1197eca22SWill Andrews /*- 2197eca22SWill Andrews * Copyright (c) 1989, 1992, 1993 3197eca22SWill Andrews * The Regents of the University of California. All rights reserved. 4197eca22SWill Andrews * 5197eca22SWill Andrews * This code is derived from software developed by the Computer Systems 6197eca22SWill Andrews * Engineering group at Lawrence Berkeley Laboratory under DARPA contract 7197eca22SWill Andrews * BG 91-66 and contributed to Berkeley. 8197eca22SWill Andrews * 9197eca22SWill Andrews * Redistribution and use in source and binary forms, with or without 10197eca22SWill Andrews * modification, are permitted provided that the following conditions 11197eca22SWill Andrews * are met: 12197eca22SWill Andrews * 1. Redistributions of source code must retain the above copyright 13197eca22SWill Andrews * notice, this list of conditions and the following disclaimer. 14197eca22SWill Andrews * 2. Redistributions in binary form must reproduce the above copyright 15197eca22SWill Andrews * notice, this list of conditions and the following disclaimer in the 16197eca22SWill Andrews * documentation and/or other materials provided with the distribution. 17197eca22SWill Andrews * 4. Neither the name of the University nor the names of its contributors 18197eca22SWill Andrews * may be used to endorse or promote products derived from this software 19197eca22SWill Andrews * without specific prior written permission. 20197eca22SWill Andrews * 21197eca22SWill Andrews * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22197eca22SWill Andrews * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23197eca22SWill Andrews * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24197eca22SWill Andrews * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25197eca22SWill Andrews * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26197eca22SWill Andrews * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27197eca22SWill Andrews * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28197eca22SWill Andrews * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29197eca22SWill Andrews * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30197eca22SWill Andrews * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31197eca22SWill Andrews * SUCH DAMAGE. 32197eca22SWill Andrews */ 33197eca22SWill Andrews 34197eca22SWill Andrews #include <sys/cdefs.h> 35197eca22SWill Andrews __FBSDID("$FreeBSD$"); 36197eca22SWill Andrews 37197eca22SWill Andrews #include <sys/param.h> 38197eca22SWill Andrews #include <sys/fnv_hash.h> 39197eca22SWill Andrews 40197eca22SWill Andrews #define _WANT_VNET 41197eca22SWill Andrews 42197eca22SWill Andrews #include <sys/user.h> 43197eca22SWill Andrews #include <sys/linker.h> 44197eca22SWill Andrews #include <sys/pcpu.h> 45197eca22SWill Andrews #include <sys/stat.h> 46197eca22SWill Andrews 47197eca22SWill Andrews #include <net/vnet.h> 48197eca22SWill Andrews 49*ffdeef32SWill Andrews #include <assert.h> 50197eca22SWill Andrews #include <fcntl.h> 51197eca22SWill Andrews #include <kvm.h> 52197eca22SWill Andrews #include <limits.h> 53197eca22SWill Andrews #include <paths.h> 54197eca22SWill Andrews #include <stdint.h> 55197eca22SWill Andrews #include <stdio.h> 56197eca22SWill Andrews #include <stdlib.h> 57197eca22SWill Andrews #include <string.h> 58197eca22SWill Andrews #include <unistd.h> 59197eca22SWill Andrews #include <stdarg.h> 60197eca22SWill Andrews 61197eca22SWill Andrews #include "kvm_private.h" 62197eca22SWill Andrews 63197eca22SWill Andrews /* 64197eca22SWill Andrews * Routines private to libkvm. 65197eca22SWill Andrews */ 66197eca22SWill Andrews 67197eca22SWill Andrews /* from src/lib/libc/gen/nlist.c */ 68197eca22SWill Andrews int __fdnlist(int, struct nlist *); 69197eca22SWill Andrews 70197eca22SWill Andrews /* 71197eca22SWill Andrews * Report an error using printf style arguments. "program" is kd->program 72197eca22SWill Andrews * on hard errors, and 0 on soft errors, so that under sun error emulation, 73197eca22SWill Andrews * only hard errors are printed out (otherwise, programs like gdb will 74197eca22SWill Andrews * generate tons of error messages when trying to access bogus pointers). 