xref: /freebsd/lib/libkvm/kvm_private.c (revision 0e8011faf58b743cc652e3b2ad0f7671227610df)
1 /*-
2  * Copyright (c) 1989, 1992, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software developed by the Computer Systems
6  * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
7  * BG 91-66 and contributed to Berkeley.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 #include <sys/param.h>
35 #include <sys/fnv_hash.h>
36 
37 #define	_WANT_VNET
38 
39 #include <sys/user.h>
40 #include <sys/linker.h>
41 #include <sys/pcpu.h>
42 #include <sys/stat.h>
43 #include <sys/mman.h>
44 
45 #include <stdbool.h>
46 #include <net/vnet.h>
47 
48 #include <assert.h>
49 #include <fcntl.h>
50 #include <vm/vm.h>
51 #include <kvm.h>
52 #include <limits.h>
53 #include <paths.h>
54 #include <stdint.h>
55 #include <stdio.h>
56 #include <stdlib.h>
57 #include <string.h>
58 #include <unistd.h>
59 #include <stdarg.h>
60 #include <inttypes.h>
61 
62 #include "kvm_private.h"
63 
64 /*
65  * Routines private to libkvm.
66  */
67 
68 /* from src/lib/libc/gen/nlist.c */
69 int __fdnlist(int, struct nlist *);
70 
71 /*
72  * Report an error using printf style arguments.  "program" is kd->program
73  * on hard errors, and 0 on soft errors, so that under sun error emulation,
74  * only hard errors are printed out (otherwise, programs like gdb will
75  * generate tons of error messages when trying to access bogus pointers).
76  */
77 void
78 _kvm_err(kvm_t *kd, const char *program, const char *fmt, ...)
79 {
80 	va_list ap;
81 
82 	va_start(ap, fmt);
83 	if (program != NULL) {
84 		(void)fprintf(stderr, "%s: ", program);
85 		(void)vfprintf(stderr, fmt, ap);
86 		(void)fputc('\n', stderr);
87 	} else
88 		(void)vsnprintf(kd->errbuf,
89 		    sizeof(kd->errbuf), fmt, ap);
90 
91 	va_end(ap);
92 }
93 
94 void
95 _kvm_syserr(kvm_t *kd, const char *program, const char *fmt, ...)
96 {
97 	va_list ap;
98 	int n;
99 
100 	va_start(ap, fmt);
101 	if (program != NULL) {
102 		(void)fprintf(stderr, "%s: ", program);
103 		(void)vfprintf(stderr, fmt, ap);
104 		(void)fprintf(stderr, ": %s\n", strerror(errno));
105 	} else {
106 		char *cp = kd->errbuf;
107 
108 		(void)vsnprintf(cp, sizeof(kd->errbuf), fmt, ap);
109 		n = strlen(cp);
110 		(void)snprintf(&cp[n], sizeof(kd->errbuf) - n, ": %s",
111 		    strerror(errno));
112 	}
113 	va_end(ap);
114 }
115 
116 void *
117 _kvm_malloc(kvm_t *kd, size_t n)
118 {
119 	void *p;
120 
121 	if ((p = calloc(n, sizeof(char))) == NULL)
122 		_kvm_err(kd, kd->program, "can't allocate %zu bytes: %s",
123 			 n, strerror(errno));
124 	return (p);
125 }
126 
127 int
128 _kvm_probe_elf_kernel(kvm_t *kd, int class, int machine)
129 {
130 
131 	return (kd->nlehdr.e_ident[EI_CLASS] == class &&
132 	    ((machine == EM_PPC || machine == EM_PPC64) ?
133 	     kd->nlehdr.e_type == ET_DYN : kd->nlehdr.e_type == ET_EXEC) &&
134 	    kd->nlehdr.e_machine == machine);
135 }
136 
137 int
138 _kvm_is_minidump(kvm_t *kd)
139 {
140 	char minihdr[8];
141 
142 	if (kd->rawdump)
143 		return (0);
144 	if (pread(kd->pmfd, &minihdr, 8, 0) == 8 &&
145 	    memcmp(&minihdr, "minidump", 8) == 0)
146 		return (1);
147 	return (0);
148 }
149 
150 /*
151  * The powerpc backend has a hack to strip a leading kerneldump
152  * header from the core before treating it as an ELF header.
