1 /*- 2 * Copyright (c) 1989, 1992, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software developed by the Computer Systems 6 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract 7 * BG 91-66 and contributed to Berkeley. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include <sys/param.h> 38 #include <sys/fnv_hash.h> 39 40 #define _WANT_VNET 41 42 #include <sys/user.h> 43 #include <sys/linker.h> 44 #include <sys/pcpu.h> 45 #include <sys/stat.h> 46 #include <sys/mman.h> 47 48 #include <net/vnet.h> 49 50 #include <assert.h> 51 #include <fcntl.h> 52 #include <vm/vm.h> 53 #include <kvm.h> 54 #include <limits.h> 55 #include <paths.h> 56 #include <stdint.h> 57 #include <stdio.h> 58 #include <stdlib.h> 59 #include <string.h> 60 #include <unistd.h> 61 #include <stdarg.h> 62 #include <inttypes.h> 63 64 #include "kvm_private.h" 65 66 /* 67 * Routines private to libkvm. 68 */ 69 70 /* from src/lib/libc/gen/nlist.c */ 71 int __fdnlist(int, struct nlist *); 72 73 /* 74 * Report an error using printf style arguments. "program" is kd->program 75 * on hard errors, and 0 on soft errors, so that under sun error emulation, 76 * only hard errors are printed out (otherwise, programs like gdb will 77 * generate tons of error messages when trying to access bogus pointers). 78 */ 79 void 80 _kvm_err(kvm_t *kd, const char *program, const char *fmt, ...) 81 { 82 va_list ap; 83 84 va_start(ap, fmt); 85 if (program != NULL) { 86 (void)fprintf(stderr, "%s: ", program); 87 (void)vfprintf(stderr, fmt, ap); 88 (void)fputc('\n', stderr); 89 } else 90 (void)vsnprintf(kd->errbuf, 91 sizeof(kd->errbuf), fmt, ap); 92 93 va_end(ap); 94 } 95 96 void 97 _kvm_syserr(kvm_t *kd, const char *program, const char *fmt, ...) 98 { 99 va_list ap; 100 int n; 101 102 va_start(ap, fmt); 103 if (program != NULL) { 104 (void)fprintf(stderr, "%s: ", program); 105 (void)vfprintf(stderr, fmt, ap); 106 (void)fprintf(stderr, ": %s\n", strerror(errno)); 107 } else { 108 char *cp = kd->errbuf; 109 110 (void)vsnprintf(cp, sizeof(kd->errbuf), fmt, ap); 111 n = strlen(cp); 112 (void)snprintf(&cp[n], sizeof(kd->errbuf) - n, ": %s", 113 strerror(errno)); 114 } 115 va_end(ap); 116 } 117 118 void * 119 _kvm_malloc(kvm_t *kd, size_t n) 120 { 121 void *p; 122 123 if ((p = calloc(n, sizeof(char))) == NULL) 124 _kvm_err(kd, kd->program, "can't allocate %zu bytes: %s", 125 n, strerror(errno)); 126 return (p); 127 } 128 129 int 130 _kvm_probe_elf_kernel(kvm_t *kd, int class, int machine) 131 { 132 133 return (kd->nlehdr.e_ident[EI_CLASS] == class && 134 ((machine == EM_PPC || machine == EM_PPC64) ? 135 kd->nlehdr.e_type == ET_DYN : kd->nlehdr.e_type == ET_EXEC) && 136 kd->nlehdr.e_machine == machine); 137 } 138 139 int 140 _kvm_is_minidump(kvm_t *kd) 141 { 142 char minihdr[8]; 143 144 if (kd->rawdump) 145 return (0); 146 if (pread(kd->pmfd, &minihdr, 8, 0) == 8 && 147 memcmp(&minihdr, "minidump", 8) == 0) 148 return (1); 149 return (0); 150 } 151 152 /* 153 * The powerpc backend has a hack to strip a leading kerneldump 154 * header from the core before treating it as an ELF header. 