xref: /freebsd/lib/libkvm/kvm_private.c (revision 0caf9bf62de0dda2ae80086492a38c6ee3eeff9d)
1 /*-
2  * Copyright (c) 1989, 1992, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software developed by the Computer Systems
6  * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
7  * BG 91-66 and contributed to Berkeley.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include <sys/param.h>
38 #include <sys/fnv_hash.h>
39 
40 #define	_WANT_VNET
41 
42 #include <sys/user.h>
43 #include <sys/linker.h>
44 #include <sys/pcpu.h>
45 #include <sys/stat.h>
46 #include <sys/mman.h>
47 
48 #include <net/vnet.h>
49 
50 #include <assert.h>
51 #include <fcntl.h>
52 #include <vm/vm.h>
53 #include <kvm.h>
54 #include <limits.h>
55 #include <paths.h>
56 #include <stdint.h>
57 #include <stdio.h>
58 #include <stdlib.h>
59 #include <string.h>
60 #include <unistd.h>
61 #include <stdarg.h>
62 #include <inttypes.h>
63 
64 #include "kvm_private.h"
65 
66 /*
67  * Routines private to libkvm.
68  */
69 
70 /* from src/lib/libc/gen/nlist.c */
71 int __fdnlist(int, struct nlist *);
72 
73 /*
74  * Report an error using printf style arguments.  "program" is kd->program
75  * on hard errors, and 0 on soft errors, so that under sun error emulation,
76  * only hard errors are printed out (otherwise, programs like gdb will
77  * generate tons of error messages when trying to access bogus pointers).
78  */
79 void
80 _kvm_err(kvm_t *kd, const char *program, const char *fmt, ...)
81 {
82 	va_list ap;
83 
84 	va_start(ap, fmt);
85 	if (program != NULL) {
86 		(void)fprintf(stderr, "%s: ", program);
87 		(void)vfprintf(stderr, fmt, ap);
88 		(void)fputc('\n', stderr);
89 	} else
90 		(void)vsnprintf(kd->errbuf,
91 		    sizeof(kd->errbuf), fmt, ap);
92 
93 	va_end(ap);
94 }
95 
96 void
97 _kvm_syserr(kvm_t *kd, const char *program, const char *fmt, ...)
98 {
99 	va_list ap;
100 	int n;
101 
102 	va_start(ap, fmt);
103 	if (program != NULL) {
104 		(void)fprintf(stderr, "%s: ", program);
105 		(void)vfprintf(stderr, fmt, ap);
106 		(void)fprintf(stderr, ": %s\n", strerror(errno));
107 	} else {
108 		char *cp = kd->errbuf;
109 
110 		(void)vsnprintf(cp, sizeof(kd->errbuf), fmt, ap);
111 		n = strlen(cp);
112 		(void)snprintf(&cp[n], sizeof(kd->errbuf) - n, ": %s",
113 		    strerror(errno));
114 	}
115 	va_end(ap);
116 }
117 
118 void *
119 _kvm_malloc(kvm_t *kd, size_t n)
120 {
121 	void *p;
122 
123 	if ((p = calloc(n, sizeof(char))) == NULL)
124 		_kvm_err(kd, kd->program, "can't allocate %zu bytes: %s",
125 			 n, strerror(errno));
126 	return (p);
127 }
128 
129 int
130 _kvm_probe_elf_kernel(kvm_t *kd, int class, int machine)
131 {
132 
133 	return (kd->nlehdr.e_ident[EI_CLASS] == class &&
134 	    kd->nlehdr.e_type == ET_EXEC &&
135 	    kd->nlehdr.e_machine == machine);
136 }
137 
138 int
139 _kvm_is_minidump(kvm_t *kd)
140 {
141 	char minihdr[8];
142 
143 	if (kd->rawdump)
144 		return (0);
145 	if (pread(kd->pmfd, &minihdr, 8, 0) == 8 &&
146 	    memcmp(&minihdr, "minidump", 8) == 0)
147 		return (1);
148 	return (0);
149 }
150 
151 /*
152  * The powerpc backend has a hack to strip a leading kerneldump
153  * header from the core before treating it as an ELF header.
