xref: /freebsd/lib/libkvm/kvm_private.c (revision 5b0945b57059d1cde0831d3afea7ec56c7d79508)
1 /*-
2  * Copyright (c) 1989, 1992, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software developed by the Computer Systems
6  * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
7  * BG 91-66 and contributed to Berkeley.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include <sys/param.h>
38 #include <sys/fnv_hash.h>
39 
40 #define	_WANT_VNET
41 
42 #include <sys/user.h>
43 #include <sys/linker.h>
44 #include <sys/pcpu.h>
45 #include <sys/stat.h>
46 #include <sys/mman.h>
47 
48 #include <stdbool.h>
49 #include <net/vnet.h>
50 
51 #include <assert.h>
52 #include <fcntl.h>
53 #include <vm/vm.h>
54 #include <kvm.h>
55 #include <limits.h>
56 #include <paths.h>
57 #include <stdint.h>
58 #include <stdio.h>
59 #include <stdlib.h>
60 #include <string.h>
61 #include <unistd.h>
62 #include <stdarg.h>
63 #include <inttypes.h>
64 
65 #include "kvm_private.h"
66 
67 /*
68  * Routines private to libkvm.
69  */
70 
71 /* from src/lib/libc/gen/nlist.c */
72 int __fdnlist(int, struct nlist *);
73 
74 /*
75  * Report an error using printf style arguments.  "program" is kd->program
76  * on hard errors, and 0 on soft errors, so that under sun error emulation,
77  * only hard errors are printed out (otherwise, programs like gdb will
78  * generate tons of error messages when trying to access bogus pointers).
79  */
80 void
81 _kvm_err(kvm_t *kd, const char *program, const char *fmt, ...)
82 {
83 	va_list ap;
84 
85 	va_start(ap, fmt);
86 	if (program != NULL) {
87 		(void)fprintf(stderr, "%s: ", program);
88 		(void)vfprintf(stderr, fmt, ap);
89 		(void)fputc('\n', stderr);
90 	} else
91 		(void)vsnprintf(kd->errbuf,
92 		    sizeof(kd->errbuf), fmt, ap);
93 
94 	va_end(ap);
95 }
96 
97 void
98 _kvm_syserr(kvm_t *kd, const char *program, const char *fmt, ...)
99 {
100 	va_list ap;
101 	int n;
102 
103 	va_start(ap, fmt);
104 	if (program != NULL) {
105 		(void)fprintf(stderr, "%s: ", program);
106 		(void)vfprintf(stderr, fmt, ap);
107 		(void)fprintf(stderr, ": %s\n", strerror(errno));
108 	} else {
109 		char *cp = kd->errbuf;
110 
111 		(void)vsnprintf(cp, sizeof(kd->errbuf), fmt, ap);
112 		n = strlen(cp);
113 		(void)snprintf(&cp[n], sizeof(kd->errbuf) - n, ": %s",
114 		    strerror(errno));
115 	}
116 	va_end(ap);
117 }
118 
119 void *
120 _kvm_malloc(kvm_t *kd, size_t n)
121 {
122 	void *p;
123 
124 	if ((p = calloc(n, sizeof(char))) == NULL)
125 		_kvm_err(kd, kd->program, "can't allocate %zu bytes: %s",
126 			 n, strerror(errno));
127 	return (p);
128 }
129 
130 int
131 _kvm_probe_elf_kernel(kvm_t *kd, int class, int machine)
132 {
133 
134 	return (kd->nlehdr.e_ident[EI_CLASS] == class &&
135 	    ((machine == EM_PPC || machine == EM_PPC64) ?
136 	     kd->nlehdr.e_type == ET_DYN : kd->nlehdr.e_type == ET_EXEC) &&
137 	    kd->nlehdr.e_machine == machine);
138 }
139 
140 int
141 _kvm_is_minidump(kvm_t *kd)
142 {
143 	char minihdr[8];
144 
145 	if (kd->rawdump)
146 		return (0);
147 	if (pread(kd->pmfd, &minihdr, 8, 0) == 8 &&
148 	    memcmp(&minihdr, "minidump", 8) == 0)
149 		return (1);
150 	return (0);
151 }
152 
153 /*
154  * The powerpc backend has a hack to strip a leading kerneldump
155  * header from the core before treating it as an ELF header.