153  *
154  * We can add that here if we can get a change to libelf to support
155  * an initial offset into the file.  Alternatively we could patch
156  * savecore to extract cores from a regular file instead.
157  */
158 int
159 _kvm_read_core_phdrs(kvm_t *kd, size_t *phnump, GElf_Phdr **phdrp)
160 {
161 	GElf_Ehdr ehdr;
162 	GElf_Phdr *phdr;
163 	Elf *elf;
164 	size_t i, phnum;
165 
166 	elf = elf_begin(kd->pmfd, ELF_C_READ, NULL);
167 	if (elf == NULL) {
168 		_kvm_err(kd, kd->program, "%s", elf_errmsg(0));
169 		return (-1);
170 	}
171 	if (elf_kind(elf) != ELF_K_ELF) {
172 		_kvm_err(kd, kd->program, "invalid core");
173 		goto bad;
174 	}
175 	if (gelf_getclass(elf) != kd->nlehdr.e_ident[EI_CLASS]) {
176 		_kvm_err(kd, kd->program, "invalid core");
177 		goto bad;
178 	}
179 	if (gelf_getehdr(elf, &ehdr) == NULL) {
180 		_kvm_err(kd, kd->program, "%s", elf_errmsg(0));
181 		goto bad;
182 	}
183 	if (ehdr.e_type != ET_CORE) {
184 		_kvm_err(kd, kd->program, "invalid core");
185 		goto bad;
186 	}
187 	if (ehdr.e_machine != kd->nlehdr.e_machine) {
188 		_kvm_err(kd, kd->program, "invalid core");
189 		goto bad;
190 	}
191 
192 	if (elf_getphdrnum(elf, &phnum) == -1) {
193 		_kvm_err(kd, kd->program, "%s", elf_errmsg(0));
194 		goto bad;
195 	}
196 
197 	phdr = calloc(phnum, sizeof(*phdr));
198 	if (phdr == NULL) {
199 		_kvm_err(kd, kd->program, "failed to allocate phdrs");
200 		goto bad;
201 	}
202 
203 	for (i = 0; i < phnum; i++) {
204 		if (gelf_getphdr(elf, i, &phdr[i]) == NULL) {
205 			free(phdr);
206 			_kvm_err(kd, kd->program, "%s", elf_errmsg(0));
207 			goto bad;
208 		}
209 	}
210 	elf_end(elf);
211 	*phnump = phnum;
212 	*phdrp = phdr;
213 	return (0);
214 
215 bad:
216 	elf_end(elf);
217 	return (-1);
218 }
219 
220 /*
221  * Transform v such that only bits [bit0, bitN) may be set.  Generates a
222  * bitmask covering the number of bits, then shifts so +bit0+ is the first.
223  */
224 static uint64_t
225 bitmask_range(uint64_t v, uint64_t bit0, uint64_t bitN)
226 {
227 	if (bit0 == 0 && bitN == BITS_IN(v))
228 		return (v);
229 
230 	return (v & (((1ULL << (bitN - bit0)) - 1ULL) << bit0));
231 }
232 
233 /*
234  * Returns the number of bits in a given byte array range starting at a
235  * given base, from bit0 to bitN.  bit0 may be non-zero in the case of
236  * counting backwards from bitN.