155 * 156 * We can add that here if we can get a change to libelf to support 157 * an initial offset into the file. Alternatively we could patch 158 * savecore to extract cores from a regular file instead. 159 */ 160 int 161 _kvm_read_core_phdrs(kvm_t *kd, size_t *phnump, GElf_Phdr **phdrp) 162 { 163 GElf_Ehdr ehdr; 164 GElf_Phdr *phdr; 165 Elf *elf; 166 size_t i, phnum; 167 168 elf = elf_begin(kd->pmfd, ELF_C_READ, NULL); 169 if (elf == NULL) { 170 _kvm_err(kd, kd->program, "%s", elf_errmsg(0)); 171 return (-1); 172 } 173 if (elf_kind(elf) != ELF_K_ELF) { 174 _kvm_err(kd, kd->program, "invalid core"); 175 goto bad; 176 } 177 if (gelf_getclass(elf) != kd->nlehdr.e_ident[EI_CLASS]) { 178 _kvm_err(kd, kd->program, "invalid core"); 179 goto bad; 180 } 181 if (gelf_getehdr(elf, &ehdr) == NULL) { 182 _kvm_err(kd, kd->program, "%s", elf_errmsg(0)); 183 goto bad; 184 } 185 if (ehdr.e_type != ET_CORE) { 186 _kvm_err(kd, kd->program, "invalid core"); 187 goto bad; 188 } 189 if (ehdr.e_machine != kd->nlehdr.e_machine) { 190 _kvm_err(kd, kd->program, "invalid core"); 191 goto bad; 192 } 193 194 if (elf_getphdrnum(elf, &phnum) == -1) { 195 _kvm_err(kd, kd->program, "%s", elf_errmsg(0)); 196 goto bad; 197 } 198 199 phdr = calloc(phnum, sizeof(*phdr)); 200 if (phdr == NULL) { 201 _kvm_err(kd, kd->program, "failed to allocate phdrs"); 202 goto bad; 203 } 204 205 for (i = 0; i < phnum; i++) { 206 if (gelf_getphdr(elf, i, &phdr[i]) == NULL) { 207 free(phdr); 208 _kvm_err(kd, kd->program, "%s", elf_errmsg(0)); 209 goto bad; 210 } 211 } 212 elf_end(elf); 213 *phnump = phnum; 214 *phdrp = phdr; 215 return (0); 216 217 bad: 218 elf_end(elf); 219 return (-1); 220 } 221 222 /* 223 * Transform v such that only bits [bit0, bitN) may be set. Generates a 224 * bitmask covering the number of bits, then shifts so +bit0+ is the first. 225 */ 226 static uint64_t 227 bitmask_range(uint64_t v, uint64_t bit0, uint64_t bitN) 228 { 229 if (bit0 == 0 && bitN == BITS_IN(v)) 230 return (v); 231 232 return (v & (((1ULL << (bitN - bit0)) - 1ULL) << bit0)); 233 } 234 235 /* 236 * Returns the number of bits in a given byte array range starting at a 237 * given base, from bit0 to bitN. bit0 may be non-zero in the case of 238 * counting backwards from bitN. 239 */ 240 static uint64_t 241 popcount_bytes(uint64_t *addr, uint32_t bit0, uint32_t bitN) 242 { 243 uint32_t res = bitN - bit0; 244 uint64_t count = 0; 245 uint32_t bound; 246 247 /* Align to 64-bit boundary on the left side if needed. */ 248 if ((bit0 % BITS_IN(*addr)) != 0) { 249 bound = MIN(bitN, roundup2(bit0, BITS_IN(*addr))); 250 count += __bitcount64(bitmask_range(*addr, bit0, bound)); 251 res -= (bound - bit0); 252 addr++; 253 } 254 255 while (res > 0) { 256 bound = MIN(res, BITS_IN(*addr)); 257 count += __bitcount64(bitmask_range(*addr, 0, bound)); 258 res -= bound; 259 addr++; 260 } 261 262 return (count); 263 } 264 265 void * 266 _kvm_pmap_get(kvm_t *kd, u_long idx, size_t len) 267 { 268 uintptr_t off = idx * len; 269 270 if ((off_t)off >= kd->pt_sparse_off) 271 return (NULL); 272 return (void *)((uintptr_t)kd->page_map + off); 273 } 274 275 void * 276 _kvm_map_get(kvm_t *kd, u_long pa, unsigned int page_size) 277 { 278 off_t off; 279 uintptr_t addr; 280 281 off = _kvm_pt_find(kd, pa, page_size); 282 if (off == -1) 283 return NULL; 284 285 addr = (uintptr_t)kd->page_map + off; 286 if (off >= kd->pt_sparse_off) 287 addr = (uintptr_t)kd->sparse_map + (off - kd->pt_sparse_off); 288 return (void *)addr; 289 } 290 291 int 292 _kvm_pt_init(kvm_t *kd, size_t map_len, off_t map_off, off_t sparse_off, 293 int page_size, int word_size) 294 { 295 uint64_t *addr; 296 uint32_t *popcount_bin; 297 int bin_popcounts = 0; 298 uint64_t pc_bins, res; 299 ssize_t rd; 300 301 /* 302 * Map the bitmap specified by the arguments. 303 */ 304 kd->pt_map = _kvm_malloc(kd, map_len); 305 if (kd->pt_map == NULL) { 306 _kvm_err(kd, kd->program, "cannot allocate %zu bytes for bitmap", 307 map_len); 308 return (-1); 309 } 310 rd = pread(kd->pmfd, kd->pt_map, map_len, map_off); 311 if (rd < 0 || rd != (ssize_t)map_len) { 312 _kvm_err(kd, kd->program, "cannot read %zu bytes for bitmap", 313 map_len); 314 return (-1); 315 } 316 kd->pt_map_size = map_len; 317 318 /* 319 * Generate a popcount cache for every POPCOUNT_BITS in the bitmap, 320 * so lookups only have to calculate the number of bits set between 321 * a cache point and their bit. This reduces lookups to O(1), 322 * without significantly increasing memory requirements. 323 * 324 * Round up the number of bins so that 'upper half' lookups work for 325 * the final bin, if needed. The first popcount is 0, since no bits 326 * precede bit 0, so add 1 for that also. Without this, extra work 327 * would be needed to handle the first PTEs in _kvm_pt_find(). 328 */ 329 addr = kd->pt_map; 330 res = map_len; 331 pc_bins = 1 + (res * NBBY + POPCOUNT_BITS / 2) / POPCOUNT_BITS; 332 kd->pt_popcounts = calloc(pc_bins, sizeof(uint32_t)); 333 if (kd->pt_popcounts == NULL) { 334 _kvm_err(kd, kd->program, "cannot allocate popcount bins"); 335 return (-1); 336 } 337 338 for (popcount_bin = &kd->pt_popcounts[1]; res > 0; 339 addr++, res -= sizeof(*addr)) { 340 *popcount_bin += popcount_bytes(addr, 0, 341 MIN(res * NBBY, BITS_IN(*addr))); 342 if (++bin_popcounts == POPCOUNTS_IN(*addr)) { 343 popcount_bin++; 344 *popcount_bin = *(popcount_bin - 1); 345 bin_popcounts = 0; 346 } 347 } 348 349 assert(pc_bins * sizeof(*popcount_bin) == 350 ((uintptr_t)popcount_bin - (uintptr_t)kd->pt_popcounts)); 351 352 kd->pt_sparse_off = sparse_off; 353 kd->pt_sparse_size = (uint64_t)*popcount_bin * page_size; 354 kd->pt_page_size = page_size; 355 kd->pt_word_size = word_size; 356 357 /* 358 * Map the sparse page array. This is useful for performing point 359 * lookups of specific pages, e.g. for kvm_walk_pages. Generally, 360 * this is much larger than is reasonable to read in up front, so 361 * mmap it in instead. 