xref: /freebsd/lib/libkvm/kvm_private.c (revision 907b59d76938e654f0d040a888e8dfca3de1e222)
1 /*-
2  * Copyright (c) 1989, 1992, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software developed by the Computer Systems
6  * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
7  * BG 91-66 and contributed to Berkeley.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include <sys/param.h>
38 #include <sys/fnv_hash.h>
39 
40 #define	_WANT_VNET
41 
42 #include <sys/user.h>
43 #include <sys/linker.h>
44 #include <sys/pcpu.h>
45 #include <sys/stat.h>
46 
47 #include <net/vnet.h>
48 
49 #include <assert.h>
50 #include <fcntl.h>
51 #include <kvm.h>
52 #include <limits.h>
53 #include <paths.h>
54 #include <stdint.h>
55 #include <stdio.h>
56 #include <stdlib.h>
57 #include <string.h>
58 #include <unistd.h>
59 #include <stdarg.h>
60 
61 #include "kvm_private.h"
62 
63 /*
64  * Routines private to libkvm.
65  */
66 
67 /* from src/lib/libc/gen/nlist.c */
68 int __fdnlist(int, struct nlist *);
69 
70 /*
71  * Report an error using printf style arguments.  "program" is kd->program
72  * on hard errors, and 0 on soft errors, so that under sun error emulation,
73  * only hard errors are printed out (otherwise, programs like gdb will
74  * generate tons of error messages when trying to access bogus pointers).
75  */
76 void
77 _kvm_err(kvm_t *kd, const char *program, const char *fmt, ...)
78 {
79 	va_list ap;
80 
81 	va_start(ap, fmt);
82 	if (program != NULL) {
83 		(void)fprintf(stderr, "%s: ", program);
84 		(void)vfprintf(stderr, fmt, ap);
85 		(void)fputc('\n', stderr);
86 	} else
87 		(void)vsnprintf(kd->errbuf,
88 		    sizeof(kd->errbuf), fmt, ap);
89 
90 	va_end(ap);
91 }
92 
93 void
94 _kvm_syserr(kvm_t *kd, const char *program, const char *fmt, ...)
95 {
96 	va_list ap;
97 	int n;
98 
99 	va_start(ap, fmt);
100 	if (program != NULL) {
101 		(void)fprintf(stderr, "%s: ", program);
102 		(void)vfprintf(stderr, fmt, ap);
103 		(void)fprintf(stderr, ": %s\n", strerror(errno));
104 	} else {
105 		char *cp = kd->errbuf;
106 
107 		(void)vsnprintf(cp, sizeof(kd->errbuf), fmt, ap);
108 		n = strlen(cp);
109 		(void)snprintf(&cp[n], sizeof(kd->errbuf) - n, ": %s",
110 		    strerror(errno));
111 	}
112 	va_end(ap);
113 }
114 
115 void *
116 _kvm_malloc(kvm_t *kd, size_t n)
117 {
118 	void *p;
119 
120 	if ((p = calloc(n, sizeof(char))) == NULL)
121 		_kvm_err(kd, kd->program, "can't allocate %zu bytes: %s",
122 			 n, strerror(errno));
123 	return (p);
124 }
125 
126 int
127 _kvm_probe_elf_kernel(kvm_t *kd, int class, int machine)
128 {
129 
130 	return (kd->nlehdr.e_ident[EI_CLASS] == class &&
131 	    kd->nlehdr.e_type == ET_EXEC &&
132 	    kd->nlehdr.e_machine == machine);
133 }
134 
135 int
136 _kvm_is_minidump(kvm_t *kd)
137 {
138 	char minihdr[8];
139 
140 	if (kd->rawdump)
141 		return (0);
142 	if (pread(kd->pmfd, &minihdr, 8, 0) == 8 &&
143 	    memcmp(&minihdr, "minidump", 8) == 0)
144 		return (1);
145 	return (0);
146 }
147 
148 /*
149  * The powerpc backend has a hack to strip a leading kerneldump
150  * header from the core before treating it as an ELF header.