75197eca22SWill Andrews */ 76197eca22SWill Andrews void 77197eca22SWill Andrews _kvm_err(kvm_t *kd, const char *program, const char *fmt, ...) 78197eca22SWill Andrews { 79197eca22SWill Andrews va_list ap; 80197eca22SWill Andrews 81197eca22SWill Andrews va_start(ap, fmt); 82197eca22SWill Andrews if (program != NULL) { 83197eca22SWill Andrews (void)fprintf(stderr, "%s: ", program); 84197eca22SWill Andrews (void)vfprintf(stderr, fmt, ap); 85197eca22SWill Andrews (void)fputc('\n', stderr); 86197eca22SWill Andrews } else 87197eca22SWill Andrews (void)vsnprintf(kd->errbuf, 88197eca22SWill Andrews sizeof(kd->errbuf), fmt, ap); 89197eca22SWill Andrews 90197eca22SWill Andrews va_end(ap); 91197eca22SWill Andrews } 92197eca22SWill Andrews 93197eca22SWill Andrews void 94197eca22SWill Andrews _kvm_syserr(kvm_t *kd, const char *program, const char *fmt, ...) 95197eca22SWill Andrews { 96197eca22SWill Andrews va_list ap; 97197eca22SWill Andrews int n; 98197eca22SWill Andrews 99197eca22SWill Andrews va_start(ap, fmt); 100197eca22SWill Andrews if (program != NULL) { 101197eca22SWill Andrews (void)fprintf(stderr, "%s: ", program); 102197eca22SWill Andrews (void)vfprintf(stderr, fmt, ap); 103197eca22SWill Andrews (void)fprintf(stderr, ": %s\n", strerror(errno)); 104197eca22SWill Andrews } else { 105197eca22SWill Andrews char *cp = kd->errbuf; 106197eca22SWill Andrews 107197eca22SWill Andrews (void)vsnprintf(cp, sizeof(kd->errbuf), fmt, ap); 108197eca22SWill Andrews n = strlen(cp); 109197eca22SWill Andrews (void)snprintf(&cp[n], sizeof(kd->errbuf) - n, ": %s", 110197eca22SWill Andrews strerror(errno)); 111197eca22SWill Andrews } 112197eca22SWill Andrews va_end(ap); 113197eca22SWill Andrews } 114197eca22SWill Andrews 115197eca22SWill Andrews void * 116197eca22SWill Andrews _kvm_malloc(kvm_t *kd, size_t n) 117197eca22SWill Andrews { 118197eca22SWill Andrews void *p; 119197eca22SWill Andrews 120197eca22SWill Andrews if ((p = calloc(n, sizeof(char))) == NULL) 121197eca22SWill Andrews _kvm_err(kd, kd->program, "can't allocate %zu bytes: %s", 122197eca22SWill Andrews n, strerror(errno)); 123197eca22SWill Andrews return (p); 124197eca22SWill Andrews } 125197eca22SWill Andrews 126197eca22SWill Andrews int 127197eca22SWill Andrews _kvm_probe_elf_kernel(kvm_t *kd, int class, int machine) 128197eca22SWill Andrews { 129197eca22SWill Andrews 130197eca22SWill Andrews return (kd->nlehdr.e_ident[EI_CLASS] == class && 131197eca22SWill Andrews kd->nlehdr.e_type == ET_EXEC && 132197eca22SWill Andrews kd->nlehdr.e_machine == machine); 133197eca22SWill Andrews } 134197eca22SWill Andrews 135197eca22SWill Andrews int 136197eca22SWill Andrews _kvm_is_minidump(kvm_t *kd) 137197eca22SWill Andrews { 138197eca22SWill Andrews char minihdr[8]; 139197eca22SWill Andrews 140197eca22SWill Andrews if (kd->rawdump) 141197eca22SWill Andrews return (0); 142197eca22SWill Andrews if (pread(kd->pmfd, &minihdr, 8, 0) == 8 && 143197eca22SWill Andrews memcmp(&minihdr, "minidump", 8) == 0) 144197eca22SWill Andrews return (1); 145197eca22SWill Andrews return (0); 146197eca22SWill Andrews } 147197eca22SWill Andrews 148197eca22SWill Andrews /* 149197eca22SWill Andrews * The powerpc backend has a hack to strip a leading kerneldump 150197eca22SWill Andrews * header from the core before treating it as an ELF header. 151197eca22SWill Andrews * 152197eca22SWill Andrews * We can add that here if we can get a change to libelf to support 153197eca22SWill Andrews * an initial offset into the file. Alternatively we could patch 154197eca22SWill Andrews * savecore to extract cores from a regular file instead. 