362 */ 363 kd->sparse_map = mmap(NULL, kd->pt_sparse_size, PROT_READ, 364 MAP_PRIVATE, kd->pmfd, kd->pt_sparse_off); 365 if (kd->sparse_map == MAP_FAILED) { 366 _kvm_err(kd, kd->program, "cannot map %" PRIu64 367 " bytes from fd %d offset %jd for sparse map: %s", 368 kd->pt_sparse_size, kd->pmfd, 369 (intmax_t)kd->pt_sparse_off, strerror(errno)); 370 return (-1); 371 } 372 return (0); 373 } 374 375 int 376 _kvm_pmap_init(kvm_t *kd, uint32_t pmap_size, off_t pmap_off) 377 { 378 ssize_t exp_len = pmap_size; 379 380 kd->page_map_size = pmap_size; 381 kd->page_map_off = pmap_off; 382 kd->page_map = _kvm_malloc(kd, pmap_size); 383 if (kd->page_map == NULL) { 384 _kvm_err(kd, kd->program, "cannot allocate %u bytes " 385 "for page map", pmap_size); 386 return (-1); 387 } 388 if (pread(kd->pmfd, kd->page_map, pmap_size, pmap_off) != exp_len) { 389 _kvm_err(kd, kd->program, "cannot read %d bytes from " 390 "offset %jd for page map", pmap_size, (intmax_t)pmap_off); 391 return (-1); 392 } 393 return (0); 394 } 395 396 /* 397 * Find the offset for the given physical page address; returns -1 otherwise. 398 * 399 * A page's offset is represented by the sparse page base offset plus the 400 * number of bits set before its bit multiplied by page size. This means 401 * that if a page exists in the dump, it's necessary to know how many pages 402 * in the dump precede it. Reduce this O(n) counting to O(1) by caching the 403 * number of bits set at POPCOUNT_BITS intervals. 404 * 405 * Then to find the number of pages before the requested address, simply 406 * index into the cache and count the number of bits set between that cache 407 * bin and the page's bit. Halve the number of bytes that have to be 408 * checked by also counting down from the next higher bin if it's closer. 409 */ 410 off_t 411 _kvm_pt_find(kvm_t *kd, uint64_t pa, unsigned int page_size) 412 { 413 uint64_t *bitmap = kd->pt_map; 414 uint64_t pte_bit_id = pa / page_size; 415 uint64_t pte_u64 = pte_bit_id / BITS_IN(*bitmap); 416 uint64_t popcount_id = pte_bit_id / POPCOUNT_BITS; 417 uint64_t pte_mask = 1ULL << (pte_bit_id % BITS_IN(*bitmap)); 418 uint64_t bitN; 419 uint32_t count; 420 421 /* Check whether the page address requested is in the dump. */ 422 if (pte_bit_id >= (kd->pt_map_size * NBBY) || 423 (bitmap[pte_u64] & pte_mask) == 0) 424 return (-1); 425 426 /* 427 * Add/sub popcounts from the bitmap until the PTE's bit is reached. 428 * For bits that are in the upper half between the calculated 429 * popcount id and the next one, use the next one and subtract to 430 * minimize the number of popcounts required. 431 */ 432 if ((pte_bit_id % POPCOUNT_BITS) < (POPCOUNT_BITS / 2)) { 433 count = kd->pt_popcounts[popcount_id] + popcount_bytes( 434 bitmap + popcount_id * POPCOUNTS_IN(*bitmap), 435 0, pte_bit_id - popcount_id * POPCOUNT_BITS); 436 } else { 437 /* 438 * Counting in reverse is trickier, since we must avoid 439 * reading from bytes that are not in range, and invert. 