151  *
152  * We can add that here if we can get a change to libelf to support
153  * an initial offset into the file.  Alternatively we could patch
154  * savecore to extract cores from a regular file instead.
155  */
156 int
157 _kvm_read_core_phdrs(kvm_t *kd, size_t *phnump, GElf_Phdr **phdrp)
158 {
159 	GElf_Ehdr ehdr;
160 	GElf_Phdr *phdr;
161 	Elf *elf;
162 	size_t i, phnum;
163 
164 	elf = elf_begin(kd->pmfd, ELF_C_READ, NULL);
165 	if (elf == NULL) {
166 		_kvm_err(kd, kd->program, "%s", elf_errmsg(0));
167 		return (-1);
168 	}
169 	if (elf_kind(elf) != ELF_K_ELF) {
170 		_kvm_err(kd, kd->program, "invalid core");
171 		goto bad;
172 	}
173 	if (gelf_getclass(elf) != kd->nlehdr.e_ident[EI_CLASS]) {
174 		_kvm_err(kd, kd->program, "invalid core");
175 		goto bad;
176 	}
177 	if (gelf_getehdr(elf, &ehdr) == NULL) {
178 		_kvm_err(kd, kd->program, "%s", elf_errmsg(0));
179 		goto bad;
180 	}
181 	if (ehdr.e_type != ET_CORE) {
182 		_kvm_err(kd, kd->program, "invalid core");
183 		goto bad;
184 	}
185 	if (ehdr.e_machine != kd->nlehdr.e_machine) {
186 		_kvm_err(kd, kd->program, "invalid core");
187 		goto bad;
188 	}
189 
190 	if (elf_getphdrnum(elf, &phnum) == -1) {
191 		_kvm_err(kd, kd->program, "%s", elf_errmsg(0));
192 		goto bad;
193 	}
194 
195 	phdr = calloc(phnum, sizeof(*phdr));
196 	if (phdr == NULL) {
197 		_kvm_err(kd, kd->program, "failed to allocate phdrs");
198 		goto bad;
199 	}
200 
201 	for (i = 0; i < phnum; i++) {
202 		if (gelf_getphdr(elf, i, &phdr[i]) == NULL) {
203 			_kvm_err(kd, kd->program, "%s", elf_errmsg(0));
204 			goto bad;
205 		}
206 	}
207 	elf_end(elf);
208 	*phnump = phnum;
209 	*phdrp = phdr;
210 	return (0);
211 
212 bad:
213 	elf_end(elf);
214 	return (-1);
215 }
216 
217 /*
218  * Transform v such that only bits [bit0, bitN) may be set.  Generates a
219  * bitmask covering the number of bits, then shifts so +bit0+ is the first.
220  */
221 static uint64_t
222 bitmask_range(uint64_t v, uint64_t bit0, uint64_t bitN)
223 {
224 	if (bit0 == 0 && bitN == BITS_IN(v))
225 		return (v);
226 
227 	return (v & (((1ULL << (bitN - bit0)) - 1ULL) << bit0));
228 }
229 
230 /*
231  * Returns the number of bits in a given byte array range starting at a
232  * given base, from bit0 to bitN.  bit0 may be non-zero in the case of
233  * counting backwards from bitN.
234  */
235 static uint64_t
236 popcount_bytes(uint64_t *addr, uint32_t bit0, uint32_t bitN)
237 {
238 	uint32_t res = bitN - bit0;
239 	uint64_t count = 0;
240 	uint32_t bound;
241 
242 	/* Align to 64-bit boundary on the left side if needed. */
243 	if ((bit0 % BITS_IN(*addr)) != 0) {
244 		bound = MIN(bitN, roundup2(bit0, BITS_IN(*addr)));
245 		count += __bitcount64(bitmask_range(*addr, bit0, bound));
246 		res -= (bound - bit0);
247 		addr++;
248 	}
249 
250 	while (res > 0) {
251 		bound = MIN(res, BITS_IN(*addr));
252 		count += __bitcount64(bitmask_range(*addr, 0, bound));
253 		res -= bound;
254 		addr++;
255 	}
256 
257 	return (count);
258 }
259 
260 int
261 _kvm_pt_init(kvm_t *kd, size_t map_len, off_t map_off, off_t sparse_off,
262     int page_size, int word_size)
263 {
264 	uint64_t *addr;
265 	uint32_t *popcount_bin;
266 	int bin_popcounts = 0;
267 	uint64_t pc_bins, res;
268 	ssize_t rd;
269 
270 	/*
271 	 * Map the bitmap specified by the arguments.