155197eca22SWill Andrews */ 156197eca22SWill Andrews int 157197eca22SWill Andrews _kvm_read_core_phdrs(kvm_t *kd, size_t *phnump, GElf_Phdr **phdrp) 158197eca22SWill Andrews { 159197eca22SWill Andrews GElf_Ehdr ehdr; 160197eca22SWill Andrews GElf_Phdr *phdr; 161197eca22SWill Andrews Elf *elf; 162197eca22SWill Andrews size_t i, phnum; 163197eca22SWill Andrews 164197eca22SWill Andrews elf = elf_begin(kd->pmfd, ELF_C_READ, NULL); 165197eca22SWill Andrews if (elf == NULL) { 166197eca22SWill Andrews _kvm_err(kd, kd->program, "%s", elf_errmsg(0)); 167197eca22SWill Andrews return (-1); 168197eca22SWill Andrews } 169197eca22SWill Andrews if (elf_kind(elf) != ELF_K_ELF) { 170197eca22SWill Andrews _kvm_err(kd, kd->program, "invalid core"); 171197eca22SWill Andrews goto bad; 172197eca22SWill Andrews } 173197eca22SWill Andrews if (gelf_getclass(elf) != kd->nlehdr.e_ident[EI_CLASS]) { 174197eca22SWill Andrews _kvm_err(kd, kd->program, "invalid core"); 175197eca22SWill Andrews goto bad; 176197eca22SWill Andrews } 177197eca22SWill Andrews if (gelf_getehdr(elf, &ehdr) == NULL) { 178197eca22SWill Andrews _kvm_err(kd, kd->program, "%s", elf_errmsg(0)); 179197eca22SWill Andrews goto bad; 180197eca22SWill Andrews } 181197eca22SWill Andrews if (ehdr.e_type != ET_CORE) { 182197eca22SWill Andrews _kvm_err(kd, kd->program, "invalid core"); 183197eca22SWill Andrews goto bad; 184197eca22SWill Andrews } 185197eca22SWill Andrews if (ehdr.e_machine != kd->nlehdr.e_machine) { 186197eca22SWill Andrews _kvm_err(kd, kd->program, "invalid core"); 187197eca22SWill Andrews goto bad; 188197eca22SWill Andrews } 189197eca22SWill Andrews 190197eca22SWill Andrews if (elf_getphdrnum(elf, &phnum) == -1) { 191197eca22SWill Andrews _kvm_err(kd, kd->program, "%s", elf_errmsg(0)); 192197eca22SWill Andrews goto bad; 193197eca22SWill Andrews } 194197eca22SWill Andrews 195197eca22SWill Andrews phdr = calloc(phnum, sizeof(*phdr)); 196197eca22SWill Andrews if (phdr == NULL) { 197197eca22SWill Andrews _kvm_err(kd, kd->program, "failed to allocate phdrs"); 198197eca22SWill Andrews goto bad; 199197eca22SWill Andrews } 200197eca22SWill Andrews 201197eca22SWill Andrews for (i = 0; i < phnum; i++) { 202197eca22SWill Andrews if (gelf_getphdr(elf, i, &phdr[i]) == NULL) { 203197eca22SWill Andrews _kvm_err(kd, kd->program, "%s", elf_errmsg(0)); 204197eca22SWill Andrews goto bad; 205197eca22SWill Andrews } 206197eca22SWill Andrews } 207197eca22SWill Andrews elf_end(elf); 208197eca22SWill Andrews *phnump = phnum; 209197eca22SWill Andrews *phdrp = phdr; 210197eca22SWill Andrews return (0); 211197eca22SWill Andrews 212197eca22SWill Andrews bad: 213197eca22SWill Andrews elf_end(elf); 214197eca22SWill Andrews return (-1); 215197eca22SWill Andrews } 216197eca22SWill Andrews 217*ffdeef32SWill Andrews /* 218*ffdeef32SWill Andrews * Transform v such that only bits [bit0, bitN) may be set. Generates a 219*ffdeef32SWill Andrews * bitmask covering the number of bits, then shifts so +bit0+ is the first. 220*ffdeef32SWill Andrews */ 221*ffdeef32SWill Andrews static uint64_t 222*ffdeef32SWill Andrews bitmask_range(uint64_t v, uint64_t bit0, uint64_t bitN) 223197eca22SWill Andrews { 224*ffdeef32SWill Andrews if (bit0 == 0 && bitN == BITS_IN(v)) 225*ffdeef32SWill Andrews return (v); 226197eca22SWill Andrews 227*ffdeef32SWill Andrews return (v & (((1ULL << (bitN - bit0)) - 1ULL) << bit0)); 228197eca22SWill Andrews } 229197eca22SWill Andrews 230*ffdeef32SWill Andrews /* 231*ffdeef32SWill Andrews * Returns the number of bits in a given byte array range starting at a 232*ffdeef32SWill Andrews * given base, from bit0 to bitN. bit0 may be non-zero in the case of 233*ffdeef32SWill Andrews * counting backwards from bitN. 234*ffdeef32SWill Andrews */ 235*ffdeef32SWill Andrews static uint64_t 236*ffdeef32SWill Andrews popcount_bytes(uint64_t *addr, uint32_t bit0, uint32_t bitN) 237*ffdeef32SWill Andrews { 238*ffdeef32SWill Andrews uint32_t res = bitN - bit0; 239*ffdeef32SWill Andrews uint64_t count = 0; 240*ffdeef32SWill Andrews uint32_t bound; 241*ffdeef32SWill Andrews 242*ffdeef32SWill Andrews /* Align to 64-bit boundary on the left side if needed. */ 243*ffdeef32SWill Andrews if ((bit0 % BITS_IN(*addr)) != 0) { 244*ffdeef32SWill Andrews bound = MIN(bitN, roundup2(bit0, BITS_IN(*addr))); 245*ffdeef32SWill Andrews count += __bitcount64(bitmask_range(*addr, bit0, bound)); 246*ffdeef32SWill Andrews res -= (bound - bit0); 247*ffdeef32SWill Andrews addr++; 248*ffdeef32SWill Andrews } 249*ffdeef32SWill Andrews 250*ffdeef32SWill Andrews while (res > 0) { 251*ffdeef32SWill Andrews bound = MIN(res, BITS_IN(*addr)); 252*ffdeef32SWill Andrews count += __bitcount64(bitmask_range(*addr, 0, bound)); 253*ffdeef32SWill Andrews res -= bound; 254*ffdeef32SWill Andrews addr++; 255*ffdeef32SWill Andrews } 256*ffdeef32SWill Andrews 257*ffdeef32SWill Andrews return (count); 258*ffdeef32SWill Andrews } 259*ffdeef32SWill Andrews 260*ffdeef32SWill Andrews int 261*ffdeef32SWill Andrews _kvm_pt_init(kvm_t *kd, size_t map_len, off_t map_off, off_t sparse_off, 262197eca22SWill Andrews int page_size, int word_size) 263197eca22SWill Andrews { 264*ffdeef32SWill Andrews uint64_t *addr; 265*ffdeef32SWill Andrews uint32_t *popcount_bin; 266*ffdeef32SWill Andrews int bin_popcounts = 0; 267*ffdeef32SWill Andrews uint64_t pc_bins, res; 268*ffdeef32SWill Andrews ssize_t rd; 269197eca22SWill Andrews 270*ffdeef32SWill Andrews /* 271*ffdeef32SWill Andrews * Map the bitmap specified by the arguments. 272*ffdeef32SWill Andrews */ 273*ffdeef32SWill Andrews kd->pt_map = _kvm_malloc(kd, map_len); 274*ffdeef32SWill Andrews if (kd->pt_map == NULL) { 275*ffdeef32SWill Andrews _kvm_err(kd, kd->program, "cannot allocate %zu bytes for bitmap", 276*ffdeef32SWill Andrews map_len); 277197eca22SWill Andrews return (-1); 278197eca22SWill Andrews } 279*ffdeef32SWill Andrews rd = pread(kd->pmfd, kd->pt_map, map_len, map_off); 280*ffdeef32SWill Andrews if (rd < 0 || rd != (ssize_t)map_len) { 281*ffdeef32SWill Andrews _kvm_err(kd, kd->program, "cannot read %zu bytes for bitmap", 282*ffdeef32SWill Andrews map_len); 283*ffdeef32SWill Andrews return (-1); 284*ffdeef32SWill Andrews } 285*ffdeef32SWill Andrews kd->pt_map_size = map_len; 286197eca22SWill Andrews 287*ffdeef32SWill Andrews /* 288*ffdeef32SWill Andrews * Generate a popcount cache for every POPCOUNT_BITS in the bitmap, 289*ffdeef32SWill Andrews * so lookups only have to calculate the number of bits set between 290*ffdeef32SWill Andrews * a cache point and their bit. This reduces lookups to O(1), 291*ffdeef32SWill Andrews * without significantly increasing memory requirements. 292*ffdeef32SWill Andrews * 293*ffdeef32SWill Andrews * Round up the number of bins so that 'upper half' lookups work for 294*ffdeef32SWill Andrews * the final bin, if needed. The first popcount is 0, since no bits 295*ffdeef32SWill Andrews * precede bit 0, so add 1 for that also. Without this, extra work 296*ffdeef32SWill Andrews * would be needed to handle the first PTEs in _kvm_pt_find(). 297*ffdeef32SWill Andrews */ 298*ffdeef32SWill Andrews addr = kd->pt_map; 299*ffdeef32SWill Andrews res = map_len; 300*ffdeef32SWill Andrews pc_bins = 1 + (res * NBBY + POPCOUNT_BITS / 2) / POPCOUNT_BITS; 301*ffdeef32SWill Andrews kd->pt_popcounts = calloc(pc_bins, sizeof(uint32_t)); 302*ffdeef32SWill Andrews if (kd->pt_popcounts == NULL) 303*ffdeef32SWill Andrews return (-1); 304*ffdeef32SWill Andrews 305*ffdeef32SWill Andrews for (popcount_bin = &kd->pt_popcounts[1]; res > 0; 306*ffdeef32SWill Andrews addr++, res -= sizeof(*addr)) { 307*ffdeef32SWill Andrews *popcount_bin += popcount_bytes(addr, 0, 308*ffdeef32SWill Andrews MIN(res * NBBY, BITS_IN(*addr))); 309*ffdeef32SWill Andrews if (++bin_popcounts == POPCOUNTS_IN(*addr)) { 310*ffdeef32SWill Andrews popcount_bin++; 311*ffdeef32SWill Andrews *popcount_bin = *(popcount_bin - 1); 312*ffdeef32SWill Andrews bin_popcounts = 0; 313*ffdeef32SWill Andrews } 314*ffdeef32SWill Andrews } 315*ffdeef32SWill Andrews 316*ffdeef32SWill Andrews assert(pc_bins * sizeof(*popcount_bin) == 317*ffdeef32SWill Andrews ((uintptr_t)popcount_bin - (uintptr_t)kd->pt_popcounts)); 318*ffdeef32SWill Andrews 319*ffdeef32SWill Andrews kd->pt_sparse_off = sparse_off; 320*ffdeef32SWill Andrews kd->pt_sparse_size = (uint64_t)*popcount_bin * PAGE_SIZE; 321*ffdeef32SWill Andrews kd->pt_page_size = page_size; 322*ffdeef32SWill Andrews kd->pt_word_size = word_size; 323*ffdeef32SWill Andrews return (0); 324*ffdeef32SWill Andrews } 325*ffdeef32SWill Andrews 326*ffdeef32SWill Andrews /* 327*ffdeef32SWill Andrews * Find the offset for the given physical page address; returns -1 otherwise. 