154  *
155  * We can add that here if we can get a change to libelf to support
156  * an initial offset into the file.  Alternatively we could patch
157  * savecore to extract cores from a regular file instead.
158  */
159 int
160 _kvm_read_core_phdrs(kvm_t *kd, size_t *phnump, GElf_Phdr **phdrp)
161 {
162 	GElf_Ehdr ehdr;
163 	GElf_Phdr *phdr;
164 	Elf *elf;
165 	size_t i, phnum;
166 
167 	elf = elf_begin(kd->pmfd, ELF_C_READ, NULL);
168 	if (elf == NULL) {
169 		_kvm_err(kd, kd->program, "%s", elf_errmsg(0));
170 		return (-1);
171 	}
172 	if (elf_kind(elf) != ELF_K_ELF) {
173 		_kvm_err(kd, kd->program, "invalid core");
174 		goto bad;
175 	}
176 	if (gelf_getclass(elf) != kd->nlehdr.e_ident[EI_CLASS]) {
177 		_kvm_err(kd, kd->program, "invalid core");
178 		goto bad;
179 	}
180 	if (gelf_getehdr(elf, &ehdr) == NULL) {
181 		_kvm_err(kd, kd->program, "%s", elf_errmsg(0));
182 		goto bad;
183 	}
184 	if (ehdr.e_type != ET_CORE) {
185 		_kvm_err(kd, kd->program, "invalid core");
186 		goto bad;
187 	}
188 	if (ehdr.e_machine != kd->nlehdr.e_machine) {
189 		_kvm_err(kd, kd->program, "invalid core");
190 		goto bad;
191 	}
192 
193 	if (elf_getphdrnum(elf, &phnum) == -1) {
194 		_kvm_err(kd, kd->program, "%s", elf_errmsg(0));
195 		goto bad;
196 	}
197 
198 	phdr = calloc(phnum, sizeof(*phdr));
199 	if (phdr == NULL) {
200 		_kvm_err(kd, kd->program, "failed to allocate phdrs");
201 		goto bad;
202 	}
203 
204 	for (i = 0; i < phnum; i++) {
205 		if (gelf_getphdr(elf, i, &phdr[i]) == NULL) {
206 			free(phdr);
207 			_kvm_err(kd, kd->program, "%s", elf_errmsg(0));
208 			goto bad;
209 		}
210 	}
211 	elf_end(elf);
212 	*phnump = phnum;
213 	*phdrp = phdr;
214 	return (0);
215 
216 bad:
217 	elf_end(elf);
218 	return (-1);
219 }
220 
221 /*
222  * Transform v such that only bits [bit0, bitN) may be set.  Generates a
223  * bitmask covering the number of bits, then shifts so +bit0+ is the first.
224  */
225 static uint64_t
226 bitmask_range(uint64_t v, uint64_t bit0, uint64_t bitN)
227 {
228 	if (bit0 == 0 && bitN == BITS_IN(v))
229 		return (v);
230 
231 	return (v & (((1ULL << (bitN - bit0)) - 1ULL) << bit0));
232 }
233 
234 /*
235  * Returns the number of bits in a given byte array range starting at a
236  * given base, from bit0 to bitN.  bit0 may be non-zero in the case of
237  * counting backwards from bitN.