440 */ 441 uint64_t pte_u64_bit_off = pte_u64 * BITS_IN(*bitmap); 442 443 popcount_id++; 444 bitN = MIN(popcount_id * POPCOUNT_BITS, 445 kd->pt_map_size * BITS_IN(uint8_t)); 446 count = kd->pt_popcounts[popcount_id] - popcount_bytes( 447 bitmap + pte_u64, 448 pte_bit_id - pte_u64_bit_off, bitN - pte_u64_bit_off); 449 } 450 451 /* 452 * This can only happen if the core is truncated. Treat these 453 * entries as if they don't exist, since their backing doesn't. 454 */ 455 if (count >= (kd->pt_sparse_size / page_size)) 456 return (-1); 457 458 return (kd->pt_sparse_off + (uint64_t)count * page_size); 459 } 460 461 static int 462 kvm_fdnlist(kvm_t *kd, struct kvm_nlist *list) 463 { 464 kvaddr_t addr; 465 int error, nfail; 466 467 if (kd->resolve_symbol == NULL) { 468 struct nlist *nl; 469 int count, i; 470 471 for (count = 0; list[count].n_name != NULL && 472 list[count].n_name[0] != '\0'; count++) 473 ; 474 nl = calloc(count + 1, sizeof(*nl)); 475 for (i = 0; i < count; i++) 476 nl[i].n_name = list[i].n_name; 477 nfail = __fdnlist(kd->nlfd, nl); 478 for (i = 0; i < count; i++) { 479 list[i].n_type = nl[i].n_type; 480 list[i].n_value = nl[i].n_value; 481 } 482 free(nl); 483 return (nfail); 484 } 485 486 nfail = 0; 487 while (list->n_name != NULL && list->n_name[0] != '\0') { 488 error = kd->resolve_symbol(list->n_name, &addr); 489 if (error != 0) { 490 nfail++; 491 list->n_value = 0; 492 list->n_type = 0; 493 } else { 494 list->n_value = addr; 495 list->n_type = N_DATA | N_EXT; 496 } 497 list++; 498 } 499 return (nfail); 500 } 501 502 /* 503 * Walk the list of unresolved symbols, generate a new list and prefix the 504 * symbol names, try again, and merge back what we could resolve. 505 */ 506 static int 507 kvm_fdnlist_prefix(kvm_t *kd, struct kvm_nlist *nl, int missing, 508 const char *prefix, kvaddr_t (*validate_fn)(kvm_t *, kvaddr_t)) 509 { 510 struct kvm_nlist *n, *np, *p; 511 char *cp, *ce; 512 const char *ccp; 513 size_t len; 514 int slen, unresolved; 515 516 /* 517 * Calculate the space we need to malloc for nlist and names. 518 * We are going to store the name twice for later lookups: once 519 * with the prefix and once the unmodified name delmited by \0. 520 */ 521 len = 0; 522 unresolved = 0; 523 for (p = nl; p->n_name && p->n_name[0]; ++p) { 524 if (p->n_type != N_UNDF) 525 continue; 526 len += sizeof(struct kvm_nlist) + strlen(prefix) + 527 2 * (strlen(p->n_name) + 1); 528 unresolved++; 529 } 530 if (unresolved == 0) 531 return (unresolved); 532 /* Add space for the terminating nlist entry. */ 533 len += sizeof(struct kvm_nlist); 534 unresolved++; 535 536 /* Alloc one chunk for (nlist, [names]) and setup pointers. */ 537 n = np = malloc(len); 538 bzero(n, len); 539 if (n == NULL) 540 return (missing); 541 cp = ce = (char *)np; 542 cp += unresolved * sizeof(struct kvm_nlist); 543 ce += len; 544 545 /* Generate shortened nlist with special prefix. */ 546 unresolved = 0; 547 for (p = nl; p->n_name && p->n_name[0]; ++p) { 548 if (p->n_type != N_UNDF) 549 continue; 550 *np = *p; 551 /* Save the new\0orig. name so we can later match it again. */ 552 slen = snprintf(cp, ce - cp, "%s%s%c%s", prefix, 553 (prefix[0] != '\0' && p->n_name[0] == '_') ? 