1 /*- 2 * Copyright (c) 1989, 1992, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software developed by the Computer Systems 6 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract 7 * BG 91-66 and contributed to Berkeley. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include <sys/param.h> 38 #include <sys/fnv_hash.h> 39 40 #define _WANT_VNET 41 42 #include <sys/user.h> 43 #include <sys/linker.h> 44 #include <sys/pcpu.h> 45 #include <sys/stat.h> 46 #include <sys/mman.h> 47 48 #include <net/vnet.h> 49 50 #include <assert.h> 51 #include <fcntl.h> 52 #include <vm/vm.h> 53 #include <kvm.h> 54 #include <limits.h> 55 #include <paths.h> 56 #include <stdint.h> 57 #include <stdio.h> 58 #include <stdlib.h> 59 #include <string.h> 60 #include <unistd.h> 61 #include <stdarg.h> 62 #include <inttypes.h> 63 64 #include "kvm_private.h" 65 66 /* 67 * Routines private to libkvm. 68 */ 69 70 /* from src/lib/libc/gen/nlist.c */ 71 int __fdnlist(int, struct nlist *); 72 73 /* 74 * Report an error using printf style arguments. "program" is kd->program 75 * on hard errors, and 0 on soft errors, so that under sun error emulation, 76 * only hard errors are printed out (otherwise, programs like gdb will 77 * generate tons of error messages when trying to access bogus pointers). 78 */ 79 void 80 _kvm_err(kvm_t *kd, const char *program, const char *fmt, ...) 81 { 82 va_list ap; 83 84 va_start(ap, fmt); 85 if (program != NULL) { 86 (void)fprintf(stderr, "%s: ", program); 87 (void)vfprintf(stderr, fmt, ap); 88 (void)fputc('\n', stderr); 89 } else 90 (void)vsnprintf(kd->errbuf, 91 sizeof(kd->errbuf), fmt, ap); 92 93 va_end(ap); 94 } 95 96 void 97 _kvm_syserr(kvm_t *kd, const char *program, const char *fmt, ...) 98 { 99 va_list ap; 100 int n; 101 102 va_start(ap, fmt); 103 if (program != NULL) { 104 (void)fprintf(stderr, "%s: ", program); 105 (void)vfprintf(stderr, fmt, ap); 106 (void)fprintf(stderr, ": %s\n", strerror(errno)); 107 } else { 108 char *cp = kd->errbuf; 109 110 (void)vsnprintf(cp, sizeof(kd->errbuf), fmt, ap); 111 n = strlen(cp); 112 (void)snprintf(&cp[n], sizeof(kd->errbuf) - n, ": %s", 113 strerror(errno)); 114 } 115 va_end(ap); 116 } 117 118 void * 119 _kvm_malloc(kvm_t *kd, size_t n) 120 { 121 void *p; 122 123 if ((p = calloc(n, sizeof(char))) == NULL) 124 _kvm_err(kd, kd->program, "can't allocate %zu bytes: %s", 125 n, strerror(errno)); 126 return (p); 127 } 128 129 int 130 _kvm_probe_elf_kernel(kvm_t *kd, int class, int machine) 131 { 132 133 return (kd->nlehdr.e_ident[EI_CLASS] == class && 134 kd->nlehdr.e_type == ET_EXEC && 135 kd->nlehdr.e_machine == machine); 136 } 137 138 int 139 _kvm_is_minidump(kvm_t *kd) 140 { 141 char minihdr[8]; 142 143 if (kd->rawdump) 144 return (0); 145 if (pread(kd->pmfd, &minihdr, 8, 0) == 8 && 146 memcmp(&minihdr, "minidump", 8) == 0) 147 return (1); 148 return (0); 149 } 150 151 /* 152 * The powerpc backend has a hack to strip a leading kerneldump 153 * header from the core before treating it as an ELF header. 