1 /*- 2 * Copyright (c) 1989, 1992, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software developed by the Computer Systems 6 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract 7 * BG 91-66 and contributed to Berkeley. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include <sys/param.h> 38 #include <sys/fnv_hash.h> 39 40 #define _WANT_VNET 41 42 #include <sys/user.h> 43 #include <sys/linker.h> 44 #include <sys/pcpu.h> 45 #include <sys/stat.h> 46 #include <sys/mman.h> 47 48 #include <stdbool.h> 49 #include <net/vnet.h> 50 51 #include <assert.h> 52 #include <fcntl.h> 53 #include <vm/vm.h> 54 #include <kvm.h> 55 #include <limits.h> 56 #include <paths.h> 57 #include <stdint.h> 58 #include <stdio.h> 59 #include <stdlib.h> 60 #include <string.h> 61 #include <unistd.h> 62 #include <stdarg.h> 63 #include <inttypes.h> 64 65 #include "kvm_private.h" 66 67 /* 68 * Routines private to libkvm. 69 */ 70 71 /* from src/lib/libc/gen/nlist.c */ 72 int __fdnlist(int, struct nlist *); 73 74 /* 75 * Report an error using printf style arguments. "program" is kd->program 76 * on hard errors, and 0 on soft errors, so that under sun error emulation, 77 * only hard errors are printed out (otherwise, programs like gdb will 78 * generate tons of error messages when trying to access bogus pointers). 79 */ 80 void 81 _kvm_err(kvm_t *kd, const char *program, const char *fmt, ...) 82 { 83 va_list ap; 84 85 va_start(ap, fmt); 86 if (program != NULL) { 87 (void)fprintf(stderr, "%s: ", program); 88 (void)vfprintf(stderr, fmt, ap); 89 (void)fputc('\n', stderr); 90 } else 91 (void)vsnprintf(kd->errbuf, 92 sizeof(kd->errbuf), fmt, ap); 93 94 va_end(ap); 95 } 96 97 void 98 _kvm_syserr(kvm_t *kd, const char *program, const char *fmt, ...) 99 { 100 va_list ap; 101 int n; 102 103 va_start(ap, fmt); 104 if (program != NULL) { 105 (void)fprintf(stderr, "%s: ", program); 106 (void)vfprintf(stderr, fmt, ap); 107 (void)fprintf(stderr, ": %s\n", strerror(errno)); 108 } else { 109 char *cp = kd->errbuf; 110 111 (void)vsnprintf(cp, sizeof(kd->errbuf), fmt, ap); 112 n = strlen(cp); 113 (void)snprintf(&cp[n], sizeof(kd->errbuf) - n, ": %s", 114 strerror(errno)); 115 } 116 va_end(ap); 117 } 118 119 void * 120 _kvm_malloc(kvm_t *kd, size_t n) 121 { 122 void *p; 123 124 if ((p = calloc(n, sizeof(char))) == NULL) 125 _kvm_err(kd, kd->program, "can't allocate %zu bytes: %s", 126 n, strerror(errno)); 127 return (p); 128 } 129 130 int 131 _kvm_probe_elf_kernel(kvm_t *kd, int class, int machine) 132 { 133 134 return (kd->nlehdr.e_ident[EI_CLASS] == class && 135 ((machine == EM_PPC || machine == EM_PPC64) ? 136 kd->nlehdr.e_type == ET_DYN : kd->nlehdr.e_type == ET_EXEC) && 137 kd->nlehdr.e_machine == machine); 138 } 139 140 int 141 _kvm_is_minidump(kvm_t *kd) 142 { 143 char minihdr[8]; 144 145 if (kd->rawdump) 146 return (0); 147 if (pread(kd->pmfd, &minihdr, 8, 0) == 8 && 148 memcmp(&minihdr, "minidump", 8) == 0) 149 return (1); 150 return (0); 151 } 152 153 /* 154 * The powerpc backend has a hack to strip a leading kerneldump 155 * header from the core before treating it as an ELF header. 