1 /*- 2 * Copyright (c) 1989, 1992, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software developed by the Computer Systems 6 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract 7 * BG 91-66 and contributed to Berkeley. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 */ 33 34 #include <sys/cdefs.h> 35 #include <sys/param.h> 36 #include <sys/fnv_hash.h> 37 38 #define _WANT_VNET 39 40 #include <sys/user.h> 41 #include <sys/linker.h> 42 #include <sys/pcpu.h> 43 #include <sys/stat.h> 44 #include <sys/mman.h> 45 46 #include <stdbool.h> 47 #include <net/vnet.h> 48 49 #include <assert.h> 50 #include <fcntl.h> 51 #include <vm/vm.h> 52 #include <kvm.h> 53 #include <limits.h> 54 #include <paths.h> 55 #include <stdint.h> 56 #include <stdio.h> 57 #include <stdlib.h> 58 #include <string.h> 59 #include <unistd.h> 60 #include <stdarg.h> 61 #include <inttypes.h> 62 63 #include "kvm_private.h" 64 65 /* 66 * Routines private to libkvm. 67 */ 68 69 /* from src/lib/libc/gen/nlist.c */ 70 int __fdnlist(int, struct nlist *); 71 72 /* 73 * Report an error using printf style arguments. "program" is kd->program 74 * on hard errors, and 0 on soft errors, so that under sun error emulation, 75 * only hard errors are printed out (otherwise, programs like gdb will 76 * generate tons of error messages when trying to access bogus pointers). 77 */ 78 void 79 _kvm_err(kvm_t *kd, const char *program, const char *fmt, ...) 80 { 81 va_list ap; 82 83 va_start(ap, fmt); 84 if (program != NULL) { 85 (void)fprintf(stderr, "%s: ", program); 86 (void)vfprintf(stderr, fmt, ap); 87 (void)fputc('\n', stderr); 88 } else 89 (void)vsnprintf(kd->errbuf, 90 sizeof(kd->errbuf), fmt, ap); 91 92 va_end(ap); 93 } 94 95 void 96 _kvm_syserr(kvm_t *kd, const char *program, const char *fmt, ...) 97 { 98 va_list ap; 99 int n; 100 101 va_start(ap, fmt); 102 if (program != NULL) { 103 (void)fprintf(stderr, "%s: ", program); 104 (void)vfprintf(stderr, fmt, ap); 105 (void)fprintf(stderr, ": %s\n", strerror(errno)); 106 } else { 107 char *cp = kd->errbuf; 108 109 (void)vsnprintf(cp, sizeof(kd->errbuf), fmt, ap); 110 n = strlen(cp); 111 (void)snprintf(&cp[n], sizeof(kd->errbuf) - n, ": %s", 112 strerror(errno)); 113 } 114 va_end(ap); 115 } 116 117 void * 118 _kvm_malloc(kvm_t *kd, size_t n) 119 { 120 void *p; 121 122 if ((p = calloc(n, sizeof(char))) == NULL) 123 _kvm_err(kd, kd->program, "can't allocate %zu bytes: %s", 124 n, strerror(errno)); 125 return (p); 126 } 127 128 int 129 _kvm_probe_elf_kernel(kvm_t *kd, int class, int machine) 130 { 131 132 return (kd->nlehdr.e_ident[EI_CLASS] == class && 133 ((machine == EM_PPC || machine == EM_PPC64) ? 134 kd->nlehdr.e_type == ET_DYN : kd->nlehdr.e_type == ET_EXEC) && 135 kd->nlehdr.e_machine == machine); 136 } 137 138 int 139 _kvm_is_minidump(kvm_t *kd) 140 { 141 char minihdr[8]; 142 143 if (kd->rawdump) 144 return (0); 145 if (pread(kd->pmfd, &minihdr, 8, 0) == 8 && 146 memcmp(&minihdr, "minidump", 8) == 0) 147 return (1); 148 return (0); 149 } 150 151 /* 152 * The powerpc backend has a hack to strip a leading kerneldump 153 * header from the core before treating it as an ELF header. 