237  */
238 static uint64_t
239 popcount_bytes(uint64_t *addr, uint32_t bit0, uint32_t bitN)
240 {
241 	uint32_t res = bitN - bit0;
242 	uint64_t count = 0;
243 	uint32_t bound;
244 
245 	/* Align to 64-bit boundary on the left side if needed. */
246 	if ((bit0 % BITS_IN(*addr)) != 0) {
247 		bound = MIN(bitN, roundup2(bit0, BITS_IN(*addr)));
248 		count += __bitcount64(bitmask_range(*addr, bit0, bound));
249 		res -= (bound - bit0);
250 		addr++;
251 	}
252 
253 	while (res > 0) {
254 		bound = MIN(res, BITS_IN(*addr));
255 		count += __bitcount64(bitmask_range(*addr, 0, bound));
256 		res -= bound;
257 		addr++;
258 	}
259 
260 	return (count);
261 }
262 
263 void *
264 _kvm_pmap_get(kvm_t *kd, u_long idx, size_t len)
265 {
266 	uintptr_t off = idx * len;
267 
268 	if ((off_t)off >= kd->pt_sparse_off)
269 		return (NULL);
270 	return (void *)((uintptr_t)kd->page_map + off);
271 }
272 
273 void *
274 _kvm_map_get(kvm_t *kd, u_long pa, unsigned int page_size)
275 {
276 	off_t off;
277 	uintptr_t addr;
278 
279 	off = _kvm_pt_find(kd, pa, page_size);
280 	if (off == -1)
281 		return NULL;
282 
283 	addr = (uintptr_t)kd->page_map + off;
284 	if (off >= kd->pt_sparse_off)
285 		addr = (uintptr_t)kd->sparse_map + (off - kd->pt_sparse_off);
286 	return (void *)addr;
287 }
288 
289 int
290 _kvm_pt_init(kvm_t *kd, size_t dump_avail_size, off_t dump_avail_off,
291     size_t map_len, off_t map_off, off_t sparse_off, int page_size)
292 {
293 	uint64_t *addr;
294 	uint32_t *popcount_bin;
295 	int bin_popcounts = 0;
296 	uint64_t pc_bins, res;
297 	ssize_t rd;
298 
299 	kd->dump_avail_size = dump_avail_size;
300 	if (dump_avail_size > 0) {
301 		kd->dump_avail = mmap(NULL, kd->dump_avail_size, PROT_READ,
302 		    MAP_PRIVATE, kd->pmfd, dump_avail_off);
303 	} else {
304 		/*
305 		 * Older version minidumps don't provide dump_avail[],
306 		 * so the bitmap is fully populated from 0 to
307 		 * last_pa. Create an implied dump_avail that
308 		 * expresses this.
309 		 */
310 		kd->dump_avail = calloc(4, sizeof(uint64_t));
311 		kd->dump_avail[1] = _kvm64toh(kd, map_len * 8 * page_size);
312 	}
313 
314 	/*
315 	 * Map the bitmap specified by the arguments.
316 	 */
317 	kd->pt_map = _kvm_malloc(kd, map_len);
318 	if (kd->pt_map == NULL) {
319 		_kvm_err(kd, kd->program, "cannot allocate %zu bytes for bitmap",
320 		    map_len);
321 		return (-1);
322 	}
323 	rd = pread(kd->pmfd, kd->pt_map, map_len, map_off);
324 	if (rd < 0 || rd != (ssize_t)map_len) {
325 		_kvm_err(kd, kd->program, "cannot read %zu bytes for bitmap",
326 		    map_len);
327 		return (-1);
328 	}
329 	kd->pt_map_size = map_len;
330 
331 	/*
332 	 * Generate a popcount cache for every POPCOUNT_BITS in the bitmap,
333 	 * so lookups only have to calculate the number of bits set between
334 	 * a cache point and their bit.  This reduces lookups to O(1),
335 	 * without significantly increasing memory requirements.
336 	 *
337 	 * Round up the number of bins so that 'upper half' lookups work for
338 	 * the final bin, if needed.  The first popcount is 0, since no bits
339 	 * precede bit 0, so add 1 for that also.  Without this, extra work
340 	 * would be needed to handle the first PTEs in _kvm_pt_find().