156 * 157 * We can add that here if we can get a change to libelf to support 158 * an initial offset into the file. Alternatively we could patch 159 * savecore to extract cores from a regular file instead. 160 */ 161 int 162 _kvm_read_core_phdrs(kvm_t *kd, size_t *phnump, GElf_Phdr **phdrp) 163 { 164 GElf_Ehdr ehdr; 165 GElf_Phdr *phdr; 166 Elf *elf; 167 size_t i, phnum; 168 169 elf = elf_begin(kd->pmfd, ELF_C_READ, NULL); 170 if (elf == NULL) { 171 _kvm_err(kd, kd->program, "%s", elf_errmsg(0)); 172 return (-1); 173 } 174 if (elf_kind(elf) != ELF_K_ELF) { 175 _kvm_err(kd, kd->program, "invalid core"); 176 goto bad; 177 } 178 if (gelf_getclass(elf) != kd->nlehdr.e_ident[EI_CLASS]) { 179 _kvm_err(kd, kd->program, "invalid core"); 180 goto bad; 181 } 182 if (gelf_getehdr(elf, &ehdr) == NULL) { 183 _kvm_err(kd, kd->program, "%s", elf_errmsg(0)); 184 goto bad; 185 } 186 if (ehdr.e_type != ET_CORE) { 187 _kvm_err(kd, kd->program, "invalid core"); 188 goto bad; 189 } 190 if (ehdr.e_machine != kd->nlehdr.e_machine) { 191 _kvm_err(kd, kd->program, "invalid core"); 192 goto bad; 193 } 194 195 if (elf_getphdrnum(elf, &phnum) == -1) { 196 _kvm_err(kd, kd->program, "%s", elf_errmsg(0)); 197 goto bad; 198 } 199 200 phdr = calloc(phnum, sizeof(*phdr)); 201 if (phdr == NULL) { 202 _kvm_err(kd, kd->program, "failed to allocate phdrs"); 203 goto bad; 204 } 205 206 for (i = 0; i < phnum; i++) { 207 if (gelf_getphdr(elf, i, &phdr[i]) == NULL) { 208 free(phdr); 209 _kvm_err(kd, kd->program, "%s", elf_errmsg(0)); 210 goto bad; 211 } 212 } 213 elf_end(elf); 214 *phnump = phnum; 215 *phdrp = phdr; 216 return (0); 217 218 bad: 219 elf_end(elf); 220 return (-1); 221 } 222 223 /* 224 * Transform v such that only bits [bit0, bitN) may be set. Generates a 225 * bitmask covering the number of bits, then shifts so +bit0+ is the first. 226 */ 227 static uint64_t 228 bitmask_range(uint64_t v, uint64_t bit0, uint64_t bitN) 229 { 230 if (bit0 == 0 && bitN == BITS_IN(v)) 231 return (v); 232 233 return (v & (((1ULL << (bitN - bit0)) - 1ULL) << bit0)); 234 } 235 236 /* 237 * Returns the number of bits in a given byte array range starting at a 238 * given base, from bit0 to bitN. bit0 may be non-zero in the case of 239 * counting backwards from bitN. 240 */ 241 static uint64_t 242 popcount_bytes(uint64_t *addr, uint32_t bit0, uint32_t bitN) 243 { 244 uint32_t res = bitN - bit0; 245 uint64_t count = 0; 246 uint32_t bound; 247 248 /* Align to 64-bit boundary on the left side if needed. */ 249 if ((bit0 % BITS_IN(*addr)) != 0) { 250 bound = MIN(bitN, roundup2(bit0, BITS_IN(*addr))); 251 count += __bitcount64(bitmask_range(*addr, bit0, bound)); 252 res -= (bound - bit0); 253 addr++; 254 } 255 256 while (res > 0) { 257 bound = MIN(res, BITS_IN(*addr)); 258 count += __bitcount64(bitmask_range(*addr, 0, bound)); 259 res -= bound; 260 addr++; 261 } 262 