154 * 155 * We can add that here if we can get a change to libelf to support 156 * an initial offset into the file. Alternatively we could patch 157 * savecore to extract cores from a regular file instead. 158 */ 159 int 160 _kvm_read_core_phdrs(kvm_t *kd, size_t *phnump, GElf_Phdr **phdrp) 161 { 162 GElf_Ehdr ehdr; 163 GElf_Phdr *phdr; 164 Elf *elf; 165 size_t i, phnum; 166 167 elf = elf_begin(kd->pmfd, ELF_C_READ, NULL); 168 if (elf == NULL) { 169 _kvm_err(kd, kd->program, "%s", elf_errmsg(0)); 170 return (-1); 171 } 172 if (elf_kind(elf) != ELF_K_ELF) { 173 _kvm_err(kd, kd->program, "invalid core"); 174 goto bad; 175 } 176 if (gelf_getclass(elf) != kd->nlehdr.e_ident[EI_CLASS]) { 177 _kvm_err(kd, kd->program, "invalid core"); 178 goto bad; 179 } 180 if (gelf_getehdr(elf, &ehdr) == NULL) { 181 _kvm_err(kd, kd->program, "%s", elf_errmsg(0)); 182 goto bad; 183 } 184 if (ehdr.e_type != ET_CORE) { 185 _kvm_err(kd, kd->program, "invalid core"); 186 goto bad; 187 } 188 if (ehdr.e_machine != kd->nlehdr.e_machine) { 189 _kvm_err(kd, kd->program, "invalid core"); 190 goto bad; 191 } 192 193 if (elf_getphdrnum(elf, &phnum) == -1) { 194 _kvm_err(kd, kd->program, "%s", elf_errmsg(0)); 195 goto bad; 196 } 197 198 phdr = calloc(phnum, sizeof(*phdr)); 199 if (phdr == NULL) { 200 _kvm_err(kd, kd->program, "failed to allocate phdrs"); 201 goto bad; 202 } 203 204 for (i = 0; i < phnum; i++) { 205 if (gelf_getphdr(elf, i, &phdr[i]) == NULL) { 206 free(phdr); 207 _kvm_err(kd, kd->program, "%s", elf_errmsg(0)); 208 goto bad; 209 } 210 } 211 elf_end(elf); 212 *phnump = phnum; 213 *phdrp = phdr; 214 return (0); 215 216 bad: 217 elf_end(elf); 218 return (-1); 219 } 220 221 /* 222 * Transform v such that only bits [bit0, bitN) may be set. Generates a 223 * bitmask covering the number of bits, then shifts so +bit0+ is the first. 224 */ 225 static uint64_t 226 bitmask_range(uint64_t v, uint64_t bit0, uint64_t bitN) 227 { 228 if (bit0 == 0 && bitN == BITS_IN(v)) 229 return (v); 230 231 return (v & (((1ULL << (bitN - bit0)) - 1ULL) << bit0)); 232 } 233 234 /* 235 * Returns the number of bits in a given byte array range starting at a 236 * given base, from bit0 to bitN. bit0 may be non-zero in the case of 237 * counting backwards from bitN. 238 */ 239 static uint64_t 240 popcount_bytes(uint64_t *addr, uint32_t bit0, uint32_t bitN) 241 { 242 uint32_t res = bitN - bit0; 243 uint64_t count = 0; 244 uint32_t bound; 245 246 /* Align to 64-bit boundary on the left side if needed. */ 247 if ((bit0 % BITS_IN(*addr)) != 0) { 248 bound = MIN(bitN, roundup2(bit0, BITS_IN(*addr))); 249 count += __bitcount64(bitmask_range(*addr, bit0, bound)); 250 res -= (bound - bit0); 251 addr++; 252 } 253 254 while (res > 0) { 255 bound = MIN(res, BITS_IN(*addr)); 256 count += __bitcount64(bitmask_range(*addr, 0, bound)); 257 res -= bound; 258 addr++; 259 } 260 261 return (count); 262 } 263 264 void * 265 _kvm_pmap_get(kvm_t *kd, u_long idx, size_t len) 266 { 267 uintptr_t off = idx * len; 268 269 if ((off_t)off >= kd->pt_sparse_off) 270 return (NULL); 271 return (void *)((uintptr_t)kd->page_map + off); 272 } 273 274 void * 275 _kvm_map_get(kvm_t *kd, u_long pa, unsigned int page_size) 276 { 277 off_t off; 278 uintptr_t addr; 279 280 off = _kvm_pt_find(kd, pa, page_size); 281 if (off == -1) 282 return NULL; 283 284 addr = (uintptr_t)kd->page_map + off; 285 if (off >= kd->pt_sparse_off) 286 addr = (uintptr_t)kd->sparse_map + (off - kd->pt_sparse_off); 287 return (void *)addr; 288 } 289 290 int 291 _kvm_pt_init(kvm_t *kd, size_t dump_avail_size, off_t dump_avail_off, 292 size_t map_len, off_t map_off, off_t sparse_off, int page_size) 293 { 294 uint64_t *addr; 295 uint32_t *popcount_bin; 296 int bin_popcounts = 0; 297 uint64_t pc_bins, res; 298 ssize_t rd; 299 300 kd->dump_avail_size = dump_avail_size; 301 if (dump_avail_size > 0) { 302 kd->dump_avail = mmap(NULL, kd->dump_avail_size, PROT_READ, 303 MAP_PRIVATE, kd->pmfd, dump_avail_off); 304 } else { 305 /* 306 * Older version minidumps don't provide dump_avail[], 307 * so the bitmap is fully populated from 0 to 308 * last_pa. Create an implied dump_avail that 309 * expresses this. 310 */ 311 kd->dump_avail = calloc(4, sizeof(uint64_t)); 312 kd->dump_avail[1] = _kvm64toh(kd, map_len * 8 * page_size); 313 } 314 315 /* 316 * Map the bitmap specified by the arguments. 317 */ 318 kd->pt_map = _kvm_malloc(kd, map_len); 319 if (kd->pt_map == NULL) { 320 _kvm_err(kd, kd->program, "cannot allocate %zu bytes for bitmap", 321 map_len); 322 return (-1); 323 } 324 rd = pread(kd->pmfd, kd->pt_map, map_len, map_off); 325 if (rd < 0 || rd != (ssize_t)map_len) { 326 _kvm_err(kd, kd->program, "cannot read %zu bytes for bitmap", 327 map_len); 328 return (-1); 329 } 330 kd->pt_map_size = map_len; 331 332 /* 333 * Generate a popcount cache for every POPCOUNT_BITS in the bitmap, 334 * so lookups only have to calculate the number of bits set between 335 * a cache point and their bit. This reduces lookups to O(1), 336 * without significantly increasing memory requirements. 337 * 338 * Round up the number of bins so that 'upper half' lookups work for 339 * the final bin, if needed. The first popcount is 0, since no bits 340 * precede bit 0, so add 1 for that also. Without this, extra work 341 * would be needed to handle the first PTEs in _kvm_pt_find(). 342 */ 343 addr = kd->pt_map; 344 res = map_len; 345 pc_bins = 1 + (res * NBBY + POPCOUNT_BITS / 2) / POPCOUNT_BITS; 346 kd->pt_popcounts = calloc(pc_bins, sizeof(uint32_t)); 347 if (kd->pt_popcounts == NULL) { 348 _kvm_err(kd, kd->program, "cannot allocate popcount bins"); 349 return (-1); 350 } 351 352 for (popcount_bin = &kd->pt_popcounts[1]; res > 0; 353 addr++, res -= sizeof(*addr)) { 354 *popcount_bin += popcount_bytes(addr, 0, 355 MIN(res * NBBY, BITS_IN(*addr))); 356 if (++bin_popcounts == POPCOUNTS_IN(*addr)) { 357 popcount_bin++; 358 *popcount_bin = *(popcount_bin - 1); 359 bin_popcounts = 0; 360 } 361 } 362 363 assert(pc_bins * sizeof(*popcount_bin) == 364 ((uintptr_t)popcount_bin - (uintptr_t)kd->pt_popcounts)); 365 366 kd->pt_sparse_off = sparse_off; 367 kd->pt_sparse_size = (uint64_t)*popcount_bin * page_size; 368 kd->pt_page_size = page_size; 369 370 /* 371 * Map the sparse page array. This is useful for performing point 372 * lookups of specific pages, e.g. for kvm_walk_pages. Generally, 373 * this is much larger than is reasonable to read in up front, so 374 * mmap it in instead. 