272 	 */
273 	kd->pt_map = _kvm_malloc(kd, map_len);
274 	if (kd->pt_map == NULL) {
275 		_kvm_err(kd, kd->program, "cannot allocate %zu bytes for bitmap",
276 		    map_len);
277 		return (-1);
278 	}
279 	rd = pread(kd->pmfd, kd->pt_map, map_len, map_off);
280 	if (rd < 0 || rd != (ssize_t)map_len) {
281 		_kvm_err(kd, kd->program, "cannot read %zu bytes for bitmap",
282 		    map_len);
283 		return (-1);
284 	}
285 	kd->pt_map_size = map_len;
286 
287 	/*
288 	 * Generate a popcount cache for every POPCOUNT_BITS in the bitmap,
289 	 * so lookups only have to calculate the number of bits set between
290 	 * a cache point and their bit.  This reduces lookups to O(1),
291 	 * without significantly increasing memory requirements.
292 	 *
293 	 * Round up the number of bins so that 'upper half' lookups work for
294 	 * the final bin, if needed.  The first popcount is 0, since no bits
295 	 * precede bit 0, so add 1 for that also.  Without this, extra work
296 	 * would be needed to handle the first PTEs in _kvm_pt_find().
297 	 */
298 	addr = kd->pt_map;
299 	res = map_len;
300 	pc_bins = 1 + (res * NBBY + POPCOUNT_BITS / 2) / POPCOUNT_BITS;
301 	kd->pt_popcounts = calloc(pc_bins, sizeof(uint32_t));
302 	if (kd->pt_popcounts == NULL)
303 		return (-1);
304 
305 	for (popcount_bin = &kd->pt_popcounts[1]; res > 0;
306 	    addr++, res -= sizeof(*addr)) {
307 		*popcount_bin += popcount_bytes(addr, 0,
308 		    MIN(res * NBBY, BITS_IN(*addr)));
309 		if (++bin_popcounts == POPCOUNTS_IN(*addr)) {
310 			popcount_bin++;
311 			*popcount_bin = *(popcount_bin - 1);
312 			bin_popcounts = 0;
313 		}
314 	}
315 
316 	assert(pc_bins * sizeof(*popcount_bin) ==
317 	    ((uintptr_t)popcount_bin - (uintptr_t)kd->pt_popcounts));
318 
319 	kd->pt_sparse_off = sparse_off;
320 	kd->pt_sparse_size = (uint64_t)*popcount_bin * PAGE_SIZE;
321 	kd->pt_page_size = page_size;
322 	kd->pt_word_size = word_size;
323 	return (0);
324 }
325 
326 /*
327  * Find the offset for the given physical page address; returns -1 otherwise.
328  *
329  * A page's offset is represented by the sparse page base offset plus the
330  * number of bits set before its bit multiplied by PAGE_SIZE.  This means
331  * that if a page exists in the dump, it's necessary to know how many pages
332  * in the dump precede it.  Reduce this O(n) counting to O(1) by caching the
333  * number of bits set at POPCOUNT_BITS intervals.
334  *
335  * Then to find the number of pages before the requested address, simply
336  * index into the cache and count the number of bits set between that cache
337  * bin and the page's bit.  Halve the number of bytes that have to be
338  * checked by also counting down from the next higher bin if it's closer.