263 return (count); 264 } 265 266 void * 267 _kvm_pmap_get(kvm_t *kd, u_long idx, size_t len) 268 { 269 uintptr_t off = idx * len; 270 271 if ((off_t)off >= kd->pt_sparse_off) 272 return (NULL); 273 return (void *)((uintptr_t)kd->page_map + off); 274 } 275 276 void * 277 _kvm_map_get(kvm_t *kd, u_long pa, unsigned int page_size) 278 { 279 off_t off; 280 uintptr_t addr; 281 282 off = _kvm_pt_find(kd, pa, page_size); 283 if (off == -1) 284 return NULL; 285 286 addr = (uintptr_t)kd->page_map + off; 287 if (off >= kd->pt_sparse_off) 288 addr = (uintptr_t)kd->sparse_map + (off - kd->pt_sparse_off); 289 return (void *)addr; 290 } 291 292 int 293 _kvm_pt_init(kvm_t *kd, size_t map_len, off_t map_off, off_t sparse_off, 294 int page_size, int word_size) 295 { 296 uint64_t *addr; 297 uint32_t *popcount_bin; 298 int bin_popcounts = 0; 299 uint64_t pc_bins, res; 300 ssize_t rd; 301 302 /* 303 * Map the bitmap specified by the arguments. 304 */ 305 kd->pt_map = _kvm_malloc(kd, map_len); 306 if (kd->pt_map == NULL) { 307 _kvm_err(kd, kd->program, "cannot allocate %zu bytes for bitmap", 308 map_len); 309 return (-1); 310 } 311 rd = pread(kd->pmfd, kd->pt_map, map_len, map_off); 312 if (rd < 0 || rd != (ssize_t)map_len) { 313 _kvm_err(kd, kd->program, "cannot read %zu bytes for bitmap", 314 map_len); 315 return (-1); 316 } 317 kd->pt_map_size = map_len; 318 319 /* 320 * Generate a popcount cache for every POPCOUNT_BITS in the bitmap, 321 * so lookups only have to calculate the number of bits set between 322 * a cache point and their bit. This reduces lookups to O(1), 323 * without significantly increasing memory requirements. 324 * 325 * Round up the number of bins so that 'upper half' lookups work for 326 * the final bin, if needed. The first popcount is 0, since no bits 327 * precede bit 0, so add 1 for that also. Without this, extra work 328 * would be needed to handle the first PTEs in _kvm_pt_find(). 329 */ 330 addr = kd->pt_map; 331 res = map_len; 332 pc_bins = 1 + (res * NBBY + POPCOUNT_BITS / 2) / POPCOUNT_BITS; 333 kd->pt_popcounts = calloc(pc_bins, sizeof(uint32_t)); 334 if (kd->pt_popcounts == NULL) { 335 _kvm_err(kd, kd->program, "cannot allocate popcount bins"); 336 return (-1); 337 } 338 339 for (popcount_bin = &kd->pt_popcounts[1]; res > 0; 340 addr++, res -= sizeof(*addr)) { 341 *popcount_bin += popcount_bytes(addr, 0, 342 MIN(res * NBBY, BITS_IN(*addr))); 343 if (++bin_popcounts == POPCOUNTS_IN(*addr)) { 344 popcount_bin++; 345 *popcount_bin = *(popcount_bin - 1); 346 bin_popcounts = 0; 347 } 348 } 349 350 assert(pc_bins * sizeof(*popcount_bin) == 351 ((uintptr_t)popcount_bin - (uintptr_t)kd->pt_popcounts)); 352 353 kd->pt_sparse_off = sparse_off; 354 kd->pt_sparse_size = (uint64_t)*popcount_bin * page_size; 355 kd->pt_page_size = page_size; 356 kd->pt_word_size = word_size; 357 358 /* 359 * Map the sparse page array. This is useful for performing point 360 * lookups of specific pages, e.g. for kvm_walk_pages. Generally, 361 * this is much larger than is reasonable to read in up front, so 362 * mmap it in instead. 