->nlehdr.e_machine == machine); 138 } 139 140 int 141 _kvm_is_minidump(kvm_t *kd) 142 { 143 char minihdr[8]; 144 145 if (kd->rawdump) 146 return (0); 147 if (pread(kd->pmfd, &minihdr, 8, 0) == 8 && 148 memcmp(&minihdr, "minidump", 8) == 0) 149 return (1); 150 return (0); 151 } 152 153 /* 154 * The powerpc backend has a hack to strip a leading kerneldump 155 * header from the core before treating it as an ELF header. 156 * 157 * We can add that here if we can get a change to libelf to support 158 * an initial offset into the file. Alternatively we could patch 159 * savecore to extract cores from a regular file instead. 160 */ 161 int 162 _kvm_read_core_phdrs(kvm_t *kd, size_t *phnump, GElf_Phdr **phdrp) 163 { 164 GElf_Ehdr ehdr; 165 GElf_Phdr *phdr; 166 Elf *elf; 167 size_t i, phnum; 168 169 elf = elf_begin(kd->pmfd, ELF_C_READ, NULL); 170 if (elf == NULL) { 171 _kvm_err(kd, kd->program, "%s", elf_errmsg(0)); 172 return (-1); 173 } 174 if (elf_kind(elf) != ELF_K_ELF) { 175 _kvm_err(kd, kd->program, "invalid core"); 176 goto bad; 177 } 178 if (gelf_getclass(elf) != kd->nlehdr.e_ident[EI_CLASS]) { 179 _kvm_err(kd, kd->program, "invalid core"); 180 goto bad; 181 } 182 if (gelf_getehdr(elf, &ehdr) == NULL) { 183 _kvm_err(kd, kd->program, "%s", elf_errmsg(0)); 184 goto bad; 185 } 186 if (ehdr.e_type != ET_CORE) { 187 _kvm_err(kd, kd->program, "invalid core"); 188 goto bad; 189 } 190 if (ehdr.e_machine != kd->nlehdr.e_machine) { 191 _kvm_err(kd, kd->program, "invalid core"); 192 goto bad; 193 } 194 195 if (elf_getphdrnum(elf, &phnum) == -1) { 196 _kvm_err(kd, kd->program, "%s", elf_errmsg(0)); 197 goto bad; 198 } 199 200 phdr = calloc(phnum, sizeof(*phdr)); 201 if (phdr == NULL) { 202 _kvm_err(kd, kd->program, "failed to allocate phdrs"); 203 goto bad; 204 } 205 206 for (i = 0; i < phnum; i++) { 207 if (gelf_getphdr(elf, i, &phdr[i]) == NULL) { 208 free(phdr); 209 _kvm_err(kd, kd->program, "%s", elf_errmsg(0)); 210 goto bad; 211 } 212 } 213 elf_end(elf); 214 *phnump = phnum; 215 *phdrp = phdr; 216 return (0); 217 218 bad: 219 elf_end(elf); 220 return (-1); 221 } 222 223 /* 224 * Transform v such that only bits [bit0, bitN) may be set. Generates a 225 * bitmask covering the number of bits, then shifts so +bit0+ is the first. 226 */ 227 static uint64_t 228 bitmask_range(uint64_t v, uint64_t bit0, uint64_t bitN) 229 { 230 if (bit0 == 0 && bitN == BITS_IN(v)) 231 return (v); 232 233 return (v & (((1ULL << (bitN - bit0)) - 1ULL) << bit0)); 234 } 235 236 /* 237 * Returns the number of bits in a given byte array range starting at a 238 * given base, from bit0 to bitN. bit0 may be non-zero in the case of 239 * counting backwards from bitN. 240 */ 241 static uint64_t 242 popcount_bytes(uint64_t *addr, uint32_t bit0, uint32_t bitN) 243 { 244 uint32_t res = bitN - bit0; 245 uint64_t count = 0; 246 uint32_t bound; 247 248 /* Align to 64-bit boundary on the left side if needed. */ 249 if ((bit0 % BITS_IN(*addr)) != 0) { 250 bound = MIN(bitN, roundup2(bit0, BITS_IN(*addr))); 251 count += __bitcount64(bitmask_range(*addr, bit0, bound)); 252 res -= (bound - bit0); 253 addr++; 254 } 255 256 while (res > 0) { 257 bound = MIN(res, BITS_IN(*addr)); 258 count += __bitcount64(bitmask_range(*addr, 0, bound)); 259 res -= bound; 260 addr++; 261 } 262 263 return (count); 264 } 265 266 void * 267 _kvm_pmap_get(kvm_t *kd, u_long