154 * 155 * We can add that here if we can get a change to libelf to support 156 * an initial offset into the file. Alternatively we could patch 157 * savecore to extract cores from a regular file instead. 158 */ 159 int 160 _kvm_read_core_phdrs(kvm_t *kd, size_t *phnump, GElf_Phdr **phdrp) 161 { 162 GElf_Ehdr ehdr; 163 GElf_Phdr *phdr; 164 Elf *elf; 165 size_t i, phnum; 166 167 elf = elf_begin(kd->pmfd, ELF_C_READ, NULL); 168 if (elf == NULL) { 169 _kvm_err(kd, kd->program, "%s", elf_errmsg(0)); 170 return (-1); 171 } 172 if (elf_kind(elf) != ELF_K_ELF) { 173 _kvm_err(kd, kd->program, "invalid core"); 174 goto bad; 175 } 176 if (gelf_getclass(elf) != kd->nlehdr.e_ident[EI_CLASS]) { 177 _kvm_err(kd, kd->program, "invalid core"); 178 goto bad; 179 } 180 if (gelf_getehdr(elf, &ehdr) == NULL) { 181 _kvm_err(kd, kd->program, "%s", elf_errmsg(0)); 182 goto bad; 183 } 184 if (ehdr.e_type != ET_CORE) { 185 _kvm_err(kd, kd->program, "invalid core"); 186 goto bad; 187 } 188 if (ehdr.e_machine != kd->nlehdr.e_machine) { 189 _kvm_err(kd, kd->program, "invalid core"); 190 goto bad; 191 } 192 193 if (elf_getphdrnum(elf, &phnum) == -1) { 194 _kvm_err(kd, kd->program, "%s", elf_errmsg(0)); 195 goto bad; 196 } 197 198 phdr = calloc(phnum, sizeof(*phdr)); 199 if (phdr == NULL) { 200 _kvm_err(kd, kd->program, "failed to allocate phdrs"); 201 goto bad; 202 } 203 204 for (i = 0; i < phnum; i++) { 205 if (gelf_getphdr(elf, i, &phdr[i]) == NULL) { 206 free(phdr); 207 _kvm_err(kd, kd->program, "%s", elf_errmsg(0)); 208 goto bad; 209 } 210 } 211 elf_end(elf); 212 *phnump = phnum; 213 *phdrp = phdr; 214 return (0); 215 216 bad: 217 elf_end(elf); 218 return (-1); 219 } 220 221 /* 222 * Transform v such that only bits [bit0, bitN) may be set. Generates a 223 * bitmask covering the number of bits, then shifts so +bit0+ is the first. 224 */ 225 static uint64_t 226 bitmask_range(uint64_t v, uint64_t bit0, uint64_t bitN) 227 { 228 if (bit0 == 0 && bitN == BITS_IN(v)) 229 return (v); 230 231 return (v & (((1ULL << (bitN - bit0)) - 1ULL) << bit0)); 232 } 233 234 /* 235 * Returns the number of bits in a given byte array range starting at a 236 * given base, from bit0 to bitN. bit0 may be non-zero in the case of 237 * counting backwards from bitN. 238 */ 239 static uint64_t 240 popcount_bytes(uint64_t *addr, uint32_t bit0, uint32_t bitN) 241 { 242 uint32_t res = bitN - bit0; 243 uint64_t count = 0; 244 uint32_t bound; 245 246 /* Align to 64-bit boundary on the left side if needed. */ 247 if ((bit0 % BITS_IN(*addr)) != 0) { 248 bound = MIN(bitN, roundup2(bit0, BITS_IN(*addr))); 249 count += __bitcount64(bitmask_range(*addr, bit0, bound)); 250 res -= (bound - bit0); 251 addr++; 252 } 253 254 while (res > 0) { 255 bound = MIN(res, BITS_IN(*addr)); 256 count += __bitcount64(bitmask_range(*addr, 0, bound)); 257 res -= bound; 258 addr++; 259 } 260 261 return (count); 262 } 263 264 void * 265 _kvm_pmap_get(kvm_t *kd, u_long idx, size_t len) 266 { 267 uintptr_t off = idx * len; 268 269 if ((off_t)off >= kd->pt_sparse_off) 270 return (NULL); 271 return (void *)((uintptr_t)kd->page_map + off); 272 } 273 274 void * 275 _kvm_map_get(kvm_t *kd, u_long pa, unsigned int page_size) 276 { 277 off_t off; 278 uintptr_t addr; 279 280 off = _kvm_pt_find(kd, pa, page_size); 281 if (off == -1) 282 return NULL; 283 284 addr = (uintptr_t)kd->page_map + off; 285 if (off >= kd->pt_sparse_off) 286 addr = (uintptr_t)kd->sparse_map + (off - kd->pt_sparse_off); 287 return (void *)addr; 288 } 289 290 int 291 _kvm_pt_init(kvm_t *kd, size_t map_len, off_t map_off, off_t sparse_off, 292 int page_size, int word_size) 293 { 294 uint64_t *addr; 295 uint32_t *popcount_bin; 296 int bin_popcounts = 0; 297 uint64_t pc_bins, res; 298 ssize_t rd; 299 300 /* 301 * Map the bitmap specified by the arguments. 302 */ 303 kd->pt_map = _kvm_malloc(kd, map_len); 304 if (kd->pt_map == NULL) { 305 _kvm_err(kd, kd->program, "cannot allocate %zu bytes for bitmap", 306 map_len); 307 return (-1); 308 } 309 rd = pread(kd->pmfd, kd->pt_map, map_len, map_off); 310 if (rd < 0 || rd != (ssize_t)map_len) { 311 _kvm_err(kd, kd->program, "cannot read %zu bytes for bitmap", 312 map_len); 313 return (-1); 314 } 315 kd->pt_map_size = map_len; 316 317 /* 318 * Generate a popcount cache for every POPCOUNT_BITS in the bitmap, 319 * so lookups only have to calculate the number of bits set between 320 * a cache point and their bit. This reduces lookups to O(1), 321 * without significantly increasing memory requirements. 322 * 323 * Round up the number of bins so that 'upper half' lookups work for 324 * the final bin, if needed. The first popcount is 0, since no bits 325 * precede bit 0, so add 1 for that also. Without this, extra work 326 * would be needed to handle the first PTEs in _kvm_pt_find(). 327 */ 328 addr = kd->pt_map; 329 res = map_len; 330 pc_bins = 1 + (res * NBBY + POPCOUNT_BITS / 2) / POPCOUNT_BITS; 331 kd->pt_popcounts = calloc(pc_bins, sizeof(uint32_t)); 332 if (kd->pt_popcounts == NULL) { 333 _kvm_err(kd, kd->program, "cannot allocate popcount bins"); 334 return (-1); 335 } 336 337 for (popcount_bin = &kd->pt_popcounts[1]; res > 0; 338 addr++, res -= sizeof(*addr)) { 339 *popcount_bin += popcount_bytes(addr, 0, 340 MIN(res * NBBY, BITS_IN(*addr))); 341 if (++bin_popcounts == POPCOUNTS_IN(*addr)) { 342 popcount_bin++; 343 *popcount_bin = *(popcount_bin - 1); 344 bin_popcounts = 0; 345 } 346 } 347 348 assert(pc_bins * sizeof(*popcount_bin) == 349 ((uintptr_t)popcount_bin - (uintptr_t)kd->pt_popcounts)); 350 351 kd->pt_sparse_off = sparse_off; 352 kd->pt_sparse_size = (uint64_t)*popcount_bin * page_size; 353 kd->pt_page_size = page_size; 354 kd->pt_word_size = word_size; 355 356 /* 357 * Map the sparse page array. This is useful for performing point 358 * lookups of specific pages, e.g. for kvm_walk_pages. Generally, 359 * this is much larger than is reasonable to read in up front, so 360 * mmap it in instead. 