341 	 */
342 	addr = kd->pt_map;
343 	res = map_len;
344 	pc_bins = 1 + (res * NBBY + POPCOUNT_BITS / 2) / POPCOUNT_BITS;
345 	kd->pt_popcounts = calloc(pc_bins, sizeof(uint32_t));
346 	if (kd->pt_popcounts == NULL) {
347 		_kvm_err(kd, kd->program, "cannot allocate popcount bins");
348 		return (-1);
349 	}
350 
351 	for (popcount_bin = &kd->pt_popcounts[1]; res > 0;
352 	    addr++, res -= sizeof(*addr)) {
353 		*popcount_bin += popcount_bytes(addr, 0,
354 		    MIN(res * NBBY, BITS_IN(*addr)));
355 		if (++bin_popcounts == POPCOUNTS_IN(*addr)) {
356 			popcount_bin++;
357 			*popcount_bin = *(popcount_bin - 1);
358 			bin_popcounts = 0;
359 		}
360 	}
361 
362 	assert(pc_bins * sizeof(*popcount_bin) ==
363 	    ((uintptr_t)popcount_bin - (uintptr_t)kd->pt_popcounts));
364 
365 	kd->pt_sparse_off = sparse_off;
366 	kd->pt_sparse_size = (uint64_t)*popcount_bin * page_size;
367 	kd->pt_page_size = page_size;
368 
369 	/*
370 	 * Map the sparse page array.  This is useful for performing point
371 	 * lookups of specific pages, e.g. for kvm_walk_pages.  Generally,
372 	 * this is much larger than is reasonable to read in up front, so
373 	 * mmap it in instead.
374 	 */
375 	kd->sparse_map = mmap(NULL, kd->pt_sparse_size, PROT_READ,
376 	    MAP_PRIVATE, kd->pmfd, kd->pt_sparse_off);
377 	if (kd->sparse_map == MAP_FAILED) {
378 		_kvm_err(kd, kd->program, "cannot map %" PRIu64
379 		    " bytes from fd %d offset %jd for sparse map: %s",
380 		    kd->pt_sparse_size, kd->pmfd,
381 		    (intmax_t)kd->pt_sparse_off, strerror(errno));
382 		return (-1);
383 	}
384 	return (0);
385 }
386 
387 int
388 _kvm_pmap_init(kvm_t *kd, uint32_t pmap_size, off_t pmap_off)
389 {
390 	ssize_t exp_len = pmap_size;
391 
392 	kd->page_map_size = pmap_size;
393 	kd->page_map_off = pmap_off;
394 	kd->page_map = _kvm_malloc(kd, pmap_size);
395 	if (kd->page_map == NULL) {
396 		_kvm_err(kd, kd->program, "cannot allocate %u bytes "
397 		    "for page map", pmap_size);
398 		return (-1);
399 	}
400 	if (pread(kd->pmfd, kd->page_map, pmap_size, pmap_off) != exp_len) {
401 		_kvm_err(kd, kd->program, "cannot read %d bytes from "
402 		    "offset %jd for page map", pmap_size, (intmax_t)pmap_off);
403 		return (-1);
404 	}
405 	return (0);
406 }
407 
408 static inline uint64_t
409 dump_avail_n(kvm_t *kd, long i)
410 {
411 	return (_kvm64toh(kd, kd->dump_avail[i]));
412 }
413 
414 uint64_t
415 _kvm_pa_bit_id(kvm_t *kd, uint64_t pa, unsigned int page_size)
416 {
417 	uint64_t adj;
418 	long i;
419 
420 	adj = 0;
421 	for (i = 0; dump_avail_n(kd, i + 1) != 0; i += 2) {
422 		if (pa >= dump_avail_n(kd, i + 1)) {
423 			adj += howmany(dump_avail_n(kd, i + 1), page_size) -
424 			    dump_avail_n(kd, i) / page_size;
425 		} else {
426 			return (pa / page_size -
427 			    dump_avail_n(kd, i) / page_size + adj);
428 		}
429 	}
430 	return (_KVM_BIT_ID_INVALID);
431 }
432 
433 uint64_t
434 _kvm_bit_id_pa(kvm_t *kd, uint64_t bit_id, unsigned int page_size)
435 {
436 	uint64_t sz;
437 	long i;
438 
439 	for (i = 0; dump_avail_n(kd, i + 1) != 0; i += 2) {
440 		sz = howmany(dump_avail_n(kd, i + 1), page_size) -
441 		    dump_avail_n(kd, i) / page_size;
442 		if (bit_id < sz) {
443 			return (rounddown2(dump_avail_n(kd, i), page_size) +
444 			    bit_id * page_size);
445 		}
446 		bit_id -= sz;
447 	}
448 	return (_KVM_PA_INVALID);
449 }
450 
451 /*
452  * Find the offset for the given physical page address; returns -1 otherwise.