idx, size_t len) 268 { 269 uintptr_t off = idx * len; 270 271 if ((off_t)off >= kd->pt_sparse_off) 272 return (NULL); 273 return (void *)((uintptr_t)kd->page_map + off); 274 } 275 276 void * 277 _kvm_map_get(kvm_t *kd, u_long pa, unsigned int page_size) 278 { 279 off_t off; 280 uintptr_t addr; 281 282 off = _kvm_pt_find(kd, pa, page_size); 283 if (off == -1) 284 return NULL; 285 286 addr = (uintptr_t)kd->page_map + off; 287 if (off >= kd->pt_sparse_off) 288 addr = (uintptr_t)kd->sparse_map + (off - kd->pt_sparse_off); 289 return (void *)addr; 290 } 291 292 int 293 _kvm_pt_init(kvm_t *kd, size_t dump_avail_size, off_t dump_avail_off, 294 size_t map_len, off_t map_off, off_t sparse_off, int page_size, 295 int word_size) 296 { 297 uint64_t *addr; 298 uint32_t *popcount_bin; 299 int bin_popcounts = 0; 300 uint64_t pc_bins, res; 301 ssize_t rd; 302 303 kd->dump_avail_size = dump_avail_size; 304 if (dump_avail_size > 0) { 305 kd->dump_avail = mmap(NULL, kd->dump_avail_size, PROT_READ, 306 MAP_PRIVATE, kd->pmfd, dump_avail_off); 307 } else { 308 /* 309 * Older version minidumps don't provide dump_avail[], 310 * so the bitmap is fully populated from 0 to 311 * last_pa. Create an implied dump_avail that 312 * expresses this. 313 */ 314 kd->dump_avail = calloc(4, word_size); 315 if (word_size == sizeof(uint32_t)) { 316 ((uint32_t *)kd->dump_avail)[1] = _kvm32toh(kd, 317 map_len * 8 * page_size); 318 } else { 319 kd->dump_avail[1] = _kvm64toh(kd, 320 map_len * 8 * page_size); 321 } 322 } 323 324 /* 325 * Map the bitmap specified by the arguments. 326 */ 327 kd->pt_map = _kvm_malloc(kd, map_len); 328 if (kd->pt_map == NULL) { 329 _kvm_err(kd, kd->program, "cannot allocate %zu bytes for bitmap", 330 map_len); 331 return (-1); 332 } 333 rd = pread(kd->pmfd, kd->pt_map, map_len, map_off); 334 if (rd < 0 || rd != (ssize_t)map_len) { 335 _kvm_err(kd, kd->program, "cannot read %zu bytes for bitmap", 336 map_len); 337 return (-1); 338 } 339 kd->pt_map_size = map_len; 340 341 /* 342 * Generate a popcount cache for every POPCOUNT_BITS in the bitmap, 343 * so lookups only have to calculate the number of bits set between 344 * a cache point and their bit. This reduces lookups to O(1), 345 * without significantly increasing memory requirements. 346 * 347 * Round up the number of bins so that 'upper half' lookups work for 348 * the final bin, if needed. The first popcount is 0, since no bits 349 * precede bit 0, so add 1 for that also. Without this, extra work 350 * would be needed to handle the first PTEs in _kvm_pt_find(). 351 */ 352 addr = kd->pt_map; 353 res = map_len; 354 pc_bins = 1 + (res * NBBY + POPCOUNT_BITS / 2) / POPCOUNT_BITS; 355 kd->pt_popcounts = calloc(pc_bins, sizeof(uint32_t)); 356 if (kd->pt_popcounts == NULL) { 357 _kvm_err(kd, kd->program, "cannot allocate popcount bins"); 358 return (-1); 359 } 360 361 for (popcount_bin = &kd->pt_popcounts[1]; res > 0; 362 addr++, res -= sizeof(*addr)) { 363 *popcount_bin += popcount_bytes(addr, 0, 364 MIN(res * NBBY, BITS_IN(*addr))); 365 if (++bin_popcounts == POPCOUNTS_IN(*addr)) { 366 popcount_bin++; 367 *popcount_bin = *(popcount_bin - 1); 368 bin_popcounts = 0; 369 } 370 } 371 372 assert(pc_bins * sizeof(*popcount_bin) == 373 ((uintptr_t)popcount_bin - (uintptr_t)kd->pt_popcounts)); 374 375 kd->pt_sparse_off = sparse_off; 376 kd->pt_sparse_size = (uint64_t)*popcount_bin * page_size; 377 kd->pt_page_size = page_size; 378 kd->pt_word_size = word_size; 379 380 /* 381 * Map the sparse page array. This is useful for performing point 382 * lookups of specific pages, e.g. for kvm_walk_pages. Generally, 383 * this is much larger than is reasonable to read in up front, so 384 * mmap it in instead. 