156  *
157  * We can add that here if we can get a change to libelf to support
158  * an initial offset into the file.  Alternatively we could patch
159  * savecore to extract cores from a regular file instead.
160  */
161 int
162 _kvm_read_core_phdrs(kvm_t *kd, size_t *phnump, GElf_Phdr **phdrp)
163 {
164 	GElf_Ehdr ehdr;
165 	GElf_Phdr *phdr;
166 	Elf *elf;
167 	size_t i, phnum;
168 
169 	elf = elf_begin(kd->pmfd, ELF_C_READ, NULL);
170 	if (elf == NULL) {
171 		_kvm_err(kd, kd->program, "%s", elf_errmsg(0));
172 		return (-1);
173 	}
174 	if (elf_kind(elf) != ELF_K_ELF) {
175 		_kvm_err(kd, kd->program, "invalid core");
176 		goto bad;
177 	}
178 	if (gelf_getclass(elf) != kd->nlehdr.e_ident[EI_CLASS]) {
179 		_kvm_err(kd, kd->program, "invalid core");
180 		goto bad;
181 	}
182 	if (gelf_getehdr(elf, &ehdr) == NULL) {
183 		_kvm_err(kd, kd->program, "%s", elf_errmsg(0));
184 		goto bad;
185 	}
186 	if (ehdr.e_type != ET_CORE) {
187 		_kvm_err(kd, kd->program, "invalid core");
188 		goto bad;
189 	}
190 	if (ehdr.e_machine != kd->nlehdr.e_machine) {
191 		_kvm_err(kd, kd->program, "invalid core");
192 		goto bad;
193 	}
194 
195 	if (elf_getphdrnum(elf, &phnum) == -1) {
196 		_kvm_err(kd, kd->program, "%s", elf_errmsg(0));
197 		goto bad;
198 	}
199 
200 	phdr = calloc(phnum, sizeof(*phdr));
201 	if (phdr == NULL) {
202 		_kvm_err(kd, kd->program, "failed to allocate phdrs");
203 		goto bad;
204 	}
205 
206 	for (i = 0; i < phnum; i++) {
207 		if (gelf_getphdr(elf, i, &phdr[i]) == NULL) {
208 			free(phdr);
209 			_kvm_err(kd, kd->program, "%s", elf_errmsg(0));
210 			goto bad;
211 		}
212 	}
213 	elf_end(elf);
214 	*phnump = phnum;
215 	*phdrp = phdr;
216 	return (0);
217 
218 bad:
219 	elf_end(elf);
220 	return (-1);
221 }
222 
223 /*
224  * Transform v such that only bits [bit0, bitN) may be set.  Generates a
225  * bitmask covering the number of bits, then shifts so +bit0+ is the first.
226  */
227 static uint64_t
228 bitmask_range(uint64_t v, uint64_t bit0, uint64_t bitN)
229 {
230 	if (bit0 == 0 && bitN == BITS_IN(v))
231 		return (v);
232 
233 	return (v & (((1ULL << (bitN - bit0)) - 1ULL) << bit0));
234 }
235 
236 /*
237  * Returns the number of bits in a given byte array range starting at a
238  * given base, from bit0 to bitN.  bit0 may be non-zero in the case of
239  * counting backwards from bitN.