375 */ 376 kd->sparse_map = mmap(NULL, kd->pt_sparse_size, PROT_READ, 377 MAP_PRIVATE, kd->pmfd, kd->pt_sparse_off); 378 if (kd->sparse_map == MAP_FAILED) { 379 _kvm_err(kd, kd->program, "cannot map %" PRIu64 380 " bytes from fd %d offset %jd for sparse map: %s", 381 kd->pt_sparse_size, kd->pmfd, 382 (intmax_t)kd->pt_sparse_off, strerror(errno)); 383 return (-1); 384 } 385 return (0); 386 } 387 388 int 389 _kvm_pmap_init(kvm_t *kd, uint32_t pmap_size, off_t pmap_off) 390 { 391 ssize_t exp_len = pmap_size; 392 393 kd->page_map_size = pmap_size; 394 kd->page_map_off = pmap_off; 395 kd->page_map = _kvm_malloc(kd, pmap_size); 396 if (kd->page_map == NULL) { 397 _kvm_err(kd, kd->program, "cannot allocate %u bytes " 398 "for page map", pmap_size); 399 return (-1); 400 } 401 if (pread(kd->pmfd, kd->page_map, pmap_size, pmap_off) != exp_len) { 402 _kvm_err(kd, kd->program, "cannot read %d bytes from " 403 "offset %jd for page map", pmap_size, (intmax_t)pmap_off); 404 return (-1); 405 } 406 return (0); 407 } 408 409 static inline uint64_t 410 dump_avail_n(kvm_t *kd, long i) 411 { 412 return (_kvm64toh(kd, kd->dump_avail[i])); 413 } 414 415 uint64_t 416 _kvm_pa_bit_id(kvm_t *kd, uint64_t pa, unsigned int page_size) 417 { 418 uint64_t adj; 419 long i; 420 421 adj = 0; 422 for (i = 0; dump_avail_n(kd, i + 1) != 0; i += 2) { 423 if (pa >= dump_avail_n(kd, i + 1)) { 424 adj += howmany(dump_avail_n(kd, i + 1), page_size) - 425 dump_avail_n(kd, i) / page_size; 426 } else { 427 return (pa / page_size - 428 dump_avail_n(kd, i) / page_size + adj); 429 } 430 } 431 return (_KVM_BIT_ID_INVALID); 432 } 433 434 uint64_t 435 _kvm_bit_id_pa(kvm_t *kd, uint64_t bit_id, unsigned int page_size) 436 { 437 uint64_t sz; 438 long i; 439 440 for (i = 0; dump_avail_n(kd, i + 1) != 0; i += 2) { 441 sz = howmany(dump_avail_n(kd, i + 1), page_size) - 442 dump_avail_n(kd, i) / page_size; 443 if (bit_id < sz) { 444 return (rounddown2(dump_avail_n(kd, i), page_size) + 445 bit_id * page_size); 446 } 447 bit_id -= sz; 448 } 449 return (_KVM_PA_INVALID); 450 } 451 452 /* 453 * Find the offset for the given physical page address; returns -1 otherwise. 454 * 455 * A page's offset is represented by the sparse page base offset plus the 456 * number of bits set before its bit multiplied by page size. This means 457 * that if a page exists in the dump, it's necessary to know how many pages 458 * in the dump precede it. Reduce this O(n) counting to O(1) by caching the 459 * number of bits set at POPCOUNT_BITS intervals. 460 * 461 * Then to find the number of pages before the requested address, simply 462 * index into the cache and count the number of bits set between that cache 463 * bin and the page's bit. Halve the number of bytes that have to be 464 * checked by also counting down from the next higher bin if it's closer. 465 */ 466 off_t 467 _kvm_pt_find(kvm_t *kd, uint64_t pa, unsigned int page_size) 468 { 469 uint64_t *bitmap = kd->pt_map; 470 uint64_t pte_bit_id = _kvm_pa_bit_id(kd, pa, page_size); 471 uint64_t pte_u64 = pte_bit_id / BITS_IN(*bitmap); 472 uint64_t popcount_id = pte_bit_id / POPCOUNT_BITS; 473 uint64_t pte_mask = 1ULL << (pte_bit_id % BITS_IN(*bitmap)); 474 uint64_t bitN; 475 uint32_t count; 476 477 /* Check whether the page address requested is in the dump. */ 478 if (pte_bit_id == _KVM_BIT_ID_INVALID || 479 pte_bit_id >= (kd->pt_map_size * NBBY) || 480 (bitmap[pte_u64] & pte_mask) == 0) 481 return (-1); 482 483 /* 484 * Add/sub popcounts from the bitmap until the PTE's bit is reached. 