1 /*- 2 * Copyright (c) 1989, 1992, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software developed by the Computer Systems 6 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract 7 * BG 91-66 and contributed to Berkeley. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 */ 33 34 #include <sys/param.h> 35 #include <sys/fnv_hash.h> 36 37 #define _WANT_VNET 38 39 #include <sys/user.h> 40 #include <sys/linker.h> 41 #include <sys/pcpu.h> 42 #include <sys/stat.h> 43 #include <sys/mman.h> 44 45 #include <stdbool.h> 46 #include <net/vnet.h> 47 48 #include <assert.h> 49 #include <fcntl.h> 50 #include <vm/vm.h> 51 #include <kvm.h> 52 #include <limits.h> 53 #include <paths.h> 54 #include <stdint.h> 55 #include <stdio.h> 56 #include <stdlib.h> 57 #include <string.h> 58 #include <unistd.h> 59 #include <stdarg.h> 60 #include <inttypes.h> 61 62 #include "kvm_private.h" 63 64 /* 65 * Routines private to libkvm. 66 */ 67 68 /* from src/lib/libc/gen/nlist.c */ 69 int __fdnlist(int, struct nlist *); 70 71 /* 72 * Report an error using printf style arguments. "program" is kd->program 73 * on hard errors, and 0 on soft errors, so that under sun error emulation, 74 * only hard errors are printed out (otherwise, programs like gdb will 75 * generate tons of error messages when trying to access bogus pointers). 76 */ 77 void 78 _kvm_err(kvm_t *kd, const char *program, const char *fmt, ...) 79 { 80 va_list ap; 81 82 va_start(ap, fmt); 83 if (program != NULL) { 84 (void)fprintf(stderr, "%s: ", program); 85 (void)vfprintf(stderr, fmt, ap); 86 (void)fputc('\n', stderr); 87 } else 88 (void)vsnprintf(kd->errbuf, 89 sizeof(kd->errbuf), fmt, ap); 90 91 va_end(ap); 92 } 93 94 void 95 _kvm_syserr(kvm_t *kd, const char *program, const char *fmt, ...) 96 { 97 va_list ap; 98 int n; 99 100 va_start(ap, fmt); 101 if (program != NULL) { 102 (void)fprintf(stderr, "%s: ", program); 103 (void)vfprintf(stderr, fmt, ap); 104 (void)fprintf(stderr, ": %s\n", strerror(errno)); 105 } else { 106 char *cp = kd->errbuf; 107 108 (void)vsnprintf(cp, sizeof(kd->errbuf), fmt, ap); 109 n = strlen(cp); 110 (void)snprintf(&cp[n], sizeof(kd->errbuf) - n, ": %s", 111 strerror(errno)); 112 } 113 va_end(ap); 114 } 115 116 void * 117 _kvm_malloc(kvm_t *kd, size_t n) 118 { 119 void *p; 120 121 if ((p = calloc(n, sizeof(char))) == NULL) 122 _kvm_err(kd, kd->program, "can't allocate %zu bytes: %s", 123 n, strerror(errno)); 124 return (p); 125 } 126 127 int 128 _kvm_probe_elf_kernel(kvm_t *kd, int class, int machine) 129 { 130 131 return (kd->nlehdr.e_ident[EI_CLASS] == class && 132 ((machine == EM_PPC || machine == EM_PPC64) ? 133 kd->nlehdr.e_type == ET_DYN : kd->nlehdr.e_type == ET_EXEC) && 134 kd->nlehdr.e_machine == machine); 135 } 136 137 int 138 _kvm_is_minidump(kvm_t *kd) 139 { 140 char minihdr[8]; 141 142 if (kd->rawdump) 143 return (0); 144 if (pread(kd->pmfd, &minihdr, 8, 0) == 8 && 145 memcmp(&minihdr, "minidump", 8) == 0) 146 return (1); 147 return (0); 148 } 149 150 /* 151 * The powerpc backend has a hack to strip a leading kerneldump 152 * header from the core before treating it as an ELF header. 