385 */ 386 kd->sparse_map = mmap(NULL, kd->pt_sparse_size, PROT_READ, 387 MAP_PRIVATE, kd->pmfd, kd->pt_sparse_off); 388 if (kd->sparse_map == MAP_FAILED) { 389 _kvm_err(kd, kd->program, "cannot map %" PRIu64 390 " bytes from fd %d offset %jd for sparse map: %s", 391 kd->pt_sparse_size, kd->pmfd, 392 (intmax_t)kd->pt_sparse_off, strerror(errno)); 393 return (-1); 394 } 395 return (0); 396 } 397 398 int 399 _kvm_pmap_init(kvm_t *kd, uint32_t pmap_size, off_t pmap_off) 400 { 401 ssize_t exp_len = pmap_size; 402 403 kd->page_map_size = pmap_size; 404 kd->page_map_off = pmap_off; 405 kd->page_map = _kvm_malloc(kd, pmap_size); 406 if (kd->page_map == NULL) { 407 _kvm_err(kd, kd->program, "cannot allocate %u bytes " 408 "for page map", pmap_size); 409 return (-1); 410 } 411 if (pread(kd->pmfd, kd->page_map, pmap_size, pmap_off) != exp_len) { 412 _kvm_err(kd, kd->program, "cannot read %d bytes from " 413 "offset %jd for page map", pmap_size, (intmax_t)pmap_off); 414 return (-1); 415 } 416 return (0); 417 } 418 419 static inline uint64_t 420 dump_avail_n(kvm_t *kd, long i) 421 { 422 uint32_t *d32; 423 424 if (kd->pt_word_size == sizeof(uint32_t)) { 425 d32 = (uint32_t *)kd->dump_avail; 426 return (_kvm32toh(kd, d32[i])); 427 } else 428 return (_kvm64toh(kd, kd->dump_avail[i])); 429 } 430 431 uint64_t 432 _kvm_pa_bit_id(kvm_t *kd, uint64_t pa, unsigned int page_size) 433 { 434 uint64_t adj; 435 long i; 436 437 adj = 0; 438 for (i = 0; dump_avail_n(kd, i + 1) != 0; i += 2) { 439 if (pa >= dump_avail_n(kd, i + 1)) { 440 adj += howmany(dump_avail_n(kd, i + 1), page_size) - 441 dump_avail_n(kd, i) / page_size; 442 } else { 443 return (pa / page_size - 444 dump_avail_n(kd, i) / page_size + adj); 445 } 446 } 447 return (_KVM_BIT_ID_INVALID); 448 } 449 450 uint64_t 451 _kvm_bit_id_pa(kvm_t *kd, uint64_t bit_id, unsigned int page_size) 452 { 453 uint64_t sz; 454 long i; 455 456 for (i = 0; dump_avail_n(kd, i + 1) != 0; i += 2) { 457 sz = howmany(dump_avail_n(kd, i + 1), page_size) - 458 dump_avail_n(kd, i) / page_size; 459 if (bit_id < sz) { 460 return (rounddown2(dump_avail_n(kd, i), page_size) + 461 bit_id * page_size); 462 } 463 bit_id -= sz; 464 } 465 return (_KVM_PA_INVALID); 466 } 467 468 /* 469 * Find the offset for the given physical page address; returns -1 otherwise. 470 * 471 * A page's offset is represented by the sparse page base offset plus the 472 * number of bits set before its bit multiplied by page size. This means 473 * that if a page exists in the dump, it's necessary to know how many pages 474 * in the dump precede it. Reduce this O(n) counting to O(1) by caching the 475 * number of bits set at POPCOUNT_BITS intervals. 476 * 477 * Then to find the number of pages before the requested address, simply 478 * index into the cache and count the number of bits set between that cache 479 * bin and the page's bit. Halve the number of bytes that have to be 480 * checked by also counting down from the next higher bin if it's closer. 