485 * For bits that are in the upper half between the calculated 486 * popcount id and the next one, use the next one and subtract to 487 * minimize the number of popcounts required. 488 */ 489 if ((pte_bit_id % POPCOUNT_BITS) < (POPCOUNT_BITS / 2)) { 490 count = kd->pt_popcounts[popcount_id] + popcount_bytes( 491 bitmap + popcount_id * POPCOUNTS_IN(*bitmap), 492 0, pte_bit_id - popcount_id * POPCOUNT_BITS); 493 } else { 494 /* 495 * Counting in reverse is trickier, since we must avoid 496 * reading from bytes that are not in range, and invert. 497 */ 498 uint64_t pte_u64_bit_off = pte_u64 * BITS_IN(*bitmap); 499 500 popcount_id++; 501 bitN = MIN(popcount_id * POPCOUNT_BITS, 502 kd->pt_map_size * BITS_IN(uint8_t)); 503 count = kd->pt_popcounts[popcount_id] - popcount_bytes( 504 bitmap + pte_u64, 505 pte_bit_id - pte_u64_bit_off, bitN - pte_u64_bit_off); 506 } 507 508 /* 509 * This can only happen if the core is truncated. Treat these 510 * entries as if they don't exist, since their backing doesn't. 511 */ 512 if (count >= (kd->pt_sparse_size / page_size)) 513 return (-1); 514 515 return (kd->pt_sparse_off + (uint64_t)count * page_size); 516 } 517 518 static int 519 kvm_fdnlist(kvm_t *kd, struct kvm_nlist *list) 520 { 521 kvaddr_t addr; 522 int error, nfail; 523 524 if (kd->resolve_symbol == NULL) { 525 struct nlist *nl; 526 int count, i; 527 528 for (count = 0; list[count].n_name != NULL && 529 list[count].n_name[0] != '\0'; count++) 530 ; 531 nl = calloc(count + 1, sizeof(*nl)); 532 for (i = 0; i < count; i++) 533 nl[i].n_name = list[i].n_name; 534 nfail = __fdnlist(kd->nlfd, nl); 535 for (i = 0; i < count; i++) { 536 list[i].n_type = nl[i].n_type; 537 list[i].n_value = nl[i].n_value; 538 } 539 free(nl); 540 return (nfail); 541 } 542 543 nfail = 0; 544 while (list->n_name != NULL && list->n_name[0] != '\0') { 545 error = kd->resolve_symbol(list->n_name, &addr); 546 if (error != 0) { 547 nfail++; 548 list->n_value = 0; 549 list->n_type = 0; 550 } else { 551 list->n_value = addr; 552 list->n_type = N_DATA | N_EXT; 553 } 554 list++; 555 } 556 return (nfail); 557 } 558 559 /* 560 * Walk the list of unresolved symbols, generate a new list and prefix the 561 * symbol names, try again, and merge back what we could resolve. 562 */ 563 static int 564 kvm_fdnlist_prefix(kvm_t *kd, struct kvm_nlist *nl, int missing, 565 const char *prefix, kvaddr_t (*validate_fn)(kvm_t *, kvaddr_t)) 566 { 567 struct kvm_nlist *n, *np, *p; 568 char *cp, *ce; 569 const char *ccp; 570 size_t len; 571 int slen, unresolved; 572 573 /* 574 * Calculate the space we need to malloc for nlist and names. 575 * We are going to store the name twice for later lookups: once 576 * with the prefix and once the unmodified name delmited by \0. 