238  */
239 static uint64_t
240 popcount_bytes(uint64_t *addr, uint32_t bit0, uint32_t bitN)
241 {
242 	uint32_t res = bitN - bit0;
243 	uint64_t count = 0;
244 	uint32_t bound;
245 
246 	/* Align to 64-bit boundary on the left side if needed. */
247 	if ((bit0 % BITS_IN(*addr)) != 0) {
248 		bound = MIN(bitN, roundup2(bit0, BITS_IN(*addr)));
249 		count += __bitcount64(bitmask_range(*addr, bit0, bound));
250 		res -= (bound - bit0);
251 		addr++;
252 	}
253 
254 	while (res > 0) {
255 		bound = MIN(res, BITS_IN(*addr));
256 		count += __bitcount64(bitmask_range(*addr, 0, bound));
257 		res -= bound;
258 		addr++;
259 	}
260 
261 	return (count);
262 }
263 
264 void *
265 _kvm_pmap_get(kvm_t *kd, u_long idx, size_t len)
266 {
267 	uintptr_t off = idx * len;
268 
269 	if ((off_t)off >= kd->pt_sparse_off)
270 		return (NULL);
271 	return (void *)((uintptr_t)kd->page_map + off);
272 }
273 
274 void *
275 _kvm_map_get(kvm_t *kd, u_long pa, unsigned int page_size)
276 {
277 	off_t off;
278 	uintptr_t addr;
279 
280 	off = _kvm_pt_find(kd, pa, page_size);
281 	if (off == -1)
282 		return NULL;
283 
284 	addr = (uintptr_t)kd->page_map + off;
285 	if (off >= kd->pt_sparse_off)
286 		addr = (uintptr_t)kd->sparse_map + (off - kd->pt_sparse_off);
287 	return (void *)addr;
288 }
289 
290 int
291 _kvm_pt_init(kvm_t *kd, size_t map_len, off_t map_off, off_t sparse_off,
292     int page_size, int word_size)
293 {
294 	uint64_t *addr;
295 	uint32_t *popcount_bin;
296 	int bin_popcounts = 0;
297 	uint64_t pc_bins, res;
298 	ssize_t rd;
299 
300 	/*
301 	 * Map the bitmap specified by the arguments.
302 	 */
303 	kd->pt_map = _kvm_malloc(kd, map_len);
304 	if (kd->pt_map == NULL) {
305 		_kvm_err(kd, kd->program, "cannot allocate %zu bytes for bitmap",
306 		    map_len);
307 		return (-1);
308 	}
309 	rd = pread(kd->pmfd, kd->pt_map, map_len, map_off);
310 	if (rd < 0 || rd != (ssize_t)map_len) {
311 		_kvm_err(kd, kd->program, "cannot read %zu bytes for bitmap",
312 		    map_len);
313 		return (-1);
314 	}
315 	kd->pt_map_size = map_len;
316 
317 	/*
318 	 * Generate a popcount cache for every POPCOUNT_BITS in the bitmap,
319 	 * so lookups only have to calculate the number of bits set between
320 	 * a cache point and their bit.  This reduces lookups to O(1),
321 	 * without significantly increasing memory requirements.
322 	 *
323 	 * Round up the number of bins so that 'upper half' lookups work for
324 	 * the final bin, if needed.  The first popcount is 0, since no bits
325 	 * precede bit 0, so add 1 for that also.  Without this, extra work
326 	 * would be needed to handle the first PTEs in _kvm_pt_find().
327 	 */
328 	addr = kd->pt_map;
329 	res = map_len;
330 	pc_bins = 1 + (res * NBBY + POPCOUNT_BITS / 2) / POPCOUNT_BITS;
331 	kd->pt_popcounts = calloc(pc_bins, sizeof(uint32_t));
332 	if (kd->pt_popcounts == NULL) {
333 		_kvm_err(kd, kd->program, "cannot allocate popcount bins");
334 		return (-1);
335 	}
336 
337 	for (popcount_bin = &kd->pt_popcounts[1]; res > 0;
338 	    addr++, res -= sizeof(*addr)) {
339 		*popcount_bin += popcount_bytes(addr, 0,
340 		    MIN(res * NBBY, BITS_IN(*addr)));
341 		if (++bin_popcounts == POPCOUNTS_IN(*addr)) {
342 			popcount_bin++;
343 			*popcount_bin = *(popcount_bin - 1);
344 			bin_popcounts = 0;
345 		}
346 	}
347 
348 	assert(pc_bins * sizeof(*popcount_bin) ==
349 	    ((uintptr_t)popcount_bin - (uintptr_t)kd->pt_popcounts));
350 
351 	kd->pt_sparse_off = sparse_off;
352 	kd->pt_sparse_size = (uint64_t)*popcount_bin * page_size;
353 	kd->pt_page_size = page_size;
354 	kd->pt_word_size = word_size;
355 
356 	/*
357 	 * Map the sparse page array.  This is useful for performing point
358 	 * lookups of specific pages, e.g. for kvm_walk_pages.  Generally,
359 	 * this is much larger than is reasonable to read in up front, so
360 	 * mmap it in instead.