361 */ 362 kd->sparse_map = mmap(NULL, kd->pt_sparse_size, PROT_READ, 363 MAP_PRIVATE, kd->pmfd, kd->pt_sparse_off); 364 if (kd->sparse_map == MAP_FAILED) { 365 _kvm_err(kd, kd->program, "cannot map %" PRIu64 366 " bytes from fd %d offset %jd for sparse map: %s", 367 kd->pt_sparse_size, kd->pmfd, 368 (intmax_t)kd->pt_sparse_off, strerror(errno)); 369 return (-1); 370 } 371 return (0); 372 } 373 374 int 375 _kvm_pmap_init(kvm_t *kd, uint32_t pmap_size, off_t pmap_off) 376 { 377 ssize_t exp_len = pmap_size; 378 379 kd->page_map_size = pmap_size; 380 kd->page_map_off = pmap_off; 381 kd->page_map = _kvm_malloc(kd, pmap_size); 382 if (kd->page_map == NULL) { 383 _kvm_err(kd, kd->program, "cannot allocate %u bytes " 384 "for page map", pmap_size); 385 return (-1); 386 } 387 if (pread(kd->pmfd, kd->page_map, pmap_size, pmap_off) != exp_len) { 388 _kvm_err(kd, kd->program, "cannot read %d bytes from " 389 "offset %jd for page map", pmap_size, (intmax_t)pmap_off); 390 return (-1); 391 } 392 return (0); 393 } 394 395 /* 396 * Find the offset for the given physical page address; returns -1 otherwise. 397 * 398 * A page's offset is represented by the sparse page base offset plus the 399 * number of bits set before its bit multiplied by page size. This means 400 * that if a page exists in the dump, it's necessary to know how many pages 401 * in the dump precede it. Reduce this O(n) counting to O(1) by caching the 402 * number of bits set at POPCOUNT_BITS intervals. 403 * 404 * Then to find the number of pages before the requested address, simply 405 * index into the cache and count the number of bits set between that cache 406 * bin and the page's bit. Halve the number of bytes that have to be 407 * checked by also counting down from the next higher bin if it's closer. 408 */ 409 off_t 410 _kvm_pt_find(kvm_t *kd, uint64_t pa, unsigned int page_size) 411 { 412 uint64_t *bitmap = kd->pt_map; 413 uint64_t pte_bit_id = pa / page_size; 414 uint64_t pte_u64 = pte_bit_id / BITS_IN(*bitmap); 415 uint64_t popcount_id = pte_bit_id / POPCOUNT_BITS; 416 uint64_t pte_mask = 1ULL << (pte_bit_id % BITS_IN(*bitmap)); 417 uint64_t bitN; 418 uint32_t count; 419 420 /* Check whether the page address requested is in the dump. */ 421 if (pte_bit_id >= (kd->pt_map_size * NBBY) || 422 (bitmap[pte_u64] & pte_mask) == 0) 423 return (-1); 424 425 /* 426 * Add/sub popcounts from the bitmap until the PTE's bit is reached. 427 * For bits that are in the upper half between the calculated 428 * popcount id and the next one, use the next one and subtract to 429 * minimize the number of popcounts required. 430 */ 431 if ((pte_bit_id % POPCOUNT_BITS) < (POPCOUNT_BITS / 2)) { 432 count = kd->pt_popcounts[popcount_id] + popcount_bytes( 433 bitmap + popcount_id * POPCOUNTS_IN(*bitmap), 434 0, pte_bit_id - popcount_id * POPCOUNT_BITS); 435 } else { 436 /* 437 * Counting in reverse is trickier, since we must avoid 438 * reading from bytes that are not in range, and invert. 