577 */ 578 len = 0; 579 unresolved = 0; 580 for (p = nl; p->n_name && p->n_name[0]; ++p) { 581 if (p->n_type != N_UNDF) 582 continue; 583 len += sizeof(struct kvm_nlist) + strlen(prefix) + 584 2 * (strlen(p->n_name) + 1); 585 unresolved++; 586 } 587 if (unresolved == 0) 588 return (unresolved); 589 /* Add space for the terminating nlist entry. */ 590 len += sizeof(struct kvm_nlist); 591 unresolved++; 592 593 /* Alloc one chunk for (nlist, [names]) and setup pointers. */ 594 n = np = malloc(len); 595 bzero(n, len); 596 if (n == NULL) 597 return (missing); 598 cp = ce = (char *)np; 599 cp += unresolved * sizeof(struct kvm_nlist); 600 ce += len; 601 602 /* Generate shortened nlist with special prefix. */ 603 unresolved = 0; 604 for (p = nl; p->n_name && p->n_name[0]; ++p) { 605 if (p->n_type != N_UNDF) 606 continue; 607 *np = *p; 608 /* Save the new\0orig. name so we can later match it again. */ 609 slen = snprintf(cp, ce - cp, "%s%s%c%s", prefix, 610 (prefix[0] != '\0' && p->n_name[0] == '_') ? 611 (p->n_name + 1) : p->n_name, '\0', p->n_name); 612 if (slen < 0 || slen >= ce - cp) 613 continue; 614 np->n_name = cp; 615 cp += slen + 1; 616 np++; 617 unresolved++; 618 } 619 620 /* Do lookup on the reduced list. */ 621 np = n; 622 unresolved = kvm_fdnlist(kd, np); 623 624 /* Check if we could resolve further symbols and update the list. */ 625 if (unresolved >= 0 && unresolved < missing) { 626 /* Find the first freshly resolved entry. */ 627 for (; np->n_name && np->n_name[0]; np++) 628 if (np->n_type != N_UNDF) 629 break; 630 /* 631 * The lists are both in the same order, 632 * so we can walk them in parallel. 633 */ 634 for (p = nl; np->n_name && np->n_name[0] && 635 p->n_name && p->n_name[0]; ++p) { 636 if (p->n_type != N_UNDF) 637 continue; 638 /* Skip expanded name and compare to orig. one. */ 639 ccp = np->n_name + strlen(np->n_name) + 1; 640 if (strcmp(ccp, p->n_name) != 0) 641 continue; 642 /* Update nlist with new, translated results. */ 643 p->n_type = np->n_type; 644 if (validate_fn) 645 p->n_value = (*validate_fn)(kd, np->n_value); 646 else 647 p->n_value = np->n_value; 648 missing--; 649 /* Find next freshly resolved entry. */ 650 for (np++; np->n_name && np->n_name[0]; np++) 651 if (np->n_type != N_UNDF) 652 break; 653 } 654 } 655 /* We could assert missing = unresolved here. */ 656 657 free(n); 658 return (unresolved); 659 } 660 661 int 662 _kvm_nlist(kvm_t *kd, struct kvm_nlist *nl, int initialize) 663 { 664 struct kvm_nlist *p; 665 int nvalid; 666 struct kld_sym_lookup lookup; 667 int error; 668 const char *prefix = ""; 669 char symname[1024]; /* XXX-BZ symbol name length limit? */ 670 int tried_vnet, tried_dpcpu; 671 672 /* 673 * If we can't use the kld symbol lookup, revert to the 674 * slow library call. 675 */ 676 if (!ISALIVE(kd)) { 677 error = kvm_fdnlist(kd, nl); 678 if (error <= 0) /* Hard error or success. */ 679 return (error); 680 681 if (_kvm_vnet_initialized(kd, initialize)) 682 error = kvm_fdnlist_prefix(kd, nl, error, 683 VNET_SYMPREFIX, _kvm_vnet_validaddr); 684 685 if (error > 0 && _kvm_dpcpu_initialized(kd, initialize)) 686 error = kvm_fdnlist_prefix(kd, nl, error, 687 DPCPU_SYMPREFIX, _kvm_dpcpu_validaddr); 688 689 return (error); 690 } 691 692 /* 693 * We can use the kld lookup syscall. Go through each nlist entry 694 * and look it up with a kldsym(2) syscall. 