339  */
340 off_t
341 _kvm_pt_find(kvm_t *kd, uint64_t pa)
342 {
343 	uint64_t *bitmap = kd->pt_map;
344 	uint64_t pte_bit_id = pa / PAGE_SIZE;
345 	uint64_t pte_u64 = pte_bit_id / BITS_IN(*bitmap);
346 	uint64_t popcount_id = pte_bit_id / POPCOUNT_BITS;
347 	uint64_t pte_mask = 1ULL << (pte_bit_id % BITS_IN(*bitmap));
348 	uint64_t bitN;
349 	uint32_t count;
350 
351 	/* Check whether the page address requested is in the dump. */
352 	if (pte_bit_id >= (kd->pt_map_size * NBBY) ||
353 	    (bitmap[pte_u64] & pte_mask) == 0)
354 		return (-1);
355 
356 	/*
357 	 * Add/sub popcounts from the bitmap until the PTE's bit is reached.
358 	 * For bits that are in the upper half between the calculated
359 	 * popcount id and the next one, use the next one and subtract to
360 	 * minimize the number of popcounts required.
361 	 */
362 	if ((pte_bit_id % POPCOUNT_BITS) < (POPCOUNT_BITS / 2)) {
363 		count = kd->pt_popcounts[popcount_id] + popcount_bytes(
364 		    bitmap + popcount_id * POPCOUNTS_IN(*bitmap),
365 		    0, pte_bit_id - popcount_id * POPCOUNT_BITS);
366 	} else {
367 		/*
368 		 * Counting in reverse is trickier, since we must avoid
369 		 * reading from bytes that are not in range, and invert.
370 		 */
371 		uint64_t pte_u64_bit_off = pte_u64 * BITS_IN(*bitmap);
372 
373 		popcount_id++;
374 		bitN = MIN(popcount_id * POPCOUNT_BITS,
375 		    kd->pt_map_size * BITS_IN(uint8_t));
376 		count = kd->pt_popcounts[popcount_id] - popcount_bytes(
377 		    bitmap + pte_u64,
378 		    pte_bit_id - pte_u64_bit_off, bitN - pte_u64_bit_off);
379 	}
380 
381 	/*
382 	 * This can only happen if the core is truncated.  Treat these
383 	 * entries as if they don't exist, since their backing doesn't.
384 	 */
385 	if (count >= (kd->pt_sparse_size / PAGE_SIZE))
386 		return (-1);
387 
388 	return (kd->pt_sparse_off + (uint64_t)count * PAGE_SIZE);
389 }
390 
391 static int
392 kvm_fdnlist(kvm_t *kd, struct kvm_nlist *list)
393 {
394 	kvaddr_t addr;
395 	int error, nfail;
396 
397 	if (kd->resolve_symbol == NULL) {
398 		struct nlist *nl;
399 		int count, i;
400 
401 		for (count = 0; list[count].n_name != NULL &&
402 		     list[count].n_name[0] != '\0'; count++)
403 			;
404 		nl = calloc(count + 1, sizeof(*nl));
405 		for (i = 0; i < count; i++)
406 			nl[i].n_name = list[i].n_name;
407 		nfail = __fdnlist(kd->nlfd, nl);
408 		for (i = 0; i < count; i++) {
409 			list[i].n_type = nl[i].n_type;
410 			list[i].n_value = nl[i].n_value;
411 		}
412 		free(nl);
413 		return (nfail);
414 	}
415 
416 	nfail = 0;
417 	while (list->n_name != NULL && list->n_name[0] != '\0') {
418 		error = kd->resolve_symbol(list->n_name, &addr);
419 		if (error != 0) {
420 			nfail++;
421 			list->n_value = 0;
422 			list->n_type = 0;
423 		} else {
424 			list->n_value = addr;
425 			list->n_type = N_DATA | N_EXT;
426 		}
427 		list++;
428 	}
429 	return (nfail);
430 }
431 
432 /*
433  * Walk the list of unresolved symbols, generate a new list and prefix the
434  * symbol names, try again, and merge back what we could resolve.