439 */ 440 uint64_t pte_u64_bit_off = pte_u64 * BITS_IN(*bitmap); 441 442 popcount_id++; 443 bitN = MIN(popcount_id * POPCOUNT_BITS, 444 kd->pt_map_size * BITS_IN(uint8_t)); 445 count = kd->pt_popcounts[popcount_id] - popcount_bytes( 446 bitmap + pte_u64, 447 pte_bit_id - pte_u64_bit_off, bitN - pte_u64_bit_off); 448 } 449 450 /* 451 * This can only happen if the core is truncated. Treat these 452 * entries as if they don't exist, since their backing doesn't. 453 */ 454 if (count >= (kd->pt_sparse_size / page_size)) 455 return (-1); 456 457 return (kd->pt_sparse_off + (uint64_t)count * page_size); 458 } 459 460 static int 461 kvm_fdnlist(kvm_t *kd, struct kvm_nlist *list) 462 { 463 kvaddr_t addr; 464 int error, nfail; 465 466 if (kd->resolve_symbol == NULL) { 467 struct nlist *nl; 468 int count, i; 469 470 for (count = 0; list[count].n_name != NULL && 471 list[count].n_name[0] != '\0'; count++) 472 ; 473 nl = calloc(count + 1, sizeof(*nl)); 474 for (i = 0; i < count; i++) 475 nl[i].n_name = list[i].n_name; 476 nfail = __fdnlist(kd->nlfd, nl); 477 for (i = 0; i < count; i++) { 478 list[i].n_type = nl[i].n_type; 479 list[i].n_value = nl[i].n_value; 480 } 481 free(nl); 482 return (nfail); 483 } 484 485 nfail = 0; 486 while (list->n_name != NULL && list->n_name[0] != '\0') { 487 error = kd->resolve_symbol(list->n_name, &addr); 488 if (error != 0) { 489 nfail++; 490 list->n_value = 0; 491 list->n_type = 0; 492 } else { 493 list->n_value = addr; 494 list->n_type = N_DATA | N_EXT; 495 } 496 list++; 497 } 498 return (nfail); 499 } 500 501 /* 502 * Walk the list of unresolved symbols, generate a new list and prefix the 503 * symbol names, try again, and merge back what we could resolve. 504 */ 505 static int 506 kvm_fdnlist_prefix(kvm_t *kd, struct kvm_nlist *nl, int missing, 507 const char *prefix, kvaddr_t (*validate_fn)(kvm_t *, kvaddr_t)) 508 { 509 struct kvm_nlist *n, *np, *p; 510 char *cp, *ce; 511 const char *ccp; 512 size_t len; 513 int slen, unresolved; 514 515 /* 516 * Calculate the space we need to malloc for nlist and names. 517 * We are going to store the name twice for later lookups: once 518 * with the prefix and once the unmodified name delmited by \0. 519 */ 520 len = 0; 521 unresolved = 0; 522 for (p = nl; p->n_name && p->n_name[0]; ++p) { 523 if (p->n_type != N_UNDF) 524 continue; 525 len += sizeof(struct kvm_nlist) + strlen(prefix) + 526 2 * (strlen(p->n_name) + 1); 527 unresolved++; 528 } 529 if (unresolved == 0) 530 return (unresolved); 531 /* Add space for the terminating nlist entry. */ 532 len += sizeof(struct kvm_nlist); 533 unresolved++; 534 535 /* Alloc one chunk for (nlist, [names]) and setup pointers. */ 536 n = np = malloc(len); 537 bzero(n, len); 538 if (n == NULL) 539 return (missing); 540 cp = ce = (char *)np; 541 cp += unresolved * sizeof(struct kvm_nlist); 542 ce += len; 543 544 /* Generate shortened nlist with special prefix. */ 545 unresolved = 0; 546 for (p = nl; p->n_name && p->n_name[0]; ++p) { 547 if (p->n_type != N_UNDF) 548 continue; 549 *np = *p; 550 /* Save the new\0orig. name so we can later match it again. */ 551 slen = snprintf(cp, ce - cp, "%s%s%c%s", prefix, 552 (prefix[0] != '\0' && p->n_name[0] == '_') ? 