363 */ 364 kd->sparse_map = mmap(NULL, kd->pt_sparse_size, PROT_READ, 365 MAP_PRIVATE, kd->pmfd, kd->pt_sparse_off); 366 if (kd->sparse_map == MAP_FAILED) { 367 _kvm_err(kd, kd->program, "cannot map %" PRIu64 368 " bytes from fd %d offset %jd for sparse map: %s", 369 kd->pt_sparse_size, kd->pmfd, 370 (intmax_t)kd->pt_sparse_off, strerror(errno)); 371 return (-1); 372 } 373 return (0); 374 } 375 376 int 377 _kvm_pmap_init(kvm_t *kd, uint32_t pmap_size, off_t pmap_off) 378 { 379 ssize_t exp_len = pmap_size; 380 381 kd->page_map_size = pmap_size; 382 kd->page_map_off = pmap_off; 383 kd->page_map = _kvm_malloc(kd, pmap_size); 384 if (kd->page_map == NULL) { 385 _kvm_err(kd, kd->program, "cannot allocate %u bytes " 386 "for page map", pmap_size); 387 return (-1); 388 } 389 if (pread(kd->pmfd, kd->page_map, pmap_size, pmap_off) != exp_len) { 390 _kvm_err(kd, kd->program, "cannot read %d bytes from " 391 "offset %jd for page map", pmap_size, (intmax_t)pmap_off); 392 return (-1); 393 } 394 return (0); 395 } 396 397 /* 398 * Find the offset for the given physical page address; returns -1 otherwise. 399 * 400 * A page's offset is represented by the sparse page base offset plus the 401 * number of bits set before its bit multiplied by page size. This means 402 * that if a page exists in the dump, it's necessary to know how many pages 403 * in the dump precede it. Reduce this O(n) counting to O(1) by caching the 404 * number of bits set at POPCOUNT_BITS intervals. 405 * 406 * Then to find the number of pages before the requested address, simply 407 * index into the cache and count the number of bits set between that cache 408 * bin and the page's bit. Halve the number of bytes that have to be 409 * checked by also counting down from the next higher bin if it's closer. 410 */ 411 off_t 412 _kvm_pt_find(kvm_t *kd, uint64_t pa, unsigned int page_size) 413 { 414 uint64_t *bitmap = kd->pt_map; 415 uint64_t pte_bit_id = pa / page_size; 416 uint64_t pte_u64 = pte_bit_id / BITS_IN(*bitmap); 417 uint64_t popcount_id = pte_bit_id / POPCOUNT_BITS; 418 uint64_t pte_mask = 1ULL << (pte_bit_id % BITS_IN(*bitmap)); 419 uint64_t bitN; 420 uint32_t count; 421 422 /* Check whether the page address requested is in the dump. */ 423 if (pte_bit_id >= (kd->pt_map_size * NBBY) || 424 (bitmap[pte_u64] & pte_mask) == 0) 425 return (-1); 426 427 /* 428 * Add/sub popcounts from the bitmap until the PTE's bit is reached. 429 * For bits that are in the upper half between the calculated 430 * popcount id and the next one, use the next one and subtract to 431 * minimize the number of popcounts required. 432 */ 433 if ((pte_bit_id % POPCOUNT_BITS) < (POPCOUNT_BITS / 2)) { 434 count = kd->pt_popcounts[popcount_id] + popcount_bytes( 435 bitmap + popcount_id * POPCOUNTS_IN(*bitmap), 436 0, pte_bit_id - popcount_id * POPCOUNT_BITS); 437 } else { 438 /* 439 * Counting in reverse is trickier, since we must avoid 440 * reading from bytes that are not in range, and invert. 