153 * 154 * We can add that here if we can get a change to libelf to support 155 * an initial offset into the file. Alternatively we could patch 156 * savecore to extract cores from a regular file instead. 157 */ 158 int 159 _kvm_read_core_phdrs(kvm_t *kd, size_t *phnump, GElf_Phdr **phdrp) 160 { 161 GElf_Ehdr ehdr; 162 GElf_Phdr *phdr; 163 Elf *elf; 164 size_t i, phnum; 165 166 elf = elf_begin(kd->pmfd, ELF_C_READ, NULL); 167 if (elf == NULL) { 168 _kvm_err(kd, kd->program, "%s", elf_errmsg(0)); 169 return (-1); 170 } 171 if (elf_kind(elf) != ELF_K_ELF) { 172 _kvm_err(kd, kd->program, "invalid core"); 173 goto bad; 174 } 175 if (gelf_getclass(elf) != kd->nlehdr.e_ident[EI_CLASS]) { 176 _kvm_err(kd, kd->program, "invalid core"); 177 goto bad; 178 } 179 if (gelf_getehdr(elf, &ehdr) == NULL) { 180 _kvm_err(kd, kd->program, "%s", elf_errmsg(0)); 181 goto bad; 182 } 183 if (ehdr.e_type != ET_CORE) { 184 _kvm_err(kd, kd->program, "invalid core"); 185 goto bad; 186 } 187 if (ehdr.e_machine != kd->nlehdr.e_machine) { 188 _kvm_err(kd, kd->program, "invalid core"); 189 goto bad; 190 } 191 192 if (elf_getphdrnum(elf, &phnum) == -1) { 193 _kvm_err(kd, kd->program, "%s", elf_errmsg(0)); 194 goto bad; 195 } 196 197 phdr = calloc(phnum, sizeof(*phdr)); 198 if (phdr == NULL) { 199 _kvm_err(kd, kd->program, "failed to allocate phdrs"); 200 goto bad; 201 } 202 203 for (i = 0; i < phnum; i++) { 204 if (gelf_getphdr(elf, i, &phdr[i]) == NULL) { 205 free(phdr); 206 _kvm_err(kd, kd->program, "%s", elf_errmsg(0)); 207 goto bad; 208 } 209 } 210 elf_end(elf); 211 *phnump = phnum; 212 *phdrp = phdr; 213 return (0); 214 215 bad: 216 elf_end(elf); 217 return (-1); 218 } 219 220 /* 221 * Transform v such that only bits [bit0, bitN) may be set. Generates a 222 * bitmask covering the number of bits, then shifts so +bit0+ is the first. 223 */ 224 static uint64_t 225 bitmask_range(uint64_t v, uint64_t bit0, uint64_t bitN) 226 { 227 if (bit0 == 0 && bitN == BITS_IN(v)) 228 return (v); 229 230 return (v & (((1ULL << (bitN - bit0)) - 1ULL) << bit0)); 231 } 232 233 /* 234 * Returns the number of bits in a given byte array range starting at a 235 * given base, from bit0 to bitN. bit0 may be non-zero in the case of 236 * counting backwards from bitN. 237 */ 238 static uint64_t 239 popcount_bytes(uint64_t *addr, uint32_t bit0, uint32_t bitN) 240 { 241 uint32_t res = bitN - bit0; 242 uint64_t count = 0; 243 uint32_t bound; 244 245 /* Align to 64-bit boundary on the left side if needed. */ 246 if ((bit0 % BITS_IN(*addr)) != 0) { 247 bound = MIN(bitN, roundup2(bit0, BITS_IN(*addr))); 248 count += __bitcount64(bitmask_range(*addr, bit0, bound)); 249 res -= (bound - bit0); 250 addr++; 251 } 252 253 while (res > 0) { 254 bound = MIN(res, BITS_IN(*addr)); 255 count += __bitcount64(bitmask_range(*addr, 0, bound)); 256 res -= bound; 257 addr++; 258 } 259 260 return (count); 261 } 262 263 void * 264 _kvm_pmap_get(kvm_t *kd, u_long idx, size_t len) 265 { 266 uintptr_t off = idx * len; 267 268 if ((off_t)off >= kd->pt_sparse_off) 269 return (NULL); 270 return (void *)((uintptr_t)kd->page_map + off); 271 } 272 273 void * 274 _kvm_map_get(kvm_t *kd, u_long pa, unsigned int page_size) 275 { 276 off_t off; 277 uintptr_t addr; 278 279 off = _kvm_pt_find(kd, pa, page_size); 280 if (off == -1) 281 return