453  *
454  * A page's offset is represented by the sparse page base offset plus the
455  * number of bits set before its bit multiplied by page size.  This means
456  * that if a page exists in the dump, it's necessary to know how many pages
457  * in the dump precede it.  Reduce this O(n) counting to O(1) by caching the
458  * number of bits set at POPCOUNT_BITS intervals.
459  *
460  * Then to find the number of pages before the requested address, simply
461  * index into the cache and count the number of bits set between that cache
462  * bin and the page's bit.  Halve the number of bytes that have to be
463  * checked by also counting down from the next higher bin if it's closer.
464  */
465 off_t
466 _kvm_pt_find(kvm_t *kd, uint64_t pa, unsigned int page_size)
467 {
468 	uint64_t *bitmap = kd->pt_map;
469 	uint64_t pte_bit_id = _kvm_pa_bit_id(kd, pa, page_size);
470 	uint64_t pte_u64 = pte_bit_id / BITS_IN(*bitmap);
471 	uint64_t popcount_id = pte_bit_id / POPCOUNT_BITS;
472 	uint64_t pte_mask = 1ULL << (pte_bit_id % BITS_IN(*bitmap));
473 	uint64_t bitN;
474 	uint32_t count;
475 
476 	/* Check whether the page address requested is in the dump. */
477 	if (pte_bit_id == _KVM_BIT_ID_INVALID ||
478 	    pte_bit_id >= (kd->pt_map_size * NBBY) ||
479 	    (bitmap[pte_u64] & pte_mask) == 0)
480 		return (-1);
481 
482 	/*
483 	 * Add/sub popcounts from the bitmap until the PTE's bit is reached.
484 	 * For bits that are in the upper half between the calculated
485 	 * popcount id and the next one, use the next one and subtract to
486 	 * minimize the number of popcounts required.
487 	 */
488 	if ((pte_bit_id % POPCOUNT_BITS) < (POPCOUNT_BITS / 2)) {
489 		count = kd->pt_popcounts[popcount_id] + popcount_bytes(
490 		    bitmap + popcount_id * POPCOUNTS_IN(*bitmap),
491 		    0, pte_bit_id - popcount_id * POPCOUNT_BITS);
492 	} else {
493 		/*
494 		 * Counting in reverse is trickier, since we must avoid
495 		 * reading from bytes that are not in range, and invert.
496 		 */
497 		uint64_t pte_u64_bit_off = pte_u64 * BITS_IN(*bitmap);
498 
499 		popcount_id++;
500 		bitN = MIN(popcount_id * POPCOUNT_BITS,
501 		    kd->pt_map_size * BITS_IN(uint8_t));
502 		count = kd->pt_popcounts[popcount_id] - popcount_bytes(
503 		    bitmap + pte_u64,
504 		    pte_bit_id - pte_u64_bit_off, bitN - pte_u64_bit_off);
505 	}
506 
507 	/*
508 	 * This can only happen if the core is truncated.  Treat these
509 	 * entries as if they don't exist, since their backing doesn't.