240  */
241 static uint64_t
242 popcount_bytes(uint64_t *addr, uint32_t bit0, uint32_t bitN)
243 {
244 	uint32_t res = bitN - bit0;
245 	uint64_t count = 0;
246 	uint32_t bound;
247 
248 	/* Align to 64-bit boundary on the left side if needed. */
249 	if ((bit0 % BITS_IN(*addr)) != 0) {
250 		bound = MIN(bitN, roundup2(bit0, BITS_IN(*addr)));
251 		count += __bitcount64(bitmask_range(*addr, bit0, bound));
252 		res -= (bound - bit0);
253 		addr++;
254 	}
255 
256 	while (res > 0) {
257 		bound = MIN(res, BITS_IN(*addr));
258 		count += __bitcount64(bitmask_range(*addr, 0, bound));
259 		res -= bound;
260 		addr++;
261 	}
262 
263 	return (count);
264 }
265 
266 void *
267 _kvm_pmap_get(kvm_t *kd, u_long idx, size_t len)
268 {
269 	uintptr_t off = idx * len;
270 
271 	if ((off_t)off >= kd->pt_sparse_off)
272 		return (NULL);
273 	return (void *)((uintptr_t)kd->page_map + off);
274 }
275 
276 void *
277 _kvm_map_get(kvm_t *kd, u_long pa, unsigned int page_size)
278 {
279 	off_t off;
280 	uintptr_t addr;
281 
282 	off = _kvm_pt_find(kd, pa, page_size);
283 	if (off == -1)
284 		return NULL;
285 
286 	addr = (uintptr_t)kd->page_map + off;
287 	if (off >= kd->pt_sparse_off)
288 		addr = (uintptr_t)kd->sparse_map + (off - kd->pt_sparse_off);
289 	return (void *)addr;
290 }
291 
292 int
293 _kvm_pt_init(kvm_t *kd, size_t map_len, off_t map_off, off_t sparse_off,
294     int page_size, int word_size)
295 {
296 	uint64_t *addr;
297 	uint32_t *popcount_bin;
298 	int bin_popcounts = 0;
299 	uint64_t pc_bins, res;
300 	ssize_t rd;
301 
302 	/*
303 	 * Map the bitmap specified by the arguments.
304 	 */
305 	kd->pt_map = _kvm_malloc(kd, map_len);
306 	if (kd->pt_map == NULL) {
307 		_kvm_err(kd, kd->program, "cannot allocate %zu bytes for bitmap",
308 		    map_len);
309 		return (-1);
310 	}
311 	rd = pread(kd->pmfd, kd->pt_map, map_len, map_off);
312 	if (rd < 0 || rd != (ssize_t)map_len) {
313 		_kvm_err(kd, kd->program, "cannot read %zu bytes for bitmap",
314 		    map_len);
315 		return (-1);
316 	}
317 	kd->pt_map_size = map_len;
318 
319 	/*
320 	 * Generate a popcount cache for every POPCOUNT_BITS in the bitmap,
321 	 * so lookups only have to calculate the number of bits set between
322 	 * a cache point and their bit.  This reduces lookups to O(1),
323 	 * without significantly increasing memory requirements.
324 	 *
325 	 * Round up the number of bins so that 'upper half' lookups work for
326 	 * the final bin, if needed.  The first popcount is 0, since no bits
327 	 * precede bit 0, so add 1 for that also.  Without this, extra work
328 	 * would be needed to handle the first PTEs in _kvm_pt_find().
329 	 */
330 	addr = kd->pt_map;
331 	res = map_len;
332 	pc_bins = 1 + (res * NBBY + POPCOUNT_BITS / 2) / POPCOUNT_BITS;
333 	kd->pt_popcounts = calloc(pc_bins, sizeof(uint32_t));
334 	if (kd->pt_popcounts == NULL) {
335 		_kvm_err(kd, kd->program, "cannot allocate popcount bins");
336 		return (-1);
337 	}
338 
339 	for (popcount_bin = &kd->pt_popcounts[1]; res > 0;
340 	    addr++, res -= sizeof(*addr)) {
341 		*popcount_bin += popcount_bytes(addr, 0,
342 		    MIN(res * NBBY, BITS_IN(*addr)));
343 		if (++bin_popcounts == POPCOUNTS_IN(*addr)) {
344 			popcount_bin++;
345 			*popcount_bin = *(popcount_bin - 1);
346 			bin_popcounts = 0;
347 		}
348 	}
349 
350 	assert(pc_bins * sizeof(*popcount_bin) ==
351 	    ((uintptr_t)popcount_bin - (uintptr_t)kd->pt_popcounts));
352 
353 	kd->pt_sparse_off = sparse_off;
354 	kd->pt_sparse_size = (uint64_t)*popcount_bin * page_size;
355 	kd->pt_page_size = page_size;
356 	kd->pt_word_size = word_size;
357 
358 	/*
359 	 * Map the sparse page array.  This is useful for performing point
360 	 * lookups of specific pages, e.g. for kvm_walk_pages.  Generally,
361 	 * this is much larger than is reasonable to read in up front, so
362 	 * mmap it in instead.