NULL; 282 283 addr = (uintptr_t)kd->page_map + off; 284 if (off >= kd->pt_sparse_off) 285 addr = (uintptr_t)kd->sparse_map + (off - kd->pt_sparse_off); 286 return (void *)addr; 287 } 288 289 int 290 _kvm_pt_init(kvm_t *kd, size_t dump_avail_size, off_t dump_avail_off, 291 size_t map_len, off_t map_off, off_t sparse_off, int page_size) 292 { 293 uint64_t *addr; 294 uint32_t *popcount_bin; 295 int bin_popcounts = 0; 296 uint64_t pc_bins, res; 297 ssize_t rd; 298 299 kd->dump_avail_size = dump_avail_size; 300 if (dump_avail_size > 0) { 301 kd->dump_avail = mmap(NULL, kd->dump_avail_size, PROT_READ, 302 MAP_PRIVATE, kd->pmfd, dump_avail_off); 303 } else { 304 /* 305 * Older version minidumps don't provide dump_avail[], 306 * so the bitmap is fully populated from 0 to 307 * last_pa. Create an implied dump_avail that 308 * expresses this. 309 */ 310 kd->dump_avail = calloc(4, sizeof(uint64_t)); 311 kd->dump_avail[1] = _kvm64toh(kd, map_len * 8 * page_size); 312 } 313 314 /* 315 * Map the bitmap specified by the arguments. 316 */ 317 kd->pt_map = _kvm_malloc(kd, map_len); 318 if (kd->pt_map == NULL) { 319 _kvm_err(kd, kd->program, "cannot allocate %zu bytes for bitmap", 320 map_len); 321 return (-1); 322 } 323 rd = pread(kd->pmfd, kd->pt_map, map_len, map_off); 324 if (rd < 0 || rd != (ssize_t)map_len) { 325 _kvm_err(kd, kd->program, "cannot read %zu bytes for bitmap", 326 map_len); 327 return (-1); 328 } 329 kd->pt_map_size = map_len; 330 331 /* 332 * Generate a popcount cache for every POPCOUNT_BITS in the bitmap, 333 * so lookups only have to calculate the number of bits set between 334 * a cache point and their bit. This reduces lookups to O(1), 335 * without significantly increasing memory requirements. 336 * 337 * Round up the number of bins so that 'upper half' lookups work for 338 * the final bin, if needed. The first popcount is 0, since no bits 339 * precede bit 0, so add 1 for that also. Without this, extra work 340 * would be needed to handle the first PTEs in _kvm_pt_find(). 341 */ 342 addr = kd->pt_map; 343 res = map_len; 344 pc_bins = 1 + (res * NBBY + POPCOUNT_BITS / 2) / POPCOUNT_BITS; 345 kd->pt_popcounts = calloc(pc_bins, sizeof(uint32_t)); 346 if (kd->pt_popcounts == NULL) { 347 _kvm_err(kd, kd->program, "cannot allocate popcount bins"); 348 return (-1); 349 } 350 351 for (popcount_bin = &kd->pt_popcounts[1]; res > 0; 352 addr++, res -= sizeof(*addr)) { 353 *popcount_bin += popcount_bytes(addr, 0, 354 MIN(res * NBBY, BITS_IN(*addr))); 355 if (++bin_popcounts == POPCOUNTS_IN(*addr)) { 356 popcount_bin++; 357 *popcount_bin = *(popcount_bin - 1); 358 bin_popcounts = 0; 359 } 360 } 361 362 assert(pc_bins * sizeof(*popcount_bin) == 363 ((uintptr_t)popcount_bin - (uintptr_t)kd->pt_popcounts)); 364 365 kd->pt_sparse_off = sparse_off; 366 kd->pt_sparse_size = (uint64_t)*popcount_bin * page_size; 367 kd->pt_page_size = page_size; 368 369 /* 370 * Map the sparse page array. This is useful for performing point 371 * lookups of specific pages, e.g. for kvm_walk_pages. Generally, 372 * this is much larger than is reasonable to read in up front, so 373 * mmap it in instead. 