481 */ 482 off_t 483 _kvm_pt_find(kvm_t *kd, uint64_t pa, unsigned int page_size) 484 { 485 uint64_t *bitmap = kd->pt_map; 486 uint64_t pte_bit_id = _kvm_pa_bit_id(kd, pa, page_size); 487 uint64_t pte_u64 = pte_bit_id / BITS_IN(*bitmap); 488 uint64_t popcount_id = pte_bit_id / POPCOUNT_BITS; 489 uint64_t pte_mask = 1ULL << (pte_bit_id % BITS_IN(*bitmap)); 490 uint64_t bitN; 491 uint32_t count; 492 493 /* Check whether the page address requested is in the dump. */ 494 if (pte_bit_id == _KVM_BIT_ID_INVALID || 495 pte_bit_id >= (kd->pt_map_size * NBBY) || 496 (bitmap[pte_u64] & pte_mask) == 0) 497 return (-1); 498 499 /* 500 * Add/sub popcounts from the bitmap until the PTE's bit is reached. 501 * For bits that are in the upper half between the calculated 502 * popcount id and the next one, use the next one and subtract to 503 * minimize the number of popcounts required. 504 */ 505 if ((pte_bit_id % POPCOUNT_BITS) < (POPCOUNT_BITS / 2)) { 506 count = kd->pt_popcounts[popcount_id] + popcount_bytes( 507 bitmap + popcount_id * POPCOUNTS_IN(*bitmap), 508 0, pte_bit_id - popcount_id * POPCOUNT_BITS); 509 } else { 510 /* 511 * Counting in reverse is trickier, since we must avoid 512 * reading from bytes that are not in range, and invert. 513 */ 514 uint64_t pte_u64_bit_off = pte_u64 * BITS_IN(*bitmap); 515 516 popcount_id++; 517 bitN = MIN(popcount_id * POPCOUNT_BITS, 518 kd->pt_map_size * BITS_IN(uint8_t)); 519 count = kd->pt_popcounts[popcount_id] - popcount_bytes( 520 bitmap + pte_u64, 521 pte_bit_id - pte_u64_bit_off, bitN - pte_u64_bit_off); 522 } 523 524 /* 525 * This can only happen if the core is truncated. Treat these 526 * entries as if they don't exist, since their backing doesn't. 527 */ 528 if (count >= (kd->pt_sparse_size / page_size)) 529 return (-1); 530 531 return (kd->pt_sparse_off + (uint64_t)count * page_size); 532 } 533 534 static int 535 kvm_fdnlist(kvm_t *kd, struct kvm_nlist *list) 536 { 537 kvaddr_t addr; 538 int error, nfail; 539 540 if (kd->resolve_symbol == NULL) { 541 struct nlist *nl; 542 int count, i; 543 544 for (count = 0; list[count].n_name != NULL && 545 list[count].n_name[0] != '\0'; count++) 546 ; 547 nl = calloc(count + 1, sizeof(*nl)); 548 for (i = 0; i < count; i++) 549 nl[i].n_name = list[i].n_name; 550 nfail = __fdnlist(kd->nlfd, nl); 551 for (i = 0; i < count; i++) { 552 list[i].n_type = nl[i].n_type; 553 list[i].n_value = nl[i].n_value; 554 } 555 free(nl); 556 return (nfail); 557 } 558 559 nfail = 0; 560 while (list->n_name != NULL && list->n_name[0] != '\0') { 561 error = kd->resolve_symbol(list->n_name, &addr); 562 if (error != 0) { 563 nfail++; 564 list->n_value = 0; 565 list->n_type = 0; 566 } else { 567 list->n_value = addr; 568 list->n_type = N_DATA | N_EXT; 569 } 570 list++; 571 } 572 return (nfail); 573 } 574 575 /* 576 * Walk the list of unresolved symbols, generate a new list and prefix the 577 * symbol names, try again, and merge back what we could resolve. 578 */ 579 static int 580 kvm_fdnlist_prefix(kvm_t *kd, struct kvm_nlist *nl, int missing, 581 const char *prefix, kvaddr_t (*validate_fn)(kvm_t *, kvaddr_t)) 582 { 583 struct kvm_nlist *n, *np, *p; 584 char *cp, *ce; 585 const char *ccp; 586 size_t len; 587 int slen, unresolved; 588 589 /* 590 * Calculate the space we need to malloc for nlist and names. 591 * We are going to store the name twice for later lookups: once 592 * with the prefix and once the unmodified name delmited by \0. 