363 	 */
364 	kd->sparse_map = mmap(NULL, kd->pt_sparse_size, PROT_READ,
365 	    MAP_PRIVATE, kd->pmfd, kd->pt_sparse_off);
366 	if (kd->sparse_map == MAP_FAILED) {
367 		_kvm_err(kd, kd->program, "cannot map %" PRIu64
368 		    " bytes from fd %d offset %jd for sparse map: %s",
369 		    kd->pt_sparse_size, kd->pmfd,
370 		    (intmax_t)kd->pt_sparse_off, strerror(errno));
371 		return (-1);
372 	}
373 	return (0);
374 }
375 
376 int
377 _kvm_pmap_init(kvm_t *kd, uint32_t pmap_size, off_t pmap_off)
378 {
379 	ssize_t exp_len = pmap_size;
380 
381 	kd->page_map_size = pmap_size;
382 	kd->page_map_off = pmap_off;
383 	kd->page_map = _kvm_malloc(kd, pmap_size);
384 	if (kd->page_map == NULL) {
385 		_kvm_err(kd, kd->program, "cannot allocate %u bytes "
386 		    "for page map", pmap_size);
387 		return (-1);
388 	}
389 	if (pread(kd->pmfd, kd->page_map, pmap_size, pmap_off) != exp_len) {
390 		_kvm_err(kd, kd->program, "cannot read %d bytes from "
391 		    "offset %jd for page map", pmap_size, (intmax_t)pmap_off);
392 		return (-1);
393 	}
394 	return (0);
395 }
396 
397 /*
398  * Find the offset for the given physical page address; returns -1 otherwise.
399  *
400  * A page's offset is represented by the sparse page base offset plus the
401  * number of bits set before its bit multiplied by page size.  This means
402  * that if a page exists in the dump, it's necessary to know how many pages
403  * in the dump precede it.  Reduce this O(n) counting to O(1) by caching the
404  * number of bits set at POPCOUNT_BITS intervals.
405  *
406  * Then to find the number of pages before the requested address, simply
407  * index into the cache and count the number of bits set between that cache
408  * bin and the page's bit.  Halve the number of bytes that have to be
409  * checked by also counting down from the next higher bin if it's closer.
410  */
411 off_t
412 _kvm_pt_find(kvm_t *kd, uint64_t pa, unsigned int page_size)
413 {
414 	uint64_t *bitmap = kd->pt_map;
415 	uint64_t pte_bit_id = pa / page_size;
416 	uint64_t pte_u64 = pte_bit_id / BITS_IN(*bitmap);
417 	uint64_t popcount_id = pte_bit_id / POPCOUNT_BITS;
418 	uint64_t pte_mask = 1ULL << (pte_bit_id % BITS_IN(*bitmap));
419 	uint64_t bitN;
420 	uint32_t count;
421 
422 	/* Check whether the page address requested is in the dump. */
423 	if (pte_bit_id >= (kd->pt_map_size * NBBY) ||
424 	    (bitmap[pte_u64] & pte_mask) == 0)
425 		return (-1);
426 
427 	/*
428 	 * Add/sub popcounts from the bitmap until the PTE's bit is reached.
429 	 * For bits that are in the upper half between the calculated
430 	 * popcount id and the next one, use the next one and subtract to
431 	 * minimize the number of popcounts required.
432 	 */
433 	if ((pte_bit_id % POPCOUNT_BITS) < (POPCOUNT_BITS / 2)) {
434 		count = kd->pt_popcounts[popcount_id] + popcount_bytes(
435 		    bitmap + popcount_id * POPCOUNTS_IN(*bitmap),
436 		    0, pte_bit_id - popcount_id * POPCOUNT_BITS);
437 	} else {
438 		/*
439 		 * Counting in reverse is trickier, since we must avoid
440 		 * reading from bytes that are not in range, and invert.