374 */ 375 kd->sparse_map = mmap(NULL, kd->pt_sparse_size, PROT_READ, 376 MAP_PRIVATE, kd->pmfd, kd->pt_sparse_off); 377 if (kd->sparse_map == MAP_FAILED) { 378 _kvm_err(kd, kd->program, "cannot map %" PRIu64 379 " bytes from fd %d offset %jd for sparse map: %s", 380 kd->pt_sparse_size, kd->pmfd, 381 (intmax_t)kd->pt_sparse_off, strerror(errno)); 382 return (-1); 383 } 384 return (0); 385 } 386 387 int 388 _kvm_pmap_init(kvm_t *kd, uint32_t pmap_size, off_t pmap_off) 389 { 390 ssize_t exp_len = pmap_size; 391 392 kd->page_map_size = pmap_size; 393 kd->page_map_off = pmap_off; 394 kd->page_map = _kvm_malloc(kd, pmap_size); 395 if (kd->page_map == NULL) { 396 _kvm_err(kd, kd->program, "cannot allocate %u bytes " 397 "for page map", pmap_size); 398 return (-1); 399 } 400 if (pread(kd->pmfd, kd->page_map, pmap_size, pmap_off) != exp_len) { 401 _kvm_err(kd, kd->program, "cannot read %d bytes from " 402 "offset %jd for page map", pmap_size, (intmax_t)pmap_off); 403 return (-1); 404 } 405 return (0); 406 } 407 408 static inline uint64_t 409 dump_avail_n(kvm_t *kd, long i) 410 { 411 return (_kvm64toh(kd, kd->dump_avail[i])); 412 } 413 414 uint64_t 415 _kvm_pa_bit_id(kvm_t *kd, uint64_t pa, unsigned int page_size) 416 { 417 uint64_t adj; 418 long i; 419 420 adj = 0; 421 for (i = 0; dump_avail_n(kd, i + 1) != 0; i += 2) { 422 if (pa >= dump_avail_n(kd, i + 1)) { 423 adj += howmany(dump_avail_n(kd, i + 1), page_size) - 424 dump_avail_n(kd, i) / page_size; 425 } else { 426 return (pa / page_size - 427 dump_avail_n(kd, i) / page_size + adj); 428 } 429 } 430 return (_KVM_BIT_ID_INVALID); 431 } 432 433 uint64_t 434 _kvm_bit_id_pa(kvm_t *kd, uint64_t bit_id, unsigned int page_size) 435 { 436 uint64_t sz; 437 long i; 438 439 for (i = 0; dump_avail_n(kd, i + 1) != 0; i += 2) { 440 sz = howmany(dump_avail_n(kd, i + 1), page_size) - 441 dump_avail_n(kd, i) / page_size; 442 if (bit_id < sz) { 443 return (rounddown2(dump_avail_n(kd, i), page_size) + 444 bit_id * page_size); 445 } 446 bit_id -= sz; 447 } 448 return (_KVM_PA_INVALID); 449 } 450 451 /* 452 * Find the offset for the given physical page address; returns -1 otherwise. 453 * 454 * A page's offset is represented by the sparse page base offset plus the 455 * number of bits set before its bit multiplied by page size. This means 456 * that if a page exists in the dump, it's necessary to know how many pages 457 * in the dump precede it. Reduce this O(n) counting to O(1) by caching the 458 * number of bits set at POPCOUNT_BITS intervals. 459 * 460 * Then to find the number of pages before the requested address, simply 461 * index into the cache and count the number of bits set between that cache 462 * bin and the page's bit. Halve the number of bytes that have to be 463 * checked by also counting down from the next higher bin if it's closer. 464 */ 465 off_t 466 _kvm_pt_find(kvm_t *kd, uint64_t pa, unsigned int page_size) 467 { 468 uint64_t *bitmap = kd->pt_map; 469 uint64_t pte_bit_id = _kvm_pa_bit_id(kd, pa, page_size); 470 uint64_t pte_u64 = pte_bit_id / BITS_IN(*bitmap); 471 uint64_t popcount_id = pte_bit_id / POPCOUNT_BITS; 472 uint64_t pte_mask = 1ULL << (pte_bit_id % BITS_IN(*bitmap)); 473 uint64_t bitN; 474 uint32_t count; 475 476 /* Check whether the page address requested is in the dump. */ 477 if (pte_bit_id == _KVM_BIT_ID_INVALID || 478 pte_bit_id >= (kd->pt_map_size * NBBY) || 479 (bitmap[pte_u64] & pte_mask) == 0) 480 return (-1); 481 482 /* 483 * Add/sub popcounts from the bitmap until the PTE's bit is reached. 