328*ffdeef32SWill Andrews * 329*ffdeef32SWill Andrews * A page's offset is represented by the sparse page base offset plus the 330*ffdeef32SWill Andrews * number of bits set before its bit multiplied by PAGE_SIZE. This means 331*ffdeef32SWill Andrews * that if a page exists in the dump, it's necessary to know how many pages 332*ffdeef32SWill Andrews * in the dump precede it. Reduce this O(n) counting to O(1) by caching the 333*ffdeef32SWill Andrews * number of bits set at POPCOUNT_BITS intervals. 334*ffdeef32SWill Andrews * 335*ffdeef32SWill Andrews * Then to find the number of pages before the requested address, simply 336*ffdeef32SWill Andrews * index into the cache and count the number of bits set between that cache 337*ffdeef32SWill Andrews * bin and the page's bit. Halve the number of bytes that have to be 338*ffdeef32SWill Andrews * checked by also counting down from the next higher bin if it's closer. 339*ffdeef32SWill Andrews */ 340*ffdeef32SWill Andrews off_t 341*ffdeef32SWill Andrews _kvm_pt_find(kvm_t *kd, uint64_t pa) 342197eca22SWill Andrews { 343*ffdeef32SWill Andrews uint64_t *bitmap = kd->pt_map; 344*ffdeef32SWill Andrews uint64_t pte_bit_id = pa / PAGE_SIZE; 345*ffdeef32SWill Andrews uint64_t pte_u64 = pte_bit_id / BITS_IN(*bitmap); 346*ffdeef32SWill Andrews uint64_t popcount_id = pte_bit_id / POPCOUNT_BITS; 347*ffdeef32SWill Andrews uint64_t pte_mask = 1ULL << (pte_bit_id % BITS_IN(*bitmap)); 348*ffdeef32SWill Andrews uint64_t bitN; 349*ffdeef32SWill Andrews uint32_t count; 350197eca22SWill Andrews 351*ffdeef32SWill Andrews /* Check whether the page address requested is in the dump. */ 352*ffdeef32SWill Andrews if (pte_bit_id >= (kd->pt_map_size * NBBY) || 353*ffdeef32SWill Andrews (bitmap[pte_u64] & pte_mask) == 0) 354*ffdeef32SWill Andrews return (-1); 355*ffdeef32SWill Andrews 356*ffdeef32SWill Andrews /* 357*ffdeef32SWill Andrews * Add/sub popcounts from the bitmap until the PTE's bit is reached. 358*ffdeef32SWill Andrews * For bits that are in the upper half between the calculated 359*ffdeef32SWill Andrews * popcount id and the next one, use the next one and subtract to 360*ffdeef32SWill Andrews * minimize the number of popcounts required. 361*ffdeef32SWill Andrews */ 362*ffdeef32SWill Andrews if ((pte_bit_id % POPCOUNT_BITS) < (POPCOUNT_BITS / 2)) { 363*ffdeef32SWill Andrews count = kd->pt_popcounts[popcount_id] + popcount_bytes( 364*ffdeef32SWill Andrews bitmap + popcount_id * POPCOUNTS_IN(*bitmap), 365*ffdeef32SWill Andrews 0, pte_bit_id - popcount_id * POPCOUNT_BITS); 366*ffdeef32SWill Andrews } else { 367*ffdeef32SWill Andrews /* 368*ffdeef32SWill Andrews * Counting in reverse is trickier, since we must avoid 369*ffdeef32SWill Andrews * reading from bytes that are not in range, and invert. 370*ffdeef32SWill Andrews */ 371*ffdeef32SWill Andrews uint64_t pte_u64_bit_off = pte_u64 * BITS_IN(*bitmap); 372*ffdeef32SWill Andrews 373*ffdeef32SWill Andrews popcount_id++; 374*ffdeef32SWill Andrews bitN = MIN(popcount_id * POPCOUNT_BITS, 375*ffdeef32SWill Andrews kd->pt_map_size * BITS_IN(uint8_t)); 376*ffdeef32SWill Andrews count = kd->pt_popcounts[popcount_id] - popcount_bytes( 377*ffdeef32SWill Andrews bitmap + pte_u64, 378*ffdeef32SWill Andrews pte_bit_id - pte_u64_bit_off, bitN - pte_u64_bit_off); 379197eca22SWill Andrews } 380*ffdeef32SWill Andrews 381*ffdeef32SWill Andrews /* 382*ffdeef32SWill Andrews * This can only happen if the core is truncated. Treat these 383*ffdeef32SWill Andrews * entries as if they don't exist, since their backing doesn't. 384*ffdeef32SWill Andrews */ 385*ffdeef32SWill Andrews if (count >= (kd->pt_sparse_size / PAGE_SIZE)) 386*ffdeef32SWill Andrews return (-1); 387*ffdeef32SWill Andrews 388*ffdeef32SWill Andrews return (kd->pt_sparse_off + (uint64_t)count * PAGE_SIZE); 389197eca22SWill Andrews } 390197eca22SWill Andrews 391197eca22SWill Andrews static int 392197eca22SWill Andrews kvm_fdnlist(kvm_t *kd, struct kvm_nlist *list) 393197eca22SWill Andrews { 394197eca22SWill Andrews kvaddr_t addr; 395197eca22SWill Andrews int error, nfail; 396197eca22SWill Andrews 397197eca22SWill Andrews if (kd->resolve_symbol == NULL) { 398197eca22SWill Andrews struct nlist *nl; 399197eca22SWill Andrews int count, i; 400197eca22SWill Andrews 401197eca22SWill Andrews for (count = 0; list[count].n_name != NULL && 402197eca22SWill Andrews list[count].n_name[0] != '\0'; count++) 403197eca22SWill Andrews ; 404197eca22SWill Andrews nl = calloc(count + 1, sizeof(*nl)); 405197eca22SWill Andrews for (i = 0; i < count; i++) 406197eca22SWill Andrews nl[i].n_name = list[i].n_name; 407197eca22SWill Andrews nfail = __fdnlist(kd->nlfd, nl); 408197eca22SWill Andrews for (i = 0; i < count; i++) { 409197eca22SWill Andrews list[i].n_type = nl[i].n_type; 410197eca22SWill Andrews list[i].n_value = nl[i].n_value; 411197eca22SWill Andrews } 412197eca22SWill Andrews free(nl); 413197eca22SWill Andrews return (nfail); 414197eca22SWill Andrews } 415197eca22SWill Andrews 416197eca22SWill Andrews nfail = 0; 417197eca22SWill Andrews while (list->n_name != NULL && list->n_name[0] != '\0') { 418197eca22SWill Andrews error = kd->resolve_symbol(list->n_name, &addr); 419197eca22SWill Andrews if (error != 0) { 420197eca22SWill Andrews nfail++; 421197eca22SWill Andrews list->n_value = 0; 422197eca22SWill Andrews list->n_type = 0; 423197eca22SWill Andrews } else { 424197eca22SWill Andrews list->n_value = addr; 425197eca22SWill Andrews list->n_type = N_DATA | N_EXT; 426197eca22SWill Andrews } 427197eca22SWill Andrews list++; 428197eca22SWill Andrews } 429197eca22SWill Andrews return (nfail); 430197eca22SWill Andrews } 431197eca22SWill Andrews 432197eca22SWill Andrews /* 433197eca22SWill Andrews * Walk the list of unresolved symbols, generate a new list and prefix the 434197eca22SWill Andrews * symbol names, try again, and merge back what we could resolve. 435197eca22SWill Andrews */ 436197eca22SWill Andrews static int 437197eca22SWill Andrews kvm_fdnlist_prefix(kvm_t *kd, struct kvm_nlist *nl, int missing, 438197eca22SWill Andrews const char *prefix, kvaddr_t (*validate_fn)(kvm_t *, kvaddr_t)) 439197eca22SWill Andrews { 440197eca22SWill Andrews struct kvm_nlist *n, *np, *p; 441197eca22SWill Andrews char *cp, *ce; 442197eca22SWill Andrews const char *ccp; 443197eca22SWill Andrews size_t len; 444197eca22SWill Andrews int slen, unresolved; 445197eca22SWill Andrews 446197eca22SWill Andrews /* 447197eca22SWill Andrews * Calculate the space we need to malloc for nlist and names. 448197eca22SWill Andrews * We are going to store the name twice for later lookups: once 449197eca22SWill Andrews * with the prefix and once the unmodified name delmited by \0. 450197eca22SWill Andrews */ 451197eca22SWill Andrews len = 0; 452197eca22SWill Andrews unresolved = 0; 453197eca22SWill Andrews for (p = nl; p->n_name && p->n_name[0]; ++p) { 454197eca22SWill Andrews if (p->n_type != N_UNDF) 455197eca22SWill Andrews continue; 456197eca22SWill Andrews len += sizeof(struct kvm_nlist) + strlen(prefix) + 457197eca22SWill Andrews 2 * (strlen(p->n_name) + 1); 458197eca22SWill Andrews unresolved++; 459197eca22SWill Andrews } 460197eca22SWill Andrews if (unresolved == 0) 461197eca22SWill Andrews return (unresolved); 462197eca22SWill Andrews /* Add space for the terminating nlist entry. */ 463197eca22SWill Andrews len += sizeof(struct kvm_nlist); 464197eca22SWill Andrews unresolved++; 465197eca22SWill Andrews 466197eca22SWill Andrews /* Alloc one chunk for (nlist, [names]) and setup pointers. */ 467197eca22SWill Andrews n = np = malloc(len); 468197eca22SWill Andrews bzero(n, len); 469197eca22SWill Andrews if (n == NULL) 470197eca22SWill Andrews return (missing); 471197eca22SWill Andrews cp = ce = (char *)np; 472197eca22SWill Andrews cp += unresolved * sizeof(struct kvm_nlist); 473197eca22SWill Andrews ce += len; 474197eca22SWill Andrews 475197eca22SWill Andrews /* Generate shortened nlist with special prefix. */ 476197eca22SWill Andrews unresolved = 0; 477197eca22SWill Andrews for (p = nl; p->n_name && p->n_name[0]; ++p) { 478197eca22SWill Andrews if (p->n_type != N_UNDF) 479197eca22SWill Andrews continue; 480197eca22SWill Andrews *np = *p; 481197eca22SWill Andrews /* Save the new\0orig. name so we can later match it again. */ 482197eca22SWill Andrews slen = snprintf(cp, ce - cp, "%s%s%c%s", prefix, 483197eca22SWill Andrews (prefix[0] != '\0' && p->n_name[0] == '_') ? 484197eca22SWill Andrews (p->n_name + 1) : p->n_name, '\0', p->n_name); 485197eca22SWill Andrews if (slen < 0 || slen >= ce - cp) 486197eca22SWill Andrews continue; 487197eca22SWill Andrews np->n_name = cp; 488197eca22SWill Andrews cp += slen + 1; 489197eca22SWill Andrews np++; 490197eca22SWill Andrews unresolved++; 491197eca22SWill Andrews } 492197eca22SWill Andrews 493197eca22SWill Andrews /* Do lookup on the reduced list. */ 494197eca22SWill Andrews np = n; 495197eca22SWill Andrews unresolved = kvm_fdnlist(kd, np); 496197eca22SWill Andrews 497197eca22SWill Andrews /* Check if we could resolve further symbols and update the list. */ 498197eca22SWill Andrews if (unresolved >= 0 && unresolved < missing) { 499197eca22SWill Andrews /* Find the first freshly resolved entry. */ 500197eca22SWill Andrews for (; np->n_name && np->n_name[0]; np++) 501197eca22SWill Andrews if (np->n_type != N_UNDF) 502197eca22SWill Andrews break; 503197eca22SWill Andrews /* 504197eca22SWill Andrews * The lists are both in the same order, 505197eca22SWill Andrews * so we can walk them in parallel. 506197eca22SWill Andrews */ 507197eca22SWill Andrews for (p = nl; np->n_name && np->n_name[0] && 508197eca22SWill Andrews p->n_name && p->n_name[0]; ++p) { 509197eca22SWill Andrews if (p->n_type != N_UNDF) 510197eca22SWill Andrews continue; 511197eca22SWill Andrews /* Skip expanded name and compare to orig. one. */ 512197eca22SWill Andrews ccp = np->n_name + strlen(np->n_name) + 1; 513197eca22SWill Andrews if (strcmp(ccp, p->n_name) != 0) 514197eca22SWill Andrews continue; 515197eca22SWill Andrews /* Update nlist with new, translated results. */ 516197eca22SWill Andrews p->n_type = np->n_type; 517197eca22SWill Andrews if (validate_fn) 518197eca22SWill Andrews p->n_value = (*validate_fn)(kd, np->n_value); 519197eca22SWill Andrews else 520197eca22SWill Andrews p->n_value = np->n_value; 521197eca22SWill Andrews missing--; 522197eca22SWill Andrews /* Find next freshly resolved entry. */ 523197eca22SWill Andrews for (np++; np->n_name && np->n_name[0]; np++) 524197eca22SWill Andrews if (np->n_type != N_UNDF) 525197eca22SWill Andrews break; 526197eca22SWill Andrews } 527197eca22SWill Andrews } 528197eca22SWill Andrews /* We could assert missing = unresolved here. */ 529197eca22SWill Andrews 530197eca22SWill Andrews free(n); 531197eca22SWill Andrews return (unresolved); 532197eca22SWill Andrews } 533197eca22SWill Andrews 534197eca22SWill Andrews int 535197eca22SWill Andrews _kvm_nlist(kvm_t *kd, struct kvm_nlist *nl, int initialize) 536197eca22SWill Andrews { 537197eca22SWill Andrews struct kvm_nlist *p; 538197eca22SWill Andrews int nvalid; 539197eca22SWill Andrews struct kld_sym_lookup lookup; 540197eca22SWill Andrews int error; 541197eca22SWill Andrews const char *prefix = ""; 542197eca22SWill Andrews char symname[1024]; /* XXX-BZ symbol name length limit? */ 543197eca22SWill Andrews int tried_vnet, tried_dpcpu; 544197eca22SWill Andrews 545197eca22SWill Andrews /* 546197eca22SWill Andrews * If we can't use the kld symbol lookup, revert to the 547197eca22SWill Andrews * slow library call. 548197eca22SWill Andrews */ 549197eca22SWill Andrews if (!ISALIVE(kd)) { 550197eca22SWill Andrews error = kvm_fdnlist(kd, nl); 