441 		 */
442 		uint64_t pte_u64_bit_off = pte_u64 * BITS_IN(*bitmap);
443 
444 		popcount_id++;
445 		bitN = MIN(popcount_id * POPCOUNT_BITS,
446 		    kd->pt_map_size * BITS_IN(uint8_t));
447 		count = kd->pt_popcounts[popcount_id] - popcount_bytes(
448 		    bitmap + pte_u64,
449 		    pte_bit_id - pte_u64_bit_off, bitN - pte_u64_bit_off);
450 	}
451 
452 	/*
453 	 * This can only happen if the core is truncated.  Treat these
454 	 * entries as if they don't exist, since their backing doesn't.
455 	 */
456 	if (count >= (kd->pt_sparse_size / page_size))
457 		return (-1);
458 
459 	return (kd->pt_sparse_off + (uint64_t)count * page_size);
460 }
461 
462 static int
463 kvm_fdnlist(kvm_t *kd, struct kvm_nlist *list)
464 {
465 	kvaddr_t addr;
466 	int error, nfail;
467 
468 	if (kd->resolve_symbol == NULL) {
469 		struct nlist *nl;
470 		int count, i;
471 
472 		for (count = 0; list[count].n_name != NULL &&
473 		     list[count].n_name[0] != '\0'; count++)
474 			;
475 		nl = calloc(count + 1, sizeof(*nl));
476 		for (i = 0; i < count; i++)
477 			nl[i].n_name = list[i].n_name;
478 		nfail = __fdnlist(kd->nlfd, nl);
479 		for (i = 0; i < count; i++) {
480 			list[i].n_type = nl[i].n_type;
481 			list[i].n_value = nl[i].n_value;
482 		}
483 		free(nl);
484 		return (nfail);
485 	}
486 
487 	nfail = 0;
488 	while (list->n_name != NULL && list->n_name[0] != '\0') {
489 		error = kd->resolve_symbol(list->n_name, &addr);
490 		if (error != 0) {
491 			nfail++;
492 			list->n_value = 0;
493 			list->n_type = 0;
494 		} else {
495 			list->n_value = addr;
496 			list->n_type = N_DATA | N_EXT;
497 		}
498 		list++;
499 	}
500 	return (nfail);
501 }
502 
503 /*
504  * Walk the list of unresolved symbols, generate a new list and prefix the
505  * symbol names, try again, and merge back what we could resolve.
506  */
507 static int
508 kvm_fdnlist_prefix(kvm_t *kd, struct kvm_nlist *nl, int missing,
509     const char *prefix, kvaddr_t (*validate_fn)(kvm_t *, kvaddr_t))
510 {
511 	struct kvm_nlist *n, *np, *p;
512 	char *cp, *ce;
513 	const char *ccp;
514 	size_t len;
515 	int slen, unresolved;
516 
517 	/*
518 	 * Calculate the space we need to malloc for nlist and names.
519 	 * We are going to store the name twice for later lookups: once
520 	 * with the prefix and once the unmodified name delmited by \0.
521 	 */
522 	len = 0;
523 	unresolved = 0;
524 	for (p = nl; p->n_name && p->n_name[0]; ++p) {
525 		if (p->n_type != N_UNDF)
526 			continue;
527 		len += sizeof(struct kvm_nlist) + strlen(prefix) +
528 		    2 * (strlen(p->n_name) + 1);
529 		unresolved++;
530 	}
531 	if (unresolved == 0)
532 		return (unresolved);
533 	/* Add space for the terminating nlist entry. */
534 	len += sizeof(struct kvm_nlist);
535 	unresolved++;
536 
537 	/* Alloc one chunk for (nlist, [names]) and setup pointers. */
538 	n = np = malloc(len);
539 	bzero(n, len);
540 	if (n == NULL)
541 		return (missing);
542 	cp = ce = (char *)np;
543 	cp += unresolved * sizeof(struct kvm_nlist);
544 	ce += len;
545 
546 	/* Generate shortened nlist with special prefix. */
547 	unresolved = 0;
548 	for (p = nl; p->n_name && p->n_name[0]; ++p) {
549 		if (p->n_type != N_UNDF)
550 			continue;
551 		*np = *p;
552 		/* Save the new\0orig. name so we can later match it again. */
553 		slen = snprintf(cp, ce - cp, "%s%s%c%s", prefix,
554 		    (prefix[0] != '\0' && p->n_name[0] == '_') ?