510 	 */
511 	if (count >= (kd->pt_sparse_size / page_size))
512 		return (-1);
513 
514 	return (kd->pt_sparse_off + (uint64_t)count * page_size);
515 }
516 
517 static int
518 kvm_fdnlist(kvm_t *kd, struct kvm_nlist *list)
519 {
520 	kvaddr_t addr;
521 	int error, nfail;
522 
523 	if (kd->resolve_symbol == NULL) {
524 		struct nlist *nl;
525 		int count, i;
526 
527 		for (count = 0; list[count].n_name != NULL &&
528 		     list[count].n_name[0] != '\0'; count++)
529 			;
530 		nl = calloc(count + 1, sizeof(*nl));
531 		for (i = 0; i < count; i++)
532 			nl[i].n_name = list[i].n_name;
533 		nfail = __fdnlist(kd->nlfd, nl);
534 		for (i = 0; i < count; i++) {
535 			list[i].n_type = nl[i].n_type;
536 			list[i].n_value = nl[i].n_value;
537 		}
538 		free(nl);
539 		return (nfail);
540 	}
541 
542 	nfail = 0;
543 	while (list->n_name != NULL && list->n_name[0] != '\0') {
544 		error = kd->resolve_symbol(list->n_name, &addr);
545 		if (error != 0) {
546 			nfail++;
547 			list->n_value = 0;
548 			list->n_type = 0;
549 		} else {
550 			list->n_value = addr;
551 			list->n_type = N_DATA | N_EXT;
552 		}
553 		list++;
554 	}
555 	return (nfail);
556 }
557 
558 /*
559  * Walk the list of unresolved symbols, generate a new list and prefix the
560  * symbol names, try again, and merge back what we could resolve.
561  */
562 static int
563 kvm_fdnlist_prefix(kvm_t *kd, struct kvm_nlist *nl, int missing,
564     const char *prefix, kvaddr_t (*validate_fn)(kvm_t *, kvaddr_t))
565 {
566 	struct kvm_nlist *n, *np, *p;
567 	char *cp, *ce;
568 	const char *ccp;
569 	size_t len;
570 	int slen, unresolved;
571 
572 	/*
573 	 * Calculate the space we need to malloc for nlist and names.
574 	 * We are going to store the name twice for later lookups: once
575 	 * with the prefix and once the unmodified name delmited by \0.
576 	 */
577 	len = 0;
578 	unresolved = 0;
579 	for (p = nl; p->n_name && p->n_name[0]; ++p) {
580 		if (p->n_type != N_UNDF)
581 			continue;
582 		len += sizeof(struct kvm_nlist) + strlen(prefix) +
583 		    2 * (strlen(p->n_name) + 1);
584 		unresolved++;
585 	}
586 	if (unresolved == 0)
587 		return (unresolved);
588 	/* Add space for the terminating nlist entry. */
589 	len += sizeof(struct kvm_nlist);
590 	unresolved++;
591 
592 	/* Alloc one chunk for (nlist, [names]) and setup pointers. */
593 	n = np = malloc(len);
594 	bzero(n, len);
595 	if (n == NULL)
596 		return (missing);
597 	cp = ce = (char *)np;
598 	cp += unresolved * sizeof(struct kvm_nlist);
599 	ce += len;
600 
601 	/* Generate shortened nlist with special prefix. */
602 	unresolved = 0;
603 	for (p = nl; p->n_name && p->n_name[0]; ++p) {
604 		if (p->n_type != N_UNDF)
605 			continue;
606 		*np = *p;
607 		/* Save the new\0orig. name so we can later match it again. */
608 		slen = snprintf(cp, ce - cp, "%s%s%c%s", prefix,
609 		    (prefix[0] != '\0' && p->n_name[0] == '_') ?