484 * For bits that are in the upper half between the calculated 485 * popcount id and the next one, use the next one and subtract to 486 * minimize the number of popcounts required. 487 */ 488 if ((pte_bit_id % POPCOUNT_BITS) < (POPCOUNT_BITS / 2)) { 489 count = kd->pt_popcounts[popcount_id] + popcount_bytes( 490 bitmap + popcount_id * POPCOUNTS_IN(*bitmap), 491 0, pte_bit_id - popcount_id * POPCOUNT_BITS); 492 } else { 493 /* 494 * Counting in reverse is trickier, since we must avoid 495 * reading from bytes that are not in range, and invert. 496 */ 497 uint64_t pte_u64_bit_off = pte_u64 * BITS_IN(*bitmap); 498 499 popcount_id++; 500 bitN = MIN(popcount_id * POPCOUNT_BITS, 501 kd->pt_map_size * BITS_IN(uint8_t)); 502 count = kd->pt_popcounts[popcount_id] - popcount_bytes( 503 bitmap + pte_u64, 504 pte_bit_id - pte_u64_bit_off, bitN - pte_u64_bit_off); 505 } 506 507 /* 508 * This can only happen if the core is truncated. Treat these 509 * entries as if they don't exist, since their backing doesn't. 510 */ 511 if (count >= (kd->pt_sparse_size / page_size)) 512 return (-1); 513 514 return (kd->pt_sparse_off + (uint64_t)count * page_size); 515 } 516 517 static int 518 kvm_fdnlist(kvm_t *kd, struct kvm_nlist *list) 519 { 520 kvaddr_t addr; 521 int error, nfail; 522 523 if (kd->resolve_symbol == NULL) { 524 struct nlist *nl; 525 int count, i; 526 527 for (count = 0; list[count].n_name != NULL && 528 list[count].n_name[0] != '\0'; count++) 529 ; 530 nl = calloc(count + 1, sizeof(*nl)); 531 for (i = 0; i < count; i++) 532 nl[i].n_name = list[i].n_name; 533 nfail = __fdnlist(kd->nlfd, nl); 534 for (i = 0; i < count; i++) { 535 list[i].n_type = nl[i].n_type; 536 list[i].n_value = nl[i].n_value; 537 } 538 free(nl); 539 return (nfail); 540 } 541 542 nfail = 0; 543 while (list->n_name != NULL && list->n_name[0] != '\0') { 544 error = kd->resolve_symbol(list->n_name, &addr); 545 if (error != 0) { 546 nfail++; 547 list->n_value = 0; 548 list->n_type = 0; 549 } else { 550 list->n_value = addr; 551 list->n_type = N_DATA | N_EXT; 552 } 553 list++; 554 } 555 return (nfail); 556 } 557 558 /* 559 * Walk the list of unresolved symbols, generate a new list and prefix the 560 * symbol names, try again, and merge back what we could resolve. 561 */ 562 static int 563 kvm_fdnlist_prefix(kvm_t *kd, struct kvm_nlist *nl, int missing, 564 const char *prefix, kvaddr_t (*validate_fn)(kvm_t *, kvaddr_t)) 565 { 566 struct kvm_nlist *n, *np, *p; 567 char *cp, *ce; 568 const char *ccp; 569 size_t len; 570 int slen, unresolved; 571 572 /* 573 * Calculate the space we need to malloc for nlist and names. 574 * We are going to store the name twice for later lookups: once 575 * with the prefix and once the unmodified name delmited by \0. 