555 			(p->n_name + 1) : p->n_name, '\0', p->n_name);
556 		if (slen < 0 || slen >= ce - cp)
557 			continue;
558 		np->n_name = cp;
559 		cp += slen + 1;
560 		np++;
561 		unresolved++;
562 	}
563 
564 	/* Do lookup on the reduced list. */
565 	np = n;
566 	unresolved = kvm_fdnlist(kd, np);
567 
568 	/* Check if we could resolve further symbols and update the list. */
569 	if (unresolved >= 0 && unresolved < missing) {
570 		/* Find the first freshly resolved entry. */
571 		for (; np->n_name && np->n_name[0]; np++)
572 			if (np->n_type != N_UNDF)
573 				break;
574 		/*
575 		 * The lists are both in the same order,
576 		 * so we can walk them in parallel.
577 		 */
578 		for (p = nl; np->n_name && np->n_name[0] &&
579 		    p->n_name && p->n_name[0]; ++p) {
580 			if (p->n_type != N_UNDF)
581 				continue;
582 			/* Skip expanded name and compare to orig. one. */
583 			ccp = np->n_name + strlen(np->n_name) + 1;
584 			if (strcmp(ccp, p->n_name) != 0)
585 				continue;
586 			/* Update nlist with new, translated results. */
587 			p->n_type = np->n_type;
588 			if (validate_fn)
589 				p->n_value = (*validate_fn)(kd, np->n_value);
590 			else
591 				p->n_value = np->n_value;
592 			missing--;
593 			/* Find next freshly resolved entry. */
594 			for (np++; np->n_name && np->n_name[0]; np++)
595 				if (np->n_type != N_UNDF)
596 					break;
597 		}
598 	}
599 	/* We could assert missing = unresolved here. */
600 
601 	free(n);
602 	return (unresolved);
603 }
604 
605 int
606 _kvm_nlist(kvm_t *kd, struct kvm_nlist *nl, int initialize)
607 {
608 	struct kvm_nlist *p;
609 	int nvalid;
610 	struct kld_sym_lookup lookup;
611 	int error;
612 	const char *prefix = "";
613 	char symname[1024]; /* XXX-BZ symbol name length limit? */
614 	int tried_vnet, tried_dpcpu;
615 
616 	/*
617 	 * If we can't use the kld symbol lookup, revert to the
618 	 * slow library call.
619 	 */
620 	if (!ISALIVE(kd)) {
621 		error = kvm_fdnlist(kd, nl);
622 		if (error <= 0)			/* Hard error or success. */
623 			return (error);
624 
625 		if (_kvm_vnet_initialized(kd, initialize))
626 			error = kvm_fdnlist_prefix(kd, nl, error,
627 			    VNET_SYMPREFIX, _kvm_vnet_validaddr);
628 
629 		if (error > 0 && _kvm_dpcpu_initialized(kd, initialize))
630 			error = kvm_fdnlist_prefix(kd, nl, error,
631 			    DPCPU_SYMPREFIX, _kvm_dpcpu_validaddr);
632 
633 		return (error);
634 	}
635 
636 	/*
637 	 * We can use the kld lookup syscall.  Go through each nlist entry
638 	 * and look it up with a kldsym(2) syscall.
639 	 */
640 	nvalid = 0;
641 	tried_vnet = 0;
642 	tried_dpcpu = 0;
643 again:
644 	for (p = nl; p->n_name && p->n_name[0]; ++p) {
645 		if (p->n_type != N_UNDF)
646 			continue;
647 
648 		lookup.version = sizeof(lookup);
649 		lookup.symvalue = 0;
650 		lookup.symsize = 0;
651 
652 		error = snprintf(symname, sizeof(symname), "%s%s", prefix,
653 		    (prefix[0] != '\0' && p->n_name[0] == '_') ?