435  */
436 static int
437 kvm_fdnlist_prefix(kvm_t *kd, struct kvm_nlist *nl, int missing,
438     const char *prefix, kvaddr_t (*validate_fn)(kvm_t *, kvaddr_t))
439 {
440 	struct kvm_nlist *n, *np, *p;
441 	char *cp, *ce;
442 	const char *ccp;
443 	size_t len;
444 	int slen, unresolved;
445 
446 	/*
447 	 * Calculate the space we need to malloc for nlist and names.
448 	 * We are going to store the name twice for later lookups: once
449 	 * with the prefix and once the unmodified name delmited by \0.
450 	 */
451 	len = 0;
452 	unresolved = 0;
453 	for (p = nl; p->n_name && p->n_name[0]; ++p) {
454 		if (p->n_type != N_UNDF)
455 			continue;
456 		len += sizeof(struct kvm_nlist) + strlen(prefix) +
457 		    2 * (strlen(p->n_name) + 1);
458 		unresolved++;
459 	}
460 	if (unresolved == 0)
461 		return (unresolved);
462 	/* Add space for the terminating nlist entry. */
463 	len += sizeof(struct kvm_nlist);
464 	unresolved++;
465 
466 	/* Alloc one chunk for (nlist, [names]) and setup pointers. */
467 	n = np = malloc(len);
468 	bzero(n, len);
469 	if (n == NULL)
470 		return (missing);
471 	cp = ce = (char *)np;
472 	cp += unresolved * sizeof(struct kvm_nlist);
473 	ce += len;
474 
475 	/* Generate shortened nlist with special prefix. */
476 	unresolved = 0;
477 	for (p = nl; p->n_name && p->n_name[0]; ++p) {
478 		if (p->n_type != N_UNDF)
479 			continue;
480 		*np = *p;
481 		/* Save the new\0orig. name so we can later match it again. */
482 		slen = snprintf(cp, ce - cp, "%s%s%c%s", prefix,
483 		    (prefix[0] != '\0' && p->n_name[0] == '_') ?
484 			(p->n_name + 1) : p->n_name, '\0', p->n_name);
485 		if (slen < 0 || slen >= ce - cp)
486 			continue;
487 		np->n_name = cp;
488 		cp += slen + 1;
489 		np++;
490 		unresolved++;
491 	}
492 
493 	/* Do lookup on the reduced list. */
494 	np = n;
495 	unresolved = kvm_fdnlist(kd, np);
496 
497 	/* Check if we could resolve further symbols and update the list. */
498 	if (unresolved >= 0 && unresolved < missing) {
499 		/* Find the first freshly resolved entry. */
500 		for (; np->n_name && np->n_name[0]; np++)
501 			if (np->n_type != N_UNDF)
502 				break;
503 		/*
504 		 * The lists are both in the same order,
505 		 * so we can walk them in parallel.
506 		 */
507 		for (p = nl; np->n_name && np->n_name[0] &&
508 		    p->n_name && p->n_name[0]; ++p) {
509 			if (p->n_type != N_UNDF)
510 				continue;
511 			/* Skip expanded name and compare to orig. one. */
512 			ccp = np->n_name + strlen(np->n_name) + 1;
513 			if (strcmp(ccp, p->n_name) != 0)
514 				continue;
515 			/* Update nlist with new, translated results. */
516 			p->n_type = np->n_type;
517 			if (validate_fn)
518 				p->n_value = (*validate_fn)(kd, np->n_value);
519 			else
520 				p->n_value = np->n_value;
521 			missing--;
522 			/* Find next freshly resolved entry. */
523 			for (np++; np->n_name && np->n_name[0]; np++)
524 				if (np->n_type != N_UNDF)
525 					break;
526 		}
527 	}
528 	/* We could assert missing = unresolved here. */
529 
530 	free(n);
531 	return (unresolved);
532 }
533 
534 int
535 _kvm_nlist(kvm_t *kd, struct kvm_nlist *nl, int initialize)
536 {
537 	struct kvm_nlist *p;
538 	int nvalid;
539 	struct kld_sym_lookup lookup;
540 	int error;
541 	const char *prefix = "";
542 	char symname[1024]; /* XXX-BZ symbol name length limit? */
543 	int tried_vnet, tried_dpcpu;
544 
545 	/*
546 	 * If we can't use the kld symbol lookup, revert to the
547 	 * slow library call.