361 	 */
362 	kd->sparse_map = mmap(NULL, kd->pt_sparse_size, PROT_READ,
363 	    MAP_PRIVATE, kd->pmfd, kd->pt_sparse_off);
364 	if (kd->sparse_map == MAP_FAILED) {
365 		_kvm_err(kd, kd->program, "cannot map %" PRIu64
366 		    " bytes from fd %d offset %jd for sparse map: %s",
367 		    kd->pt_sparse_size, kd->pmfd,
368 		    (intmax_t)kd->pt_sparse_off, strerror(errno));
369 		return (-1);
370 	}
371 	return (0);
372 }
373 
374 int
375 _kvm_pmap_init(kvm_t *kd, uint32_t pmap_size, off_t pmap_off)
376 {
377 	ssize_t exp_len = pmap_size;
378 
379 	kd->page_map_size = pmap_size;
380 	kd->page_map_off = pmap_off;
381 	kd->page_map = _kvm_malloc(kd, pmap_size);
382 	if (kd->page_map == NULL) {
383 		_kvm_err(kd, kd->program, "cannot allocate %u bytes "
384 		    "for page map", pmap_size);
385 		return (-1);
386 	}
387 	if (pread(kd->pmfd, kd->page_map, pmap_size, pmap_off) != exp_len) {
388 		_kvm_err(kd, kd->program, "cannot read %d bytes from "
389 		    "offset %jd for page map", pmap_size, (intmax_t)pmap_off);
390 		return (-1);
391 	}
392 	return (0);
393 }
394 
395 /*
396  * Find the offset for the given physical page address; returns -1 otherwise.
397  *
398  * A page's offset is represented by the sparse page base offset plus the
399  * number of bits set before its bit multiplied by page size.  This means
400  * that if a page exists in the dump, it's necessary to know how many pages
401  * in the dump precede it.  Reduce this O(n) counting to O(1) by caching the
402  * number of bits set at POPCOUNT_BITS intervals.
403  *
404  * Then to find the number of pages before the requested address, simply
405  * index into the cache and count the number of bits set between that cache
406  * bin and the page's bit.  Halve the number of bytes that have to be
407  * checked by also counting down from the next higher bin if it's closer.
408  */
409 off_t
410 _kvm_pt_find(kvm_t *kd, uint64_t pa, unsigned int page_size)
411 {
412 	uint64_t *bitmap = kd->pt_map;
413 	uint64_t pte_bit_id = pa / page_size;
414 	uint64_t pte_u64 = pte_bit_id / BITS_IN(*bitmap);
415 	uint64_t popcount_id = pte_bit_id / POPCOUNT_BITS;
416 	uint64_t pte_mask = 1ULL << (pte_bit_id % BITS_IN(*bitmap));
417 	uint64_t bitN;
418 	uint32_t count;
419 
420 	/* Check whether the page address requested is in the dump. */
421 	if (pte_bit_id >= (kd->pt_map_size * NBBY) ||
422 	    (bitmap[pte_u64] & pte_mask) == 0)
423 		return (-1);
424 
425 	/*
426 	 * Add/sub popcounts from the bitmap until the PTE's bit is reached.
427 	 * For bits that are in the upper half between the calculated
428 	 * popcount id and the next one, use the next one and subtract to
429 	 * minimize the number of popcounts required.
430 	 */
431 	if ((pte_bit_id % POPCOUNT_BITS) < (POPCOUNT_BITS / 2)) {
432 		count = kd->pt_popcounts[popcount_id] + popcount_bytes(
433 		    bitmap + popcount_id * POPCOUNTS_IN(*bitmap),
434 		    0, pte_bit_id - popcount_id * POPCOUNT_BITS);
435 	} else {
436 		/*
437 		 * Counting in reverse is trickier, since we must avoid
438 		 * reading from bytes that are not in range, and invert.