553 (p->n_name + 1) : p->n_name, '\0', p->n_name); 554 if (slen < 0 || slen >= ce - cp) 555 continue; 556 np->n_name = cp; 557 cp += slen + 1; 558 np++; 559 unresolved++; 560 } 561 562 /* Do lookup on the reduced list. */ 563 np = n; 564 unresolved = kvm_fdnlist(kd, np); 565 566 /* Check if we could resolve further symbols and update the list. */ 567 if (unresolved >= 0 && unresolved < missing) { 568 /* Find the first freshly resolved entry. */ 569 for (; np->n_name && np->n_name[0]; np++) 570 if (np->n_type != N_UNDF) 571 break; 572 /* 573 * The lists are both in the same order, 574 * so we can walk them in parallel. 575 */ 576 for (p = nl; np->n_name && np->n_name[0] && 577 p->n_name && p->n_name[0]; ++p) { 578 if (p->n_type != N_UNDF) 579 continue; 580 /* Skip expanded name and compare to orig. one. */ 581 ccp = np->n_name + strlen(np->n_name) + 1; 582 if (strcmp(ccp, p->n_name) != 0) 583 continue; 584 /* Update nlist with new, translated results. */ 585 p->n_type = np->n_type; 586 if (validate_fn) 587 p->n_value = (*validate_fn)(kd, np->n_value); 588 else 589 p->n_value = np->n_value; 590 missing--; 591 /* Find next freshly resolved entry. */ 592 for (np++; np->n_name && np->n_name[0]; np++) 593 if (np->n_type != N_UNDF) 594 break; 595 } 596 } 597 /* We could assert missing = unresolved here. */ 598 599 free(n); 600 return (unresolved); 601 } 602 603 int 604 _kvm_nlist(kvm_t *kd, struct kvm_nlist *nl, int initialize) 605 { 606 struct kvm_nlist *p; 607 int nvalid; 608 struct kld_sym_lookup lookup; 609 int error; 610 const char *prefix = ""; 611 char symname[1024]; /* XXX-BZ symbol name length limit? */ 612 int tried_vnet, tried_dpcpu; 613 614 /* 615 * If we can't use the kld symbol lookup, revert to the 616 * slow library call. 617 */ 618 if (!ISALIVE(kd)) { 619 error = kvm_fdnlist(kd, nl); 620 if (error <= 0) /* Hard error or success. */ 621 return (error); 622 623 if (_kvm_vnet_initialized(kd, initialize)) 624 error = kvm_fdnlist_prefix(kd, nl, error, 625 VNET_SYMPREFIX, _kvm_vnet_validaddr); 626 627 if (error > 0 && _kvm_dpcpu_initialized(kd, initialize)) 628 error = kvm_fdnlist_prefix(kd, nl, error, 629 DPCPU_SYMPREFIX, _kvm_dpcpu_validaddr); 630 631 return (error); 632 } 633 634 /* 635 * We can use the kld lookup syscall. Go through each nlist entry 636 * and look it up with a kldsym(2) syscall. 637 */ 638 nvalid = 0; 639 tried_vnet = 0; 640 tried_dpcpu = 0; 641 again: 642 for (p = nl; p->n_name && p->n_name[0]; ++p) { 643 if (p->n_type != N_UNDF) 644 continue; 645 646 lookup.version = sizeof(lookup); 647 lookup.symvalue = 0; 648 lookup.symsize = 0; 649 650 error = snprintf(symname, sizeof(symname), "%s%s", prefix, 651 (prefix[0] != '\0' && p->n_name[0] == '_') ? 