551197eca22SWill Andrews if (error <= 0) /* Hard error or success. */ 552197eca22SWill Andrews return (error); 553197eca22SWill Andrews 554197eca22SWill Andrews if (_kvm_vnet_initialized(kd, initialize)) 555197eca22SWill Andrews error = kvm_fdnlist_prefix(kd, nl, error, 556197eca22SWill Andrews VNET_SYMPREFIX, _kvm_vnet_validaddr); 557197eca22SWill Andrews 558197eca22SWill Andrews if (error > 0 && _kvm_dpcpu_initialized(kd, initialize)) 559197eca22SWill Andrews error = kvm_fdnlist_prefix(kd, nl, error, 560197eca22SWill Andrews DPCPU_SYMPREFIX, _kvm_dpcpu_validaddr); 561197eca22SWill Andrews 562197eca22SWill Andrews return (error); 563197eca22SWill Andrews } 564197eca22SWill Andrews 565197eca22SWill Andrews /* 566197eca22SWill Andrews * We can use the kld lookup syscall. Go through each nlist entry 567197eca22SWill Andrews * and look it up with a kldsym(2) syscall. 568197eca22SWill Andrews */ 569197eca22SWill Andrews nvalid = 0; 570197eca22SWill Andrews tried_vnet = 0; 571197eca22SWill Andrews tried_dpcpu = 0; 572197eca22SWill Andrews again: 573197eca22SWill Andrews for (p = nl; p->n_name && p->n_name[0]; ++p) { 574197eca22SWill Andrews if (p->n_type != N_UNDF) 575197eca22SWill Andrews continue; 576197eca22SWill Andrews 577197eca22SWill Andrews lookup.version = sizeof(lookup); 578197eca22SWill Andrews lookup.symvalue = 0; 579197eca22SWill Andrews lookup.symsize = 0; 580197eca22SWill Andrews 581197eca22SWill Andrews error = snprintf(symname, sizeof(symname), "%s%s", prefix, 582197eca22SWill Andrews (prefix[0] != '\0' && p->n_name[0] == '_') ? 583197eca22SWill Andrews (p->n_name + 1) : p->n_name); 584197eca22SWill Andrews if (error < 0 || error >= (int)sizeof(symname)) 585197eca22SWill Andrews continue; 586197eca22SWill Andrews lookup.symname = symname; 587197eca22SWill Andrews if (lookup.symname[0] == '_') 588197eca22SWill Andrews lookup.symname++; 589197eca22SWill Andrews 590197eca22SWill Andrews if (kldsym(0, KLDSYM_LOOKUP, &lookup) != -1) { 591197eca22SWill Andrews p->n_type = N_TEXT; 592197eca22SWill Andrews if (_kvm_vnet_initialized(kd, initialize) && 593197eca22SWill Andrews strcmp(prefix, VNET_SYMPREFIX) == 0) 594197eca22SWill Andrews p->n_value = 595197eca22SWill Andrews _kvm_vnet_validaddr(kd, lookup.symvalue); 596197eca22SWill Andrews else if (_kvm_dpcpu_initialized(kd, initialize) && 597197eca22SWill Andrews strcmp(prefix, DPCPU_SYMPREFIX) == 0) 598197eca22SWill Andrews p->n_value = 599197eca22SWill Andrews _kvm_dpcpu_validaddr(kd, lookup.symvalue); 600197eca22SWill Andrews else 601197eca22SWill Andrews p->n_value = lookup.symvalue; 602197eca22SWill Andrews ++nvalid; 603197eca22SWill Andrews /* lookup.symsize */ 604197eca22SWill Andrews } 605197eca22SWill Andrews } 606197eca22SWill Andrews 607197eca22SWill Andrews /* 608197eca22SWill Andrews * Check the number of entries that weren't found. If they exist, 609197eca22SWill Andrews * try again with a prefix for virtualized or DPCPU symbol names. 610197eca22SWill Andrews */ 611197eca22SWill Andrews error = ((p - nl) - nvalid); 612197eca22SWill Andrews if (error && _kvm_vnet_initialized(kd, initialize) && !tried_vnet) { 613197eca22SWill Andrews tried_vnet = 1; 614197eca22SWill Andrews prefix = VNET_SYMPREFIX; 615197eca22SWill Andrews goto again; 616197eca22SWill Andrews } 617197eca22SWill Andrews if (error && _kvm_dpcpu_initialized(kd, initialize) && !tried_dpcpu) { 618197eca22SWill Andrews tried_dpcpu = 1; 619197eca22SWill Andrews prefix = DPCPU_SYMPREFIX; 620197eca22SWill Andrews goto again; 621197eca22SWill Andrews } 622197eca22SWill Andrews 623197eca22SWill Andrews /* 624197eca22SWill Andrews * Return the number of entries that weren't found. If they exist, 625197eca22SWill Andrews * also fill internal error buffer. 626197eca22SWill Andrews */ 627197eca22SWill Andrews error = ((p - nl) - nvalid); 628197eca22SWill Andrews if (error) 629197eca22SWill Andrews _kvm_syserr(kd, kd->program, "kvm_nlist"); 630197eca22SWill Andrews return (error); 631197eca22SWill Andrews } 632