576 */ 577 len = 0; 578 unresolved = 0; 579 for (p = nl; p->n_name && p->n_name[0]; ++p) { 580 if (p->n_type != N_UNDF) 581 continue; 582 len += sizeof(struct kvm_nlist) + strlen(prefix) + 583 2 * (strlen(p->n_name) + 1); 584 unresolved++; 585 } 586 if (unresolved == 0) 587 return (unresolved); 588 /* Add space for the terminating nlist entry. */ 589 len += sizeof(struct kvm_nlist); 590 unresolved++; 591 592 /* Alloc one chunk for (nlist, [names]) and setup pointers. */ 593 n = np = malloc(len); 594 bzero(n, len); 595 if (n == NULL) 596 return (missing); 597 cp = ce = (char *)np; 598 cp += unresolved * sizeof(struct kvm_nlist); 599 ce += len; 600 601 /* Generate shortened nlist with special prefix. */ 602 unresolved = 0; 603 for (p = nl; p->n_name && p->n_name[0]; ++p) { 604 if (p->n_type != N_UNDF) 605 continue; 606 *np = *p; 607 /* Save the new\0orig. name so we can later match it again. */ 608 slen = snprintf(cp, ce - cp, "%s%s%c%s", prefix, 609 (prefix[0] != '\0' && p->n_name[0] == '_') ? 610 (p->n_name + 1) : p->n_name, '\0', p->n_name); 611 if (slen < 0 || slen >= ce - cp) 612 continue; 613 np->n_name = cp; 614 cp += slen + 1; 615 np++; 616 unresolved++; 617 } 618 619 /* Do lookup on the reduced list. */ 620 np = n; 621 unresolved = kvm_fdnlist(kd, np); 622 623 /* Check if we could resolve further symbols and update the list. */ 624 if (unresolved >= 0 && unresolved < missing) { 625 /* Find the first freshly resolved entry. */ 626 for (; np->n_name && np->n_name[0]; np++) 627 if (np->n_type != N_UNDF) 628 break; 629 /* 630 * The lists are both in the same order, 631 * so we can walk them in parallel. 632 */ 633 for (p = nl; np->n_name && np->n_name[0] && 634 p->n_name && p->n_name[0]; ++p) { 635 if (p->n_type != N_UNDF) 636 continue; 637 /* Skip expanded name and compare to orig. one. */ 638 ccp = np->n_name + strlen(np->n_name) + 1; 639 if (strcmp(ccp, p->n_name) != 0) 640 continue; 641 /* Update nlist with new, translated results. */ 642 p->n_type = np->n_type; 643 if (validate_fn) 644 p->n_value = (*validate_fn)(kd, np->n_value); 645 else 646 p->n_value = np->n_value; 647 missing--; 648 /* Find next freshly resolved entry. */ 649 for (np++; np->n_name && np->n_name[0]; np++) 650 if (np->n_type != N_UNDF) 651 break; 652 } 653 } 654 /* We could assert missing = unresolved here. */ 655 656 free(n); 657 return (unresolved); 658 } 659 660 int 661 _kvm_nlist(kvm_t *kd, struct kvm_nlist *nl, int initialize) 662 { 663 struct kvm_nlist *p; 664 int nvalid; 665 struct kld_sym_lookup lookup; 666 int error; 667 const char *prefix = ""; 668 char symname[1024]; /* XXX-BZ symbol name length limit? */ 669 int tried_vnet, tried_dpcpu; 670 671 /* 672 * If we can't use the kld symbol lookup, revert to the 673 * slow library call. 674 */ 675 if (!ISALIVE(kd)) { 676 error = kvm_fdnlist(kd, nl); 677 if (error <= 0) /* Hard error or success. */ 678 return (error); 679 680 if (_kvm_vnet_initialized(kd, initialize)) 681 error = kvm_fdnlist_prefix(kd, nl, error, 682 VNET_SYMPREFIX, _kvm_vnet_validaddr); 683 684 if (error > 0 && _kvm_dpcpu_initialized(kd, initialize)) 685 error = kvm_fdnlist_prefix(kd, nl, error, 686 DPCPU_SYMPREFIX, _kvm_dpcpu_validaddr); 687 688 return (error); 689 } 690 691 /* 692 * We can use the kld lookup syscall. Go through each nlist entry 693 * and look it up with a kldsym(2) syscall. 