654 			(p->n_name + 1) : p->n_name);
655 		if (error < 0 || error >= (int)sizeof(symname))
656 			continue;
657 		lookup.symname = symname;
658 		if (lookup.symname[0] == '_')
659 			lookup.symname++;
660 
661 		if (kldsym(0, KLDSYM_LOOKUP, &lookup) != -1) {
662 			p->n_type = N_TEXT;
663 			if (_kvm_vnet_initialized(kd, initialize) &&
664 			    strcmp(prefix, VNET_SYMPREFIX) == 0)
665 				p->n_value =
666 				    _kvm_vnet_validaddr(kd, lookup.symvalue);
667 			else if (_kvm_dpcpu_initialized(kd, initialize) &&
668 			    strcmp(prefix, DPCPU_SYMPREFIX) == 0)
669 				p->n_value =
670 				    _kvm_dpcpu_validaddr(kd, lookup.symvalue);
671 			else
672 				p->n_value = lookup.symvalue;
673 			++nvalid;
674 			/* lookup.symsize */
675 		}
676 	}
677 
678 	/*
679 	 * Check the number of entries that weren't found. If they exist,
680 	 * try again with a prefix for virtualized or DPCPU symbol names.
681 	 */
682 	error = ((p - nl) - nvalid);
683 	if (error && _kvm_vnet_initialized(kd, initialize) && !tried_vnet) {
684 		tried_vnet = 1;
685 		prefix = VNET_SYMPREFIX;
686 		goto again;
687 	}
688 	if (error && _kvm_dpcpu_initialized(kd, initialize) && !tried_dpcpu) {
689 		tried_dpcpu = 1;
690 		prefix = DPCPU_SYMPREFIX;
691 		goto again;
692 	}
693 
694 	/*
695 	 * Return the number of entries that weren't found. If they exist,
696 	 * also fill internal error buffer.
697 	 */
698 	error = ((p - nl) - nvalid);
699 	if (error)
700 		_kvm_syserr(kd, kd->program, "kvm_nlist");
701 	return (error);
702 }
703 
704 int
705 _kvm_bitmap_init(struct kvm_bitmap *bm, u_long bitmapsize, u_long *idx)
706 {
707 
708 	*idx = ULONG_MAX;
709 	bm->map = calloc(bitmapsize, sizeof *bm->map);
710 	if (bm->map == NULL)
711 		return (0);
712 	bm->size = bitmapsize;
713 	return (1);
714 }
715 
716 void
717 _kvm_bitmap_set(struct kvm_bitmap *bm, u_long pa, unsigned int page_size)
718 {
719 	u_long bm_index = pa / page_size;
720 	uint8_t *byte = &bm->map[bm_index / 8];
721 
722 	*byte |= (1UL << (bm_index % 8));
723 }
724 
725 int
726 _kvm_bitmap_next(struct kvm_bitmap *bm, u_long *idx)
727 {
728 	u_long first_invalid = bm->size * CHAR_BIT;
729 
730 	if (*idx == ULONG_MAX)
731 		*idx = 0;
732 	else
733 		(*idx)++;
734 
735 	/* Find the next valid idx. */
736 	for (; *idx < first_invalid; (*idx)++) {
737 		unsigned int mask = *idx % CHAR_BIT;
738 		if ((bm->map[*idx * CHAR_BIT] & mask) == 0)
739 			break;
740 	}
741 
742 	return (*idx < first_invalid);
743 }
744 
745 void
746 _kvm_bitmap_deinit(struct kvm_bitmap *bm)
747 {
748 
749 	free(bm->map);
750 }
751 
752 int
753 _kvm_visit_cb(kvm_t *kd, kvm_walk_pages_cb_t *cb, void *arg, u_long pa,
754     u_long kmap_vaddr, u_long dmap_vaddr, vm_prot_t prot, size_t len,
755     unsigned int page_size)
756 {
757 	unsigned int pgsz = page_size ? page_size : len;
758 	struct kvm_page p = {
759 		.kp_version = LIBKVM_WALK_PAGES_VERSION,
760 		.kp_paddr = pa,
761 		.kp_kmap_vaddr = kmap_vaddr,
762 		.kp_dmap_vaddr = dmap_vaddr,
763 		.kp_prot = prot,
764 		.kp_offset = _kvm_pt_find(kd, pa, pgsz),
765 		.kp_len = len,
766 	};
767 
768 	return cb(&p, arg);
769 }
770