441 */ 442 uint64_t pte_u64_bit_off = pte_u64 * BITS_IN(*bitmap); 443 444 popcount_id++; 445 bitN = MIN(popcount_id * POPCOUNT_BITS, 446 kd->pt_map_size * BITS_IN(uint8_t)); 447 count = kd->pt_popcounts[popcount_id] - popcount_bytes( 448 bitmap + pte_u64, 449 pte_bit_id - pte_u64_bit_off, bitN - pte_u64_bit_off); 450 } 451 452 /* 453 * This can only happen if the core is truncated. Treat these 454 * entries as if they don't exist, since their backing doesn't. 455 */ 456 if (count >= (kd->pt_sparse_size / page_size)) 457 return (-1); 458 459 return (kd->pt_sparse_off + (uint64_t)count * page_size); 460 } 461 462 static int 463 kvm_fdnlist(kvm_t *kd, struct kvm_nlist *list) 464 { 465 kvaddr_t addr; 466 int error, nfail; 467 468 if (kd->resolve_symbol == NULL) { 469 struct nlist *nl; 470 int count, i; 471 472 for (count = 0; list[count].n_name != NULL && 473 list[count].n_name[0] != '\0'; count++) 474 ; 475 nl = calloc(count + 1, sizeof(*nl)); 476 for (i = 0; i < count; i++) 477 nl[i].n_name = list[i].n_name; 478 nfail = __fdnlist(kd->nlfd, nl); 479 for (i = 0; i < count; i++) { 480 list[i].n_type = nl[i].n_type; 481 list[i].n_value = nl[i].n_value; 482 } 483 free(nl); 484 return (nfail); 485 } 486 487 nfail = 0; 488 while (list->n_name != NULL && list->n_name[0] != '\0') { 489 error = kd->resolve_symbol(list->n_name, &addr); 490 if (error != 0) { 491 nfail++; 492 list->n_value = 0; 493 list->n_type = 0; 494 } else { 495 list->n_value = addr; 496 list->n_type = N_DATA | N_EXT; 497 } 498 list++; 499 } 500 return (nfail); 501 } 502 503 /* 504 * Walk the list of unresolved symbols, generate a new list and prefix the 505 * symbol names, try again, and merge back what we could resolve. 506 */ 507 static int 508 kvm_fdnlist_prefix(kvm_t *kd, struct kvm_nlist *nl, int missing, 509 const char *prefix, kvaddr_t (*validate_fn)(kvm_t *, kvaddr_t)) 510 { 511 struct kvm_nlist *n, *np, *p; 512 char *cp, *ce; 513 const char *ccp; 514 size_t len; 515 int slen, unresolved; 516 517 /* 518 * Calculate the space we need to malloc for nlist and names. 519 * We are going to store the name twice for later lookups: once 520 * with the prefix and once the unmodified name delmited by \0. 521 */ 522 len = 0; 523 unresolved = 0; 524 for (p = nl; p->n_name && p->n_name[0]; ++p) { 525 if (p->n_type != N_UNDF) 526 continue; 527 len += sizeof(struct kvm_nlist) + strlen(prefix) + 528 2 * (strlen(p->n_name) + 1); 529 unresolved++; 530 } 531 if (unresolved == 0) 532 return (unresolved); 533 /* Add space for the terminating nlist entry. */ 534 len += sizeof(struct kvm_nlist); 535 unresolved++; 536 537 /* Alloc one chunk for (nlist, [names]) and setup pointers. */ 538 n = np = malloc(len); 539 bzero(n, len); 540 if (n == NULL) 541 return (missing); 542 cp = ce = (char *)np; 543 cp += unresolved * sizeof(struct kvm_nlist); 544 ce += len; 545 546 /* Generate shortened nlist with special prefix. */ 547 unresolved = 0; 548 for (p = nl; p->n_name && p->n_name[0]; ++p) { 549 if (p->n_type != N_UNDF) 550 continue; 551 *np = *p; 552 /* Save the new\0orig. name so we can later match it again. */ 553 slen = snprintf(cp, ce - cp, "%s%s%c%s", prefix, 554 (prefix[0] != '\0' && p->n_name[0] == '_') ? 