694 */ 695 nvalid = 0; 696 tried_vnet = 0; 697 tried_dpcpu = 0; 698 again: 699 for (p = nl; p->n_name && p->n_name[0]; ++p) { 700 if (p->n_type != N_UNDF) 701 continue; 702 703 lookup.version = sizeof(lookup); 704 lookup.symvalue = 0; 705 lookup.symsize = 0; 706 707 error = snprintf(symname, sizeof(symname), "%s%s", prefix, 708 (prefix[0] != '\0' && p->n_name[0] == '_') ? 709 (p->n_name + 1) : p->n_name); 710 if (error < 0 || error >= (int)sizeof(symname)) 711 continue; 712 lookup.symname = symname; 713 if (lookup.symname[0] == '_') 714 lookup.symname++; 715 716 if (kldsym(0, KLDSYM_LOOKUP, &lookup) != -1) { 717 p->n_type = N_TEXT; 718 if (_kvm_vnet_initialized(kd, initialize) && 719 strcmp(prefix, VNET_SYMPREFIX) == 0) 720 p->n_value = 721 _kvm_vnet_validaddr(kd, lookup.symvalue); 722 else if (_kvm_dpcpu_initialized(kd, initialize) && 723 strcmp(prefix, DPCPU_SYMPREFIX) == 0) 724 p->n_value = 725 _kvm_dpcpu_validaddr(kd, lookup.symvalue); 726 else 727 p->n_value = lookup.symvalue; 728 ++nvalid; 729 /* lookup.symsize */ 730 } 731 } 732 733 /* 734 * Check the number of entries that weren't found. If they exist, 735 * try again with a prefix for virtualized or DPCPU symbol names. 736 */ 737 error = ((p - nl) - nvalid); 738 if (error && _kvm_vnet_initialized(kd, initialize) && !tried_vnet) { 739 tried_vnet = 1; 740 prefix = VNET_SYMPREFIX; 741 goto again; 742 } 743 if (error && _kvm_dpcpu_initialized(kd, initialize) && !tried_dpcpu) { 744 tried_dpcpu = 1; 745 prefix = DPCPU_SYMPREFIX; 746 goto again; 747 } 748 749 /* 750 * Return the number of entries that weren't found. If they exist, 751 * also fill internal error buffer. 752 */ 753 error = ((p - nl) - nvalid); 754 if (error) 755 _kvm_syserr(kd, kd->program, "kvm_nlist"); 756 return (error); 757 } 758 759 int 760 _kvm_bitmap_init(struct kvm_bitmap *bm, u_long bitmapsize, u_long *idx) 761 { 762 763 *idx = ULONG_MAX; 764 bm->map = calloc(bitmapsize, sizeof *bm->map); 765 if (bm->map == NULL) 766 return (0); 767 bm->size = bitmapsize; 768 return (1); 769 } 770 771 void 772 _kvm_bitmap_set(struct kvm_bitmap *bm, u_long bm_index) 773 { 774 uint8_t *byte = &bm->map[bm_index / 8]; 775 776 if (bm_index / 8 < bm->size) 777 *byte |= (1UL << (bm_index % 8)); 778 } 779 780 int 781 _kvm_bitmap_next(struct kvm_bitmap *bm, u_long *idx) 782 { 783 u_long first_invalid = bm->size * CHAR_BIT; 784 785 if (*idx == ULONG_MAX) 786 *idx = 0; 787 else 788 (*idx)++; 789 790 /* Find the next valid idx. */ 791 for (; *idx < first_invalid; (*idx)++) { 792 unsigned int mask = 1U << (*idx % CHAR_BIT); 793 if ((bm->map[*idx / CHAR_BIT] & mask) != 0) 794 break; 795 } 796 797 return (*idx < first_invalid); 798 } 799 800 void 801 _kvm_bitmap_deinit(struct kvm_bitmap *bm) 802 { 803 804 free(bm->map); 805 } 806 807 int 808 _kvm_visit_cb(kvm_t *kd, kvm_walk_pages_cb_t *cb, void *arg, u_long pa, 809 u_long kmap_vaddr, u_long dmap_vaddr, vm_prot_t prot, size_t len, 810 unsigned int page_size) 811 { 812 unsigned int pgsz = page_size ? page_size : len; 813 struct kvm_page p = { 814 .kp_version = LIBKVM_WALK_PAGES_VERSION, 815 .kp_paddr = pa, 816 .kp_kmap_vaddr = kmap_vaddr, 817 .kp_dmap_vaddr = dmap_vaddr, 818 .kp_prot = prot, 819 .kp_offset = _kvm_pt_find(kd, pa, pgsz), 820 .kp_len = len, 821 }; 822 823 return cb(&p, arg); 824 } 825