439 		 */
440 		uint64_t pte_u64_bit_off = pte_u64 * BITS_IN(*bitmap);
441 
442 		popcount_id++;
443 		bitN = MIN(popcount_id * POPCOUNT_BITS,
444 		    kd->pt_map_size * BITS_IN(uint8_t));
445 		count = kd->pt_popcounts[popcount_id] - popcount_bytes(
446 		    bitmap + pte_u64,
447 		    pte_bit_id - pte_u64_bit_off, bitN - pte_u64_bit_off);
448 	}
449 
450 	/*
451 	 * This can only happen if the core is truncated.  Treat these
452 	 * entries as if they don't exist, since their backing doesn't.
453 	 */
454 	if (count >= (kd->pt_sparse_size / page_size))
455 		return (-1);
456 
457 	return (kd->pt_sparse_off + (uint64_t)count * page_size);
458 }
459 
460 static int
461 kvm_fdnlist(kvm_t *kd, struct kvm_nlist *list)
462 {
463 	kvaddr_t addr;
464 	int error, nfail;
465 
466 	if (kd->resolve_symbol == NULL) {
467 		struct nlist *nl;
468 		int count, i;
469 
470 		for (count = 0; list[count].n_name != NULL &&
471 		     list[count].n_name[0] != '\0'; count++)
472 			;
473 		nl = calloc(count + 1, sizeof(*nl));
474 		for (i = 0; i < count; i++)
475 			nl[i].n_name = list[i].n_name;
476 		nfail = __fdnlist(kd->nlfd, nl);
477 		for (i = 0; i < count; i++) {
478 			list[i].n_type = nl[i].n_type;
479 			list[i].n_value = nl[i].n_value;
480 		}
481 		free(nl);
482 		return (nfail);
483 	}
484 
485 	nfail = 0;
486 	while (list->n_name != NULL && list->n_name[0] != '\0') {
487 		error = kd->resolve_symbol(list->n_name, &addr);
488 		if (error != 0) {
489 			nfail++;
490 			list->n_value = 0;
491 			list->n_type = 0;
492 		} else {
493 			list->n_value = addr;
494 			list->n_type = N_DATA | N_EXT;
495 		}
496 		list++;
497 	}
498 	return (nfail);
499 }
500 
501 /*
502  * Walk the list of unresolved symbols, generate a new list and prefix the
503  * symbol names, try again, and merge back what we could resolve.
504  */
505 static int
506 kvm_fdnlist_prefix(kvm_t *kd, struct kvm_nlist *nl, int missing,
507     const char *prefix, kvaddr_t (*validate_fn)(kvm_t *, kvaddr_t))
508 {
509 	struct kvm_nlist *n, *np, *p;
510 	char *cp, *ce;
511 	const char *ccp;
512 	size_t len;
513 	int slen, unresolved;
514 
515 	/*
516 	 * Calculate the space we need to malloc for nlist and names.
517 	 * We are going to store the name twice for later lookups: once
518 	 * with the prefix and once the unmodified name delmited by \0.
519 	 */
520 	len = 0;
521 	unresolved = 0;
522 	for (p = nl; p->n_name && p->n_name[0]; ++p) {
523 		if (p->n_type != N_UNDF)
524 			continue;
525 		len += sizeof(struct kvm_nlist) + strlen(prefix) +
526 		    2 * (strlen(p->n_name) + 1);
527 		unresolved++;
528 	}
529 	if (unresolved == 0)
530 		return (unresolved);
531 	/* Add space for the terminating nlist entry. */
532 	len += sizeof(struct kvm_nlist);
533 	unresolved++;
534 
535 	/* Alloc one chunk for (nlist, [names]) and setup pointers. */
536 	n = np = malloc(len);
537 	bzero(n, len);
538 	if (n == NULL)
539 		return (missing);
540 	cp = ce = (char *)np;
541 	cp += unresolved * sizeof(struct kvm_nlist);
542 	ce += len;
543 
544 	/* Generate shortened nlist with special prefix. */
545 	unresolved = 0;
546 	for (p = nl; p->n_name && p->n_name[0]; ++p) {
547 		if (p->n_type != N_UNDF)
548 			continue;
549 		*np = *p;
550 		/* Save the new\0orig. name so we can later match it again. */
551 		slen = snprintf(cp, ce - cp, "%s%s%c%s", prefix,
552 		    (prefix[0] != '\0' && p->n_name[0] == '_') ?