610 			(p->n_name + 1) : p->n_name, '\0', p->n_name);
611 		if (slen < 0 || slen >= ce - cp)
612 			continue;
613 		np->n_name = cp;
614 		cp += slen + 1;
615 		np++;
616 		unresolved++;
617 	}
618 
619 	/* Do lookup on the reduced list. */
620 	np = n;
621 	unresolved = kvm_fdnlist(kd, np);
622 
623 	/* Check if we could resolve further symbols and update the list. */
624 	if (unresolved >= 0 && unresolved < missing) {
625 		/* Find the first freshly resolved entry. */
626 		for (; np->n_name && np->n_name[0]; np++)
627 			if (np->n_type != N_UNDF)
628 				break;
629 		/*
630 		 * The lists are both in the same order,
631 		 * so we can walk them in parallel.
632 		 */
633 		for (p = nl; np->n_name && np->n_name[0] &&
634 		    p->n_name && p->n_name[0]; ++p) {
635 			if (p->n_type != N_UNDF)
636 				continue;
637 			/* Skip expanded name and compare to orig. one. */
638 			ccp = np->n_name + strlen(np->n_name) + 1;
639 			if (strcmp(ccp, p->n_name) != 0)
640 				continue;
641 			/* Update nlist with new, translated results. */
642 			p->n_type = np->n_type;
643 			if (validate_fn)
644 				p->n_value = (*validate_fn)(kd, np->n_value);
645 			else
646 				p->n_value = np->n_value;
647 			missing--;
648 			/* Find next freshly resolved entry. */
649 			for (np++; np->n_name && np->n_name[0]; np++)
650 				if (np->n_type != N_UNDF)
651 					break;
652 		}
653 	}
654 	/* We could assert missing = unresolved here. */
655 
656 	free(n);
657 	return (unresolved);
658 }
659 
660 int
661 _kvm_nlist(kvm_t *kd, struct kvm_nlist *nl, int initialize)
662 {
663 	struct kvm_nlist *p;
664 	int nvalid;
665 	struct kld_sym_lookup lookup;
666 	int error;
667 	const char *prefix = "";
668 	char symname[1024]; /* XXX-BZ symbol name length limit? */
669 	int tried_vnet, tried_dpcpu;
670 
671 	/*
672 	 * If we can't use the kld symbol lookup, revert to the
673 	 * slow library call.
674 	 */
675 	if (!ISALIVE(kd)) {
676 		error = kvm_fdnlist(kd, nl);
677 		if (error <= 0)			/* Hard error or success. */
678 			return (error);
679 
680 		if (_kvm_vnet_initialized(kd, initialize))
681 			error = kvm_fdnlist_prefix(kd, nl, error,
682 			    VNET_SYMPREFIX, _kvm_vnet_validaddr);
683 
684 		if (error > 0 && _kvm_dpcpu_initialized(kd, initialize))
685 			error = kvm_fdnlist_prefix(kd, nl, error,
686 			    DPCPU_SYMPREFIX, _kvm_dpcpu_validaddr);
687 
688 		return (error);
689 	}
690 
691 	/*
692 	 * We can use the kld lookup syscall.  Go through each nlist entry
693 	 * and look it up with a kldsym(2) syscall.
694 	 */
695 	nvalid = 0;
696 	tried_vnet = 0;
697 	tried_dpcpu = 0;
698 again:
699 	for (p = nl; p->n_name && p->n_name[0]; ++p) {
700 		if (p->n_type != N_UNDF)
701 			continue;
702 
703 		lookup.version = sizeof(lookup);
704 		lookup.symvalue = 0;
705 		lookup.symsize = 0;
706 
707 		error = snprintf(symname, sizeof(symname), "%s%s", prefix,
708 		    (prefix[0] != '\0' && p->n_name[0] == '_') ?