593 */ 594 len = 0; 595 unresolved = 0; 596 for (p = nl; p->n_name && p->n_name[0]; ++p) { 597 if (p->n_type != N_UNDF) 598 continue; 599 len += sizeof(struct kvm_nlist) + strlen(prefix) + 600 2 * (strlen(p->n_name) + 1); 601 unresolved++; 602 } 603 if (unresolved == 0) 604 return (unresolved); 605 /* Add space for the terminating nlist entry. */ 606 len += sizeof(struct kvm_nlist); 607 unresolved++; 608 609 /* Alloc one chunk for (nlist, [names]) and setup pointers. */ 610 n = np = malloc(len); 611 bzero(n, len); 612 if (n == NULL) 613 return (missing); 614 cp = ce = (char *)np; 615 cp += unresolved * sizeof(struct kvm_nlist); 616 ce += len; 617 618 /* Generate shortened nlist with special prefix. */ 619 unresolved = 0; 620 for (p = nl; p->n_name && p->n_name[0]; ++p) { 621 if (p->n_type != N_UNDF) 622 continue; 623 *np = *p; 624 /* Save the new\0orig. name so we can later match it again. */ 625 slen = snprintf(cp, ce - cp, "%s%s%c%s", prefix, 626 (prefix[0] != '\0' && p->n_name[0] == '_') ? 627 (p->n_name + 1) : p->n_name, '\0', p->n_name); 628 if (slen < 0 || slen >= ce - cp) 629 continue; 630 np->n_name = cp; 631 cp += slen + 1; 632 np++; 633 unresolved++; 634 } 635 636 /* Do lookup on the reduced list. */ 637 np = n; 638 unresolved = kvm_fdnlist(kd, np); 639 640 /* Check if we could resolve further symbols and update the list. */ 641 if (unresolved >= 0 && unresolved < missing) { 642 /* Find the first freshly resolved entry. */ 643 for (; np->n_name && np->n_name[0]; np++) 644 if (np->n_type != N_UNDF) 645 break; 646 /* 647 * The lists are both in the same order, 648 * so we can walk them in parallel. 649 */ 650 for (p = nl; np->n_name && np->n_name[0] && 651 p->n_name && p->n_name[0]; ++p) { 652 if (p->n_type != N_UNDF) 653 continue; 654 /* Skip expanded name and compare to orig. one. */ 655 ccp = np->n_name + strlen(np->n_name) + 1; 656 if (strcmp(ccp, p->n_name) != 0) 657 continue; 658 /* Update nlist with new, translated results. */ 659 p->n_type = np->n_type; 660 if (validate_fn) 661 p->n_value = (*validate_fn)(kd, np->n_value); 662 else 663 p->n_value = np->n_value; 664 missing--; 665 /* Find next freshly resolved entry. */ 666 for (np++; np->n_name && np->n_name[0]; np++) 667 if (np->n_type != N_UNDF) 668 break; 669 } 670 } 671 /* We could assert missing = unresolved here. */ 672 673 free(n); 674 return (unresolved); 675 } 676 677 int 678 _kvm_nlist(kvm_t *kd, struct kvm_nlist *nl, int initialize) 679 { 680 struct kvm_nlist *p; 681 int nvalid; 682 struct kld_sym_lookup lookup; 683 int error; 684 const char *prefix = ""; 685 char symname[1024]; /* XXX-BZ symbol name length limit? */ 686 int tried_vnet, tried_dpcpu; 687 688 /* 689 * If we can't use the kld symbol lookup, revert to the 690 * slow library call. 691 */ 692 if (!ISALIVE(kd)) { 693 error = kvm_fdnlist(kd, nl); 694 if (error <= 0) /* Hard error or success. */ 695 return (error); 696 697 if (_kvm_vnet_initialized(kd, initialize)) 698 error = kvm_fdnlist_prefix(kd, nl, error, 699 VNET_SYMPREFIX, _kvm_vnet_validaddr); 700 701 if (error > 0 && _kvm_dpcpu_initialized(kd, initialize)) 702 error = kvm_fdnlist_prefix(kd, nl, error, 703 DPCPU_SYMPREFIX, _kvm_dpcpu_validaddr); 704 705 return (error); 706 } 707 708 /* 709 * We can use the kld lookup syscall. Go through each nlist entry 710 * and look it up with a kldsym(2) syscall. 