548 	 */
549 	if (!ISALIVE(kd)) {
550 		error = kvm_fdnlist(kd, nl);
551 		if (error <= 0)			/* Hard error or success. */
552 			return (error);
553 
554 		if (_kvm_vnet_initialized(kd, initialize))
555 			error = kvm_fdnlist_prefix(kd, nl, error,
556 			    VNET_SYMPREFIX, _kvm_vnet_validaddr);
557 
558 		if (error > 0 && _kvm_dpcpu_initialized(kd, initialize))
559 			error = kvm_fdnlist_prefix(kd, nl, error,
560 			    DPCPU_SYMPREFIX, _kvm_dpcpu_validaddr);
561 
562 		return (error);
563 	}
564 
565 	/*
566 	 * We can use the kld lookup syscall.  Go through each nlist entry
567 	 * and look it up with a kldsym(2) syscall.
568 	 */
569 	nvalid = 0;
570 	tried_vnet = 0;
571 	tried_dpcpu = 0;
572 again:
573 	for (p = nl; p->n_name && p->n_name[0]; ++p) {
574 		if (p->n_type != N_UNDF)
575 			continue;
576 
577 		lookup.version = sizeof(lookup);
578 		lookup.symvalue = 0;
579 		lookup.symsize = 0;
580 
581 		error = snprintf(symname, sizeof(symname), "%s%s", prefix,
582 		    (prefix[0] != '\0' && p->n_name[0] == '_') ?
583 			(p->n_name + 1) : p->n_name);
584 		if (error < 0 || error >= (int)sizeof(symname))
585 			continue;
586 		lookup.symname = symname;
587 		if (lookup.symname[0] == '_')
588 			lookup.symname++;
589 
590 		if (kldsym(0, KLDSYM_LOOKUP, &lookup) != -1) {
591 			p->n_type = N_TEXT;
592 			if (_kvm_vnet_initialized(kd, initialize) &&
593 			    strcmp(prefix, VNET_SYMPREFIX) == 0)
594 				p->n_value =
595 				    _kvm_vnet_validaddr(kd, lookup.symvalue);
596 			else if (_kvm_dpcpu_initialized(kd, initialize) &&
597 			    strcmp(prefix, DPCPU_SYMPREFIX) == 0)
598 				p->n_value =
599 				    _kvm_dpcpu_validaddr(kd, lookup.symvalue);
600 			else
601 				p->n_value = lookup.symvalue;
602 			++nvalid;
603 			/* lookup.symsize */
604 		}
605 	}
606 
607 	/*
608 	 * Check the number of entries that weren't found. If they exist,
609 	 * try again with a prefix for virtualized or DPCPU symbol names.
610 	 */
611 	error = ((p - nl) - nvalid);
612 	if (error && _kvm_vnet_initialized(kd, initialize) && !tried_vnet) {
613 		tried_vnet = 1;
614 		prefix = VNET_SYMPREFIX;
615 		goto again;
616 	}
617 	if (error && _kvm_dpcpu_initialized(kd, initialize) && !tried_dpcpu) {
618 		tried_dpcpu = 1;
619 		prefix = DPCPU_SYMPREFIX;
620 		goto again;
621 	}
622 
623 	/*
624 	 * Return the number of entries that weren't found. If they exist,
625 	 * also fill internal error buffer.
626 	 */
627 	error = ((p - nl) - nvalid);
628 	if (error)
629 		_kvm_syserr(kd, kd->program, "kvm_nlist");
630 	return (error);
631 }
632