652 (p->n_name + 1) : p->n_name); 653 if (error < 0 || error >= (int)sizeof(symname)) 654 continue; 655 lookup.symname = symname; 656 if (lookup.symname[0] == '_') 657 lookup.symname++; 658 659 if (kldsym(0, KLDSYM_LOOKUP, &lookup) != -1) { 660 p->n_type = N_TEXT; 661 if (_kvm_vnet_initialized(kd, initialize) && 662 strcmp(prefix, VNET_SYMPREFIX) == 0) 663 p->n_value = 664 _kvm_vnet_validaddr(kd, lookup.symvalue); 665 else if (_kvm_dpcpu_initialized(kd, initialize) && 666 strcmp(prefix, DPCPU_SYMPREFIX) == 0) 667 p->n_value = 668 _kvm_dpcpu_validaddr(kd, lookup.symvalue); 669 else 670 p->n_value = lookup.symvalue; 671 ++nvalid; 672 /* lookup.symsize */ 673 } 674 } 675 676 /* 677 * Check the number of entries that weren't found. If they exist, 678 * try again with a prefix for virtualized or DPCPU symbol names. 679 */ 680 error = ((p - nl) - nvalid); 681 if (error && _kvm_vnet_initialized(kd, initialize) && !tried_vnet) { 682 tried_vnet = 1; 683 prefix = VNET_SYMPREFIX; 684 goto again; 685 } 686 if (error && _kvm_dpcpu_initialized(kd, initialize) && !tried_dpcpu) { 687 tried_dpcpu = 1; 688 prefix = DPCPU_SYMPREFIX; 689 goto again; 690 } 691 692 /* 693 * Return the number of entries that weren't found. If they exist, 694 * also fill internal error buffer. 695 */ 696 error = ((p - nl) - nvalid); 697 if (error) 698 _kvm_syserr(kd, kd->program, "kvm_nlist"); 699 return (error); 700 } 701 702 int 703 _kvm_bitmap_init(struct kvm_bitmap *bm, u_long bitmapsize, u_long *idx) 704 { 705 706 *idx = ULONG_MAX; 707 bm->map = calloc(bitmapsize, sizeof *bm->map); 708 if (bm->map == NULL) 709 return (0); 710 bm->size = bitmapsize; 711 return (1); 712 } 713 714 void 715 _kvm_bitmap_set(struct kvm_bitmap *bm, u_long pa, unsigned int page_size) 716 { 717 u_long bm_index = pa / page_size; 718 uint8_t *byte = &bm->map[bm_index / 8]; 719 720 *byte |= (1UL << (bm_index % 8)); 721 } 722 723 int 724 _kvm_bitmap_next(struct kvm_bitmap *bm, u_long *idx) 725 { 726 u_long first_invalid = bm->size * CHAR_BIT; 727 728 if (*idx == ULONG_MAX) 729 *idx = 0; 730 else 731 (*idx)++; 732 733 /* Find the next valid idx. */ 734 for (; *idx < first_invalid; (*idx)++) { 735 unsigned int mask = *idx % CHAR_BIT; 736 if ((bm->map[*idx * CHAR_BIT] & mask) == 0) 737 break; 738 } 739 740 return (*idx < first_invalid); 741 } 742 743 void 744 _kvm_bitmap_deinit(struct kvm_bitmap *bm) 745 { 746 747 free(bm->map); 748 } 749 750 int 751 _kvm_visit_cb(kvm_t *kd, kvm_walk_pages_cb_t *cb, void *arg, u_long pa, 752 u_long kmap_vaddr, u_long dmap_vaddr, vm_prot_t prot, size_t len, 753 unsigned int page_size) 754 { 755 unsigned int pgsz = page_size ? page_size : len; 756 struct kvm_page p = { 757 .version = LIBKVM_WALK_PAGES_VERSION, 758 .paddr = pa, 759 .kmap_vaddr = kmap_vaddr, 760 .dmap_vaddr = dmap_vaddr, 761 .prot = prot, 762 .offset = _kvm_pt_find(kd, pa, pgsz), 763 .len = len, 764 }; 765 766 return cb(&p, arg); 767 } 768