553 			(p->n_name + 1) : p->n_name, '\0', p->n_name);
554 		if (slen < 0 || slen >= ce - cp)
555 			continue;
556 		np->n_name = cp;
557 		cp += slen + 1;
558 		np++;
559 		unresolved++;
560 	}
561 
562 	/* Do lookup on the reduced list. */
563 	np = n;
564 	unresolved = kvm_fdnlist(kd, np);
565 
566 	/* Check if we could resolve further symbols and update the list. */
567 	if (unresolved >= 0 && unresolved < missing) {
568 		/* Find the first freshly resolved entry. */
569 		for (; np->n_name && np->n_name[0]; np++)
570 			if (np->n_type != N_UNDF)
571 				break;
572 		/*
573 		 * The lists are both in the same order,
574 		 * so we can walk them in parallel.
575 		 */
576 		for (p = nl; np->n_name && np->n_name[0] &&
577 		    p->n_name && p->n_name[0]; ++p) {
578 			if (p->n_type != N_UNDF)
579 				continue;
580 			/* Skip expanded name and compare to orig. one. */
581 			ccp = np->n_name + strlen(np->n_name) + 1;
582 			if (strcmp(ccp, p->n_name) != 0)
583 				continue;
584 			/* Update nlist with new, translated results. */
585 			p->n_type = np->n_type;
586 			if (validate_fn)
587 				p->n_value = (*validate_fn)(kd, np->n_value);
588 			else
589 				p->n_value = np->n_value;
590 			missing--;
591 			/* Find next freshly resolved entry. */
592 			for (np++; np->n_name && np->n_name[0]; np++)
593 				if (np->n_type != N_UNDF)
594 					break;
595 		}
596 	}
597 	/* We could assert missing = unresolved here. */
598 
599 	free(n);
600 	return (unresolved);
601 }
602 
603 int
604 _kvm_nlist(kvm_t *kd, struct kvm_nlist *nl, int initialize)
605 {
606 	struct kvm_nlist *p;
607 	int nvalid;
608 	struct kld_sym_lookup lookup;
609 	int error;
610 	const char *prefix = "";
611 	char symname[1024]; /* XXX-BZ symbol name length limit? */
612 	int tried_vnet, tried_dpcpu;
613 
614 	/*
615 	 * If we can't use the kld symbol lookup, revert to the
616 	 * slow library call.
617 	 */
618 	if (!ISALIVE(kd)) {
619 		error = kvm_fdnlist(kd, nl);
620 		if (error <= 0)			/* Hard error or success. */
621 			return (error);
622 
623 		if (_kvm_vnet_initialized(kd, initialize))
624 			error = kvm_fdnlist_prefix(kd, nl, error,
625 			    VNET_SYMPREFIX, _kvm_vnet_validaddr);
626 
627 		if (error > 0 && _kvm_dpcpu_initialized(kd, initialize))
628 			error = kvm_fdnlist_prefix(kd, nl, error,
629 			    DPCPU_SYMPREFIX, _kvm_dpcpu_validaddr);
630 
631 		return (error);
632 	}
633 
634 	/*
635 	 * We can use the kld lookup syscall.  Go through each nlist entry
636 	 * and look it up with a kldsym(2) syscall.
637 	 */
638 	nvalid = 0;
639 	tried_vnet = 0;
640 	tried_dpcpu = 0;
641 again:
642 	for (p = nl; p->n_name && p->n_name[0]; ++p) {
643 		if (p->n_type != N_UNDF)
644 			continue;
645 
646 		lookup.version = sizeof(lookup);
647 		lookup.symvalue = 0;
648 		lookup.symsize = 0;
649 
650 		error = snprintf(symname, sizeof(symname), "%s%s", prefix,
651 		    (prefix[0] != '\0' && p->n_name[0] == '_') ?