555 (p->n_name + 1) : p->n_name, '\0', p->n_name); 556 if (slen < 0 || slen >= ce - cp) 557 continue; 558 np->n_name = cp; 559 cp += slen + 1; 560 np++; 561 unresolved++; 562 } 563 564 /* Do lookup on the reduced list. */ 565 np = n; 566 unresolved = kvm_fdnlist(kd, np); 567 568 /* Check if we could resolve further symbols and update the list. */ 569 if (unresolved >= 0 && unresolved < missing) { 570 /* Find the first freshly resolved entry. */ 571 for (; np->n_name && np->n_name[0]; np++) 572 if (np->n_type != N_UNDF) 573 break; 574 /* 575 * The lists are both in the same order, 576 * so we can walk them in parallel. 577 */ 578 for (p = nl; np->n_name && np->n_name[0] && 579 p->n_name && p->n_name[0]; ++p) { 580 if (p->n_type != N_UNDF) 581 continue; 582 /* Skip expanded name and compare to orig. one. */ 583 ccp = np->n_name + strlen(np->n_name) + 1; 584 if (strcmp(ccp, p->n_name) != 0) 585 continue; 586 /* Update nlist with new, translated results. */ 587 p->n_type = np->n_type; 588 if (validate_fn) 589 p->n_value = (*validate_fn)(kd, np->n_value); 590 else 591 p->n_value = np->n_value; 592 missing--; 593 /* Find next freshly resolved entry. */ 594 for (np++; np->n_name && np->n_name[0]; np++) 595 if (np->n_type != N_UNDF) 596 break; 597 } 598 } 599 /* We could assert missing = unresolved here. */ 600 601 free(n); 602 return (unresolved); 603 } 604 605 int 606 _kvm_nlist(kvm_t *kd, struct kvm_nlist *nl, int initialize) 607 { 608 struct kvm_nlist *p; 609 int nvalid; 610 struct kld_sym_lookup lookup; 611 int error; 612 const char *prefix = ""; 613 char symname[1024]; /* XXX-BZ symbol name length limit? */ 614 int tried_vnet, tried_dpcpu; 615 616 /* 617 * If we can't use the kld symbol lookup, revert to the 618 * slow library call. 619 */ 620 if (!ISALIVE(kd)) { 621 error = kvm_fdnlist(kd, nl); 622 if (error <= 0) /* Hard error or success. */ 623 return (error); 624 625 if (_kvm_vnet_initialized(kd, initialize)) 626 error = kvm_fdnlist_prefix(kd, nl, error, 627 VNET_SYMPREFIX, _kvm_vnet_validaddr); 628 629 if (error > 0 && _kvm_dpcpu_initialized(kd, initialize)) 630 error = kvm_fdnlist_prefix(kd, nl, error, 631 DPCPU_SYMPREFIX, _kvm_dpcpu_validaddr); 632 633 return (error); 634 } 635 636 /* 637 * We can use the kld lookup syscall. Go through each nlist entry 638 * and look it up with a kldsym(2) syscall. 639 */ 640 nvalid = 0; 641 tried_vnet = 0; 642 tried_dpcpu = 0; 643 again: 644 for (p = nl; p->n_name && p->n_name[0]; ++p) { 645 if (p->n_type != N_UNDF) 646 continue; 647 648 lookup.version = sizeof(lookup); 649 lookup.symvalue = 0; 650 lookup.symsize = 0; 651 652 error = snprintf(symname, sizeof(symname), "%s%s", prefix, 653 (prefix[0] != '\0' && p->n_name[0] == '_') ? 