554 (p->n_name + 1) : p->n_name, '\0', p->n_name); 555 if (slen < 0 || slen >= ce - cp) 556 continue; 557 np->n_name = cp; 558 cp += slen + 1; 559 np++; 560 unresolved++; 561 } 562 563 /* Do lookup on the reduced list. */ 564 np = n; 565 unresolved = kvm_fdnlist(kd, np); 566 567 /* Check if we could resolve further symbols and update the list. */ 568 if (unresolved >= 0 && unresolved < missing) { 569 /* Find the first freshly resolved entry. */ 570 for (; np->n_name && np->n_name[0]; np++) 571 if (np->n_type != N_UNDF) 572 break; 573 /* 574 * The lists are both in the same order, 575 * so we can walk them in parallel. 576 */ 577 for (p = nl; np->n_name && np->n_name[0] && 578 p->n_name && p->n_name[0]; ++p) { 579 if (p->n_type != N_UNDF) 580 continue; 581 /* Skip expanded name and compare to orig. one. */ 582 ccp = np->n_name + strlen(np->n_name) + 1; 583 if (strcmp(ccp, p->n_name) != 0) 584 continue; 585 /* Update nlist with new, translated results. */ 586 p->n_type = np->n_type; 587 if (validate_fn) 588 p->n_value = (*validate_fn)(kd, np->n_value); 589 else 590 p->n_value = np->n_value; 591 missing--; 592 /* Find next freshly resolved entry. */ 593 for (np++; np->n_name && np->n_name[0]; np++) 594 if (np->n_type != N_UNDF) 595 break; 596 } 597 } 598 /* We could assert missing = unresolved here. */ 599 600 free(n); 601 return (unresolved); 602 } 603 604 int 605 _kvm_nlist(kvm_t *kd, struct kvm_nlist *nl, int initialize) 606 { 607 struct kvm_nlist *p; 608 int nvalid; 609 struct kld_sym_lookup lookup; 610 int error; 611 const char *prefix = ""; 612 char symname[1024]; /* XXX-BZ symbol name length limit? */ 613 int tried_vnet, tried_dpcpu; 614 615 /* 616 * If we can't use the kld symbol lookup, revert to the 617 * slow library call. 618 */ 619 if (!ISALIVE(kd)) { 620 error = kvm_fdnlist(kd, nl); 621 if (error <= 0) /* Hard error or success. */ 622 return (error); 623 624 if (_kvm_vnet_initialized(kd, initialize)) 625 error = kvm_fdnlist_prefix(kd, nl, error, 626 VNET_SYMPREFIX, _kvm_vnet_validaddr); 627 628 if (error > 0 && _kvm_dpcpu_initialized(kd, initialize)) 629 error = kvm_fdnlist_prefix(kd, nl, error, 630 DPCPU_SYMPREFIX, _kvm_dpcpu_validaddr); 631 632 return (error); 633 } 634 635 /* 636 * We can use the kld lookup syscall. Go through each nlist entry 637 * and look it up with a kldsym(2) syscall. 638 */ 639 nvalid = 0; 640 tried_vnet = 0; 641 tried_dpcpu = 0; 642 again: 643 for (p = nl; p->n_name && p->n_name[0]; ++p) { 644 if (p->n_type != N_UNDF) 645 continue; 646 647 lookup.version = sizeof(lookup); 648 lookup.symvalue = 0; 649 lookup.symsize = 0; 650 651 error = snprintf(symname, sizeof(symname), "%s%s", prefix, 652 (prefix[0] != '\0' && p->n_name[0] == '_') ? 