711 */ 712 nvalid = 0; 713 tried_vnet = 0; 714 tried_dpcpu = 0; 715 again: 716 for (p = nl; p->n_name && p->n_name[0]; ++p) { 717 if (p->n_type != N_UNDF) 718 continue; 719 720 lookup.version = sizeof(lookup); 721 lookup.symvalue = 0; 722 lookup.symsize = 0; 723 724 error = snprintf(symname, sizeof(symname), "%s%s", prefix, 725 (prefix[0] != '\0' && p->n_name[0] == '_') ? 726 (p->n_name + 1) : p->n_name); 727 if (error < 0 || error >= (int)sizeof(symname)) 728 continue; 729 lookup.symname = symname; 730 if (lookup.symname[0] == '_') 731 lookup.symname++; 732 733 if (kldsym(0, KLDSYM_LOOKUP, &lookup) != -1) { 734 p->n_type = N_TEXT; 735 if (_kvm_vnet_initialized(kd, initialize) && 736 strcmp(prefix, VNET_SYMPREFIX) == 0) 737 p->n_value = 738 _kvm_vnet_validaddr(kd, lookup.symvalue); 739 else if (_kvm_dpcpu_initialized(kd, initialize) && 740 strcmp(prefix, DPCPU_SYMPREFIX) == 0) 741 p->n_value = 742 _kvm_dpcpu_validaddr(kd, lookup.symvalue); 743 else 744 p->n_value = lookup.symvalue; 745 ++nvalid; 746 /* lookup.symsize */ 747 } 748 } 749 750 /* 751 * Check the number of entries that weren't found. If they exist, 752 * try again with a prefix for virtualized or DPCPU symbol names. 753 */ 754 error = ((p - nl) - nvalid); 755 if (error && _kvm_vnet_initialized(kd, initialize) && !tried_vnet) { 756 tried_vnet = 1; 757 prefix = VNET_SYMPREFIX; 758 goto again; 759 } 760 if (error && _kvm_dpcpu_initialized(kd, initialize) && !tried_dpcpu) { 761 tried_dpcpu = 1; 762 prefix = DPCPU_SYMPREFIX; 763 goto again; 764 } 765 766 /* 767 * Return the number of entries that weren't found. If they exist, 768 * also fill internal error buffer. 769 */ 770 error = ((p - nl) - nvalid); 771 if (error) 772 _kvm_syserr(kd, kd->program, "kvm_nlist"); 773 return (error); 774 } 775 776 int 777 _kvm_bitmap_init(struct kvm_bitmap *bm, u_long bitmapsize, u_long *idx) 778 { 779 780 *idx = ULONG_MAX; 781 bm->map = calloc(bitmapsize, sizeof *bm->map); 782 if (bm->map == NULL) 783 return (0); 784 bm->size = bitmapsize; 785 return (1); 786 } 787 788 void 789 _kvm_bitmap_set(struct kvm_bitmap *bm, u_long bm_index) 790 { 791 uint8_t *byte = &bm->map[bm_index / 8]; 792 793 if (bm_index / 8 < bm->size) 794 *byte |= (1UL << (bm_index % 8)); 795 } 796 797 int 798 _kvm_bitmap_next(struct kvm_bitmap *bm, u_long *idx) 799 { 800 u_long first_invalid = bm->size * CHAR_BIT; 801 802 if (*idx == ULONG_MAX) 803 *idx = 0; 804 else 805 (*idx)++; 806 807 /* Find the next valid idx. */ 808 for (; *idx < first_invalid; (*idx)++) { 809 unsigned int mask = *idx % CHAR_BIT; 810 if ((bm->map[*idx * CHAR_BIT] & mask) == 0) 811 break; 812 } 813 814 return (*idx < first_invalid); 815 } 816 817 void 818 _kvm_bitmap_deinit(struct kvm_bitmap *bm) 819 { 820 821 free(bm->map); 822 } 823 824 int 825 _kvm_visit_cb(kvm_t *kd, kvm_walk_pages_cb_t *cb, void *arg, u_long pa, 826 u_long kmap_vaddr, u_long dmap_vaddr, vm_prot_t prot, size_t len, 827 unsigned int page_size) 828 { 829 unsigned int pgsz = page_size ? page_size : len; 830 struct kvm_page p = { 831 .kp_version = LIBKVM_WALK_PAGES_VERSION, 832 .kp_paddr = pa, 833 .kp_kmap_vaddr = kmap_vaddr, 834 .kp_dmap_vaddr = dmap_vaddr, 835 .kp_prot = prot, 836 .kp_offset = _kvm_pt_find(kd, pa, pgsz), 837 .kp_len = len, 838 }; 839 840 return cb(&p, arg); 841 } 842