654 (p->n_name + 1) : p->n_name); 655 if (error < 0 || error >= (int)sizeof(symname)) 656 continue; 657 lookup.symname = symname; 658 if (lookup.symname[0] == '_') 659 lookup.symname++; 660 661 if (kldsym(0, KLDSYM_LOOKUP, &lookup) != -1) { 662 p->n_type = N_TEXT; 663 if (_kvm_vnet_initialized(kd, initialize) && 664 strcmp(prefix, VNET_SYMPREFIX) == 0) 665 p->n_value = 666 _kvm_vnet_validaddr(kd, lookup.symvalue); 667 else if (_kvm_dpcpu_initialized(kd, initialize) && 668 strcmp(prefix, DPCPU_SYMPREFIX) == 0) 669 p->n_value = 670 _kvm_dpcpu_validaddr(kd, lookup.symvalue); 671 else 672 p->n_value = lookup.symvalue; 673 ++nvalid; 674 /* lookup.symsize */ 675 } 676 } 677 678 /* 679 * Check the number of entries that weren't found. If they exist, 680 * try again with a prefix for virtualized or DPCPU symbol names. 681 */ 682 error = ((p - nl) - nvalid); 683 if (error && _kvm_vnet_initialized(kd, initialize) && !tried_vnet) { 684 tried_vnet = 1; 685 prefix = VNET_SYMPREFIX; 686 goto again; 687 } 688 if (error && _kvm_dpcpu_initialized(kd, initialize) && !tried_dpcpu) { 689 tried_dpcpu = 1; 690 prefix = DPCPU_SYMPREFIX; 691 goto again; 692 } 693 694 /* 695 * Return the number of entries that weren't found. If they exist, 696 * also fill internal error buffer. 697 */ 698 error = ((p - nl) - nvalid); 699 if (error) 700 _kvm_syserr(kd, kd->program, "kvm_nlist"); 701 return (error); 702 } 703 704 int 705 _kvm_bitmap_init(struct kvm_bitmap *bm, u_long bitmapsize, u_long *idx) 706 { 707 708 *idx = ULONG_MAX; 709 bm->map = calloc(bitmapsize, sizeof *bm->map); 710 if (bm->map == NULL) 711 return (0); 712 bm->size = bitmapsize; 713 return (1); 714 } 715 716 void 717 _kvm_bitmap_set(struct kvm_bitmap *bm, u_long pa, unsigned int page_size) 718 { 719 u_long bm_index = pa / page_size; 720 uint8_t *byte = &bm->map[bm_index / 8]; 721 722 *byte |= (1UL << (bm_index % 8)); 723 } 724 725 int 726 _kvm_bitmap_next(struct kvm_bitmap *bm, u_long *idx) 727 { 728 u_long first_invalid = bm->size * CHAR_BIT; 729 730 if (*idx == ULONG_MAX) 731 *idx = 0; 732 else 733 (*idx)++; 734 735 /* Find the next valid idx. */ 736 for (; *idx < first_invalid; (*idx)++) { 737 unsigned int mask = *idx % CHAR_BIT; 738 if ((bm->map[*idx * CHAR_BIT] & mask) == 0) 739 break; 740 } 741 742 return (*idx < first_invalid); 743 } 744 745 void 746 _kvm_bitmap_deinit(struct kvm_bitmap *bm) 747 { 748 749 free(bm->map); 750 } 751 752 int 753 _kvm_visit_cb(kvm_t *kd, kvm_walk_pages_cb_t *cb, void *arg, u_long pa, 754 u_long kmap_vaddr, u_long dmap_vaddr, vm_prot_t prot, size_t len, 755 unsigned int page_size) 756 { 757 unsigned int pgsz = page_size ? page_size : len; 758 struct kvm_page p = { 759 .kp_version = LIBKVM_WALK_PAGES_VERSION, 760 .kp_paddr = pa, 761 .kp_kmap_vaddr = kmap_vaddr, 762 .kp_dmap_vaddr = dmap_vaddr, 763 .kp_prot = prot, 764 .kp_offset = _kvm_pt_find(kd, pa, pgsz), 765 .kp_len = len, 766 }; 767 768 return cb(&p, arg); 769 } 770