695 */ 696 nvalid = 0; 697 tried_vnet = 0; 698 tried_dpcpu = 0; 699 again: 700 for (p = nl; p->n_name && p->n_name[0]; ++p) { 701 if (p->n_type != N_UNDF) 702 continue; 703 704 lookup.version = sizeof(lookup); 705 lookup.symvalue = 0; 706 lookup.symsize = 0; 707 708 error = snprintf(symname, sizeof(symname), "%s%s", prefix, 709 (prefix[0] != '\0' && p->n_name[0] == '_') ? 710 (p->n_name + 1) : p->n_name); 711 if (error < 0 || error >= (int)sizeof(symname)) 712 continue; 713 lookup.symname = symname; 714 if (lookup.symname[0] == '_') 715 lookup.symname++; 716 717 if (kldsym(0, KLDSYM_LOOKUP, &lookup) != -1) { 718 p->n_type = N_TEXT; 719 if (_kvm_vnet_initialized(kd, initialize) && 720 strcmp(prefix, VNET_SYMPREFIX) == 0) 721 p->n_value = 722 _kvm_vnet_validaddr(kd, lookup.symvalue); 723 else if (_kvm_dpcpu_initialized(kd, initialize) && 724 strcmp(prefix, DPCPU_SYMPREFIX) == 0) 725 p->n_value = 726 _kvm_dpcpu_validaddr(kd, lookup.symvalue); 727 else 728 p->n_value = lookup.symvalue; 729 ++nvalid; 730 /* lookup.symsize */ 731 } 732 } 733 734 /* 735 * Check the number of entries that weren't found. If they exist, 736 * try again with a prefix for virtualized or DPCPU symbol names. 737 */ 738 error = ((p - nl) - nvalid); 739 if (error && _kvm_vnet_initialized(kd, initialize) && !tried_vnet) { 740 tried_vnet = 1; 741 prefix = VNET_SYMPREFIX; 742 goto again; 743 } 744 if (error && _kvm_dpcpu_initialized(kd, initialize) && !tried_dpcpu) { 745 tried_dpcpu = 1; 746 prefix = DPCPU_SYMPREFIX; 747 goto again; 748 } 749 750 /* 751 * Return the number of entries that weren't found. If they exist, 752 * also fill internal error buffer. 753 */ 754 error = ((p - nl) - nvalid); 755 if (error) 756 _kvm_syserr(kd, kd->program, "kvm_nlist"); 757 return (error); 758 } 759 760 int 761 _kvm_bitmap_init(struct kvm_bitmap *bm, u_long bitmapsize, u_long *idx) 762 { 763 764 *idx = ULONG_MAX; 765 bm->map = calloc(bitmapsize, sizeof *bm->map); 766 if (bm->map == NULL) 767 return (0); 768 bm->size = bitmapsize; 769 return (1); 770 } 771 772 void 773 _kvm_bitmap_set(struct kvm_bitmap *bm, u_long bm_index) 774 { 775 uint8_t *byte = &bm->map[bm_index / 8]; 776 777 if (bm_index / 8 < bm->size) 778 *byte |= (1UL << (bm_index % 8)); 779 } 780 781 int 782 _kvm_bitmap_next(struct kvm_bitmap *bm, u_long *idx) 783 { 784 u_long first_invalid = bm->size * CHAR_BIT; 785 786 if (*idx == ULONG_MAX) 787 *idx = 0; 788 else 789 (*idx)++; 790 791 /* Find the next valid idx. */ 792 for (; *idx < first_invalid; (*idx)++) { 793 unsigned int mask = 1U << (*idx % CHAR_BIT); 794 if ((bm->map[*idx / CHAR_BIT] & mask) != 0) 795 break; 796 } 797 798 return (*idx < first_invalid); 799 } 800 801 void 802 _kvm_bitmap_deinit(struct kvm_bitmap *bm) 803 { 804 805 free(bm->map); 806 } 807 808 int 809 _kvm_visit_cb(kvm_t *kd, kvm_walk_pages_cb_t *cb, void *arg, u_long pa, 810 u_long kmap_vaddr, u_long dmap_vaddr, vm_prot_t prot, size_t len, 811 unsigned int page_size) 812 { 813 unsigned int pgsz = page_size ? page_size : len; 814 struct kvm_page p = { 815 .kp_version = LIBKVM_WALK_PAGES_VERSION, 816 .kp_paddr = pa, 817 .kp_kmap_vaddr = kmap_vaddr, 818 .kp_dmap_vaddr = dmap_vaddr, 819 .kp_prot = prot, 820 .kp_offset = _kvm_pt_find(kd, pa, pgsz), 821 .kp_len = len, 822 }; 823 824 return cb(&p, arg); 825 } 826