653 (p->n_name + 1) : p->n_name); 654 if (error < 0 || error >= (int)sizeof(symname)) 655 continue; 656 lookup.symname = symname; 657 if (lookup.symname[0] == '_') 658 lookup.symname++; 659 660 if (kldsym(0, KLDSYM_LOOKUP, &lookup) != -1) { 661 p->n_type = N_TEXT; 662 if (_kvm_vnet_initialized(kd, initialize) && 663 strcmp(prefix, VNET_SYMPREFIX) == 0) 664 p->n_value = 665 _kvm_vnet_validaddr(kd, lookup.symvalue); 666 else if (_kvm_dpcpu_initialized(kd, initialize) && 667 strcmp(prefix, DPCPU_SYMPREFIX) == 0) 668 p->n_value = 669 _kvm_dpcpu_validaddr(kd, lookup.symvalue); 670 else 671 p->n_value = lookup.symvalue; 672 ++nvalid; 673 /* lookup.symsize */ 674 } 675 } 676 677 /* 678 * Check the number of entries that weren't found. If they exist, 679 * try again with a prefix for virtualized or DPCPU symbol names. 680 */ 681 error = ((p - nl) - nvalid); 682 if (error && _kvm_vnet_initialized(kd, initialize) && !tried_vnet) { 683 tried_vnet = 1; 684 prefix = VNET_SYMPREFIX; 685 goto again; 686 } 687 if (error && _kvm_dpcpu_initialized(kd, initialize) && !tried_dpcpu) { 688 tried_dpcpu = 1; 689 prefix = DPCPU_SYMPREFIX; 690 goto again; 691 } 692 693 /* 694 * Return the number of entries that weren't found. If they exist, 695 * also fill internal error buffer. 696 */ 697 error = ((p - nl) - nvalid); 698 if (error) 699 _kvm_syserr(kd, kd->program, "kvm_nlist"); 700 return (error); 701 } 702 703 int 704 _kvm_bitmap_init(struct kvm_bitmap *bm, u_long bitmapsize, u_long *idx) 705 { 706 707 *idx = ULONG_MAX; 708 bm->map = calloc(bitmapsize, sizeof *bm->map); 709 if (bm->map == NULL) 710 return (0); 711 bm->size = bitmapsize; 712 return (1); 713 } 714 715 void 716 _kvm_bitmap_set(struct kvm_bitmap *bm, u_long pa, unsigned int page_size) 717 { 718 u_long bm_index = pa / page_size; 719 uint8_t *byte = &bm->map[bm_index / 8]; 720 721 *byte |= (1UL << (bm_index % 8)); 722 } 723 724 int 725 _kvm_bitmap_next(struct kvm_bitmap *bm, u_long *idx) 726 { 727 u_long first_invalid = bm->size * CHAR_BIT; 728 729 if (*idx == ULONG_MAX) 730 *idx = 0; 731 else 732 (*idx)++; 733 734 /* Find the next valid idx. */ 735 for (; *idx < first_invalid; (*idx)++) { 736 unsigned int mask = *idx % CHAR_BIT; 737 if ((bm->map[*idx * CHAR_BIT] & mask) == 0) 738 break; 739 } 740 741 return (*idx < first_invalid); 742 } 743 744 void 745 _kvm_bitmap_deinit(struct kvm_bitmap *bm) 746 { 747 748 free(bm->map); 749 } 750 751 int 752 _kvm_visit_cb(kvm_t *kd, kvm_walk_pages_cb_t *cb, void *arg, u_long pa, 753 u_long kmap_vaddr, u_long dmap_vaddr, vm_prot_t prot, size_t len, 754 unsigned int page_size) 755 { 756 unsigned int pgsz = page_size ? page_size : len; 757 struct kvm_page p = { 758 .version = LIBKVM_WALK_PAGES_VERSION, 759 .paddr = pa, 760 .kmap_vaddr = kmap_vaddr, 761 .dmap_vaddr = dmap_vaddr, 762 .prot = prot, 763 .offset = _kvm_pt_find(kd, pa, pgsz), 764 .len = len, 765 }; 766 767 return cb(&p, arg); 768 } 769