709 			(p->n_name + 1) : p->n_name);
710 		if (error < 0 || error >= (int)sizeof(symname))
711 			continue;
712 		lookup.symname = symname;
713 		if (lookup.symname[0] == '_')
714 			lookup.symname++;
715 
716 		if (kldsym(0, KLDSYM_LOOKUP, &lookup) != -1) {
717 			p->n_type = N_TEXT;
718 			if (_kvm_vnet_initialized(kd, initialize) &&
719 			    strcmp(prefix, VNET_SYMPREFIX) == 0)
720 				p->n_value =
721 				    _kvm_vnet_validaddr(kd, lookup.symvalue);
722 			else if (_kvm_dpcpu_initialized(kd, initialize) &&
723 			    strcmp(prefix, DPCPU_SYMPREFIX) == 0)
724 				p->n_value =
725 				    _kvm_dpcpu_validaddr(kd, lookup.symvalue);
726 			else
727 				p->n_value = lookup.symvalue;
728 			++nvalid;
729 			/* lookup.symsize */
730 		}
731 	}
732 
733 	/*
734 	 * Check the number of entries that weren't found. If they exist,
735 	 * try again with a prefix for virtualized or DPCPU symbol names.
736 	 */
737 	error = ((p - nl) - nvalid);
738 	if (error && _kvm_vnet_initialized(kd, initialize) && !tried_vnet) {
739 		tried_vnet = 1;
740 		prefix = VNET_SYMPREFIX;
741 		goto again;
742 	}
743 	if (error && _kvm_dpcpu_initialized(kd, initialize) && !tried_dpcpu) {
744 		tried_dpcpu = 1;
745 		prefix = DPCPU_SYMPREFIX;
746 		goto again;
747 	}
748 
749 	/*
750 	 * Return the number of entries that weren't found. If they exist,
751 	 * also fill internal error buffer.
752 	 */
753 	error = ((p - nl) - nvalid);
754 	if (error)
755 		_kvm_syserr(kd, kd->program, "kvm_nlist");
756 	return (error);
757 }
758 
759 int
760 _kvm_bitmap_init(struct kvm_bitmap *bm, u_long bitmapsize, u_long *idx)
761 {
762 
763 	*idx = ULONG_MAX;
764 	bm->map = calloc(bitmapsize, sizeof *bm->map);
765 	if (bm->map == NULL)
766 		return (0);
767 	bm->size = bitmapsize;
768 	return (1);
769 }
770 
771 void
772 _kvm_bitmap_set(struct kvm_bitmap *bm, u_long bm_index)
773 {
774 	uint8_t *byte = &bm->map[bm_index / 8];
775 
776 	if (bm_index / 8 < bm->size)
777 		*byte |= (1UL << (bm_index % 8));
778 }
779 
780 int
781 _kvm_bitmap_next(struct kvm_bitmap *bm, u_long *idx)
782 {
783 	u_long first_invalid = bm->size * CHAR_BIT;
784 
785 	if (*idx == ULONG_MAX)
786 		*idx = 0;
787 	else
788 		(*idx)++;
789 
790 	/* Find the next valid idx. */
791 	for (; *idx < first_invalid; (*idx)++) {
792 		unsigned int mask = 1U << (*idx % CHAR_BIT);
793 		if ((bm->map[*idx / CHAR_BIT] & mask) != 0)
794 			break;
795 	}
796 
797 	return (*idx < first_invalid);
798 }
799 
800 void
801 _kvm_bitmap_deinit(struct kvm_bitmap *bm)
802 {
803 
804 	free(bm->map);
805 }
806 
807 int
808 _kvm_visit_cb(kvm_t *kd, kvm_walk_pages_cb_t *cb, void *arg, u_long pa,
809     u_long kmap_vaddr, u_long dmap_vaddr, vm_prot_t prot, size_t len,
810     unsigned int page_size)
811 {
812 	unsigned int pgsz = page_size ? page_size : len;
813 	struct kvm_page p = {
814 		.kp_version = LIBKVM_WALK_PAGES_VERSION,
815 		.kp_paddr = pa,
816 		.kp_kmap_vaddr = kmap_vaddr,
817 		.kp_dmap_vaddr = dmap_vaddr,
818 		.kp_prot = prot,
819 		.kp_offset = _kvm_pt_find(kd, pa, pgsz),
820 		.kp_len = len,
821 	};
822 
823 	return cb(&p, arg);
824 }
825