652 			(p->n_name + 1) : p->n_name);
653 		if (error < 0 || error >= (int)sizeof(symname))
654 			continue;
655 		lookup.symname = symname;
656 		if (lookup.symname[0] == '_')
657 			lookup.symname++;
658 
659 		if (kldsym(0, KLDSYM_LOOKUP, &lookup) != -1) {
660 			p->n_type = N_TEXT;
661 			if (_kvm_vnet_initialized(kd, initialize) &&
662 			    strcmp(prefix, VNET_SYMPREFIX) == 0)
663 				p->n_value =
664 				    _kvm_vnet_validaddr(kd, lookup.symvalue);
665 			else if (_kvm_dpcpu_initialized(kd, initialize) &&
666 			    strcmp(prefix, DPCPU_SYMPREFIX) == 0)
667 				p->n_value =
668 				    _kvm_dpcpu_validaddr(kd, lookup.symvalue);
669 			else
670 				p->n_value = lookup.symvalue;
671 			++nvalid;
672 			/* lookup.symsize */
673 		}
674 	}
675 
676 	/*
677 	 * Check the number of entries that weren't found. If they exist,
678 	 * try again with a prefix for virtualized or DPCPU symbol names.
679 	 */
680 	error = ((p - nl) - nvalid);
681 	if (error && _kvm_vnet_initialized(kd, initialize) && !tried_vnet) {
682 		tried_vnet = 1;
683 		prefix = VNET_SYMPREFIX;
684 		goto again;
685 	}
686 	if (error && _kvm_dpcpu_initialized(kd, initialize) && !tried_dpcpu) {
687 		tried_dpcpu = 1;
688 		prefix = DPCPU_SYMPREFIX;
689 		goto again;
690 	}
691 
692 	/*
693 	 * Return the number of entries that weren't found. If they exist,
694 	 * also fill internal error buffer.
695 	 */
696 	error = ((p - nl) - nvalid);
697 	if (error)
698 		_kvm_syserr(kd, kd->program, "kvm_nlist");
699 	return (error);
700 }
701 
702 int
703 _kvm_bitmap_init(struct kvm_bitmap *bm, u_long bitmapsize, u_long *idx)
704 {
705 
706 	*idx = ULONG_MAX;
707 	bm->map = calloc(bitmapsize, sizeof *bm->map);
708 	if (bm->map == NULL)
709 		return (0);
710 	bm->size = bitmapsize;
711 	return (1);
712 }
713 
714 void
715 _kvm_bitmap_set(struct kvm_bitmap *bm, u_long pa, unsigned int page_size)
716 {
717 	u_long bm_index = pa / page_size;
718 	uint8_t *byte = &bm->map[bm_index / 8];
719 
720 	*byte |= (1UL << (bm_index % 8));
721 }
722 
723 int
724 _kvm_bitmap_next(struct kvm_bitmap *bm, u_long *idx)
725 {
726 	u_long first_invalid = bm->size * CHAR_BIT;
727 
728 	if (*idx == ULONG_MAX)
729 		*idx = 0;
730 	else
731 		(*idx)++;
732 
733 	/* Find the next valid idx. */
734 	for (; *idx < first_invalid; (*idx)++) {
735 		unsigned int mask = *idx % CHAR_BIT;
736 		if ((bm->map[*idx * CHAR_BIT] & mask) == 0)
737 			break;
738 	}
739 
740 	return (*idx < first_invalid);
741 }
742 
743 void
744 _kvm_bitmap_deinit(struct kvm_bitmap *bm)
745 {
746 
747 	free(bm->map);
748 }
749 
750 int
751 _kvm_visit_cb(kvm_t *kd, kvm_walk_pages_cb_t *cb, void *arg, u_long pa,
752     u_long kmap_vaddr, u_long dmap_vaddr, vm_prot_t prot, size_t len,
753     unsigned int page_size)
754 {
755 	unsigned int pgsz = page_size ? page_size : len;
756 	struct kvm_page p = {
757 		.version = LIBKVM_WALK_PAGES_VERSION,
758 		.paddr = pa,
759 		.kmap_vaddr = kmap_vaddr,
760 		.dmap_vaddr = dmap_vaddr,
761 		.prot = prot,
762 		.offset = _kvm_pt_find(kd, pa, pgsz),
763 		.len = len,
764 	};
765 
766 	return cb(&p, arg);
767 }
768