xref: /freebsd/lib/libkvm/kvm.c (revision 430f7286a566b1407c7b32ce13585caf5aa59b92)
1 /*-
2  * Copyright (c) 1989, 1992, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software developed by the Computer Systems
6  * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
7  * BG 91-66 and contributed to Berkeley.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #if defined(LIBC_SCCS) && !defined(lint)
38 #if 0
39 static char sccsid[] = "@(#)kvm.c	8.2 (Berkeley) 2/13/94";
40 #endif
41 #endif /* LIBC_SCCS and not lint */
42 
43 #include <sys/param.h>
44 #include <sys/fnv_hash.h>
45 
46 #define	_WANT_VNET
47 
48 #include <sys/user.h>
49 #include <sys/linker.h>
50 #include <sys/pcpu.h>
51 #include <sys/stat.h>
52 
53 #include <net/vnet.h>
54 
55 #include <fcntl.h>
56 #include <kvm.h>
57 #include <limits.h>
58 #include <paths.h>
59 #include <stdint.h>
60 #include <stdio.h>
61 #include <stdlib.h>
62 #include <string.h>
63 #include <unistd.h>
64 
65 #include "kvm_private.h"
66 
67 SET_DECLARE(kvm_arch, struct kvm_arch);
68 
69 /* from src/lib/libc/gen/nlist.c */
70 int __fdnlist(int, struct nlist *);
71 
72 static int
73 kvm_fdnlist(kvm_t *kd, struct kvm_nlist *list)
74 {
75 	kvaddr_t addr;
76 	int error, nfail;
77 
78 	if (kd->resolve_symbol == NULL) {
79 		struct nlist *nl;
80 		int count, i;
81 
82 		for (count = 0; list[count].n_name != NULL &&
83 		     list[count].n_name[0] != '\0'; count++)
84 			;
85 		nl = calloc(count + 1, sizeof(*nl));
86 		for (i = 0; i < count; i++)
87 			nl[i].n_name = list[i].n_name;
88 		nfail = __fdnlist(kd->nlfd, nl);
89 		for (i = 0; i < count; i++) {
90 			list[i].n_type = nl[i].n_type;
91 			list[i].n_value = nl[i].n_value;
92 		}
93 		free(nl);
94 		return (nfail);
95 	}
96 
97 	nfail = 0;
98 	while (list->n_name != NULL && list->n_name[0] != '\0') {
99 		error = kd->resolve_symbol(list->n_name, &addr);
100 		if (error != 0) {
101 			nfail++;
102 			list->n_value = 0;
103 			list->n_type = 0;
104 		} else {
105 			list->n_value = addr;
106 			list->n_type = N_DATA | N_EXT;
107 		}
108 		list++;
109 	}
110 	return (nfail);
111 }
112 
113 char *
114 kvm_geterr(kvm_t *kd)
115 {
116 	return (kd->errbuf);
117 }
118 
119 #include <stdarg.h>
120 
121 /*
122  * Report an error using printf style arguments.  "program" is kd->program
123  * on hard errors, and 0 on soft errors, so that under sun error emulation,
124  * only hard errors are printed out (otherwise, programs like gdb will
125  * generate tons of error messages when trying to access bogus pointers).
126  */
127 void
128 _kvm_err(kvm_t *kd, const char *program, const char *fmt, ...)
129 {
130 	va_list ap;
131 
132 	va_start(ap, fmt);
133 	if (program != NULL) {
134 		(void)fprintf(stderr, "%s: ", program);
135 		(void)vfprintf(stderr, fmt, ap);
136 		(void)fputc('\n', stderr);
137 	} else
138 		(void)vsnprintf(kd->errbuf,
139 		    sizeof(kd->errbuf), fmt, ap);
140 
141 	va_end(ap);
142 }
143 
144 void
145 _kvm_syserr(kvm_t *kd, const char *program, const char *fmt, ...)
146 {
147 	va_list ap;
148 	int n;
149 
150 	va_start(ap, fmt);
151 	if (program != NULL) {
152 		(void)fprintf(stderr, "%s: ", program);
153 		(void)vfprintf(stderr, fmt, ap);
154 		(void)fprintf(stderr, ": %s\n", strerror(errno));
155 	} else {
156 		char *cp = kd->errbuf;
157 
158 		(void)vsnprintf(cp, sizeof(kd->errbuf), fmt, ap);
159 		n = strlen(cp);
160 		(void)snprintf(&cp[n], sizeof(kd->errbuf) - n, ": %s",
161 		    strerror(errno));
162 	}
163 	va_end(ap);
164 }
165 
166 void *
167 _kvm_malloc(kvm_t *kd, size_t n)
168 {
169 	void *p;
170 
171 	if ((p = calloc(n, sizeof(char))) == NULL)
172 		_kvm_err(kd, kd->program, "can't allocate %zu bytes: %s",
173 			 n, strerror(errno));
174 	return (p);
175 }
176 
177 static int
178 _kvm_read_kernel_ehdr(kvm_t *kd)
179 {
180 	Elf *elf;
181 
182 	if (elf_version(EV_CURRENT) == EV_NONE) {
183 		_kvm_err(kd, kd->program, "Unsupported libelf");
184 		return (-1);
185 	}
186 	elf = elf_begin(kd->nlfd, ELF_C_READ, NULL);
187 	if (elf == NULL) {
188 		_kvm_err(kd, kd->program, "%s", elf_errmsg(0));
189 		return (-1);
190 	}
191 	if (elf_kind(elf) != ELF_K_ELF) {
192 		_kvm_err(kd, kd->program, "kernel is not an ELF file");
193 		return (-1);
194 	}
195 	if (gelf_getehdr(elf, &kd->nlehdr) == NULL) {
196 		_kvm_err(kd, kd->program, "%s", elf_errmsg(0));
197 		elf_end(elf);
198 		return (-1);
199 	}
200 	elf_end(elf);
201 
202 	switch (kd->nlehdr.e_ident[EI_DATA]) {
203 	case ELFDATA2LSB:
204 	case ELFDATA2MSB:
205 		return (0);
206 	default:
207 		_kvm_err(kd, kd->program,
208 		    "unsupported ELF data encoding for kernel");
209 		return (-1);
210 	}
211 }
212 
213 int
214 _kvm_probe_elf_kernel(kvm_t *kd, int class, int machine)
215 {
216 
217 	return (kd->nlehdr.e_ident[EI_CLASS] == class &&
218 	    kd->nlehdr.e_type == ET_EXEC &&
219 	    kd->nlehdr.e_machine == machine);
220 }
221 
222 int
223 _kvm_is_minidump(kvm_t *kd)
224 {
225 	char minihdr[8];
226 
227 	if (kd->rawdump)
228 		return (0);
229 	if (pread(kd->pmfd, &minihdr, 8, 0) == 8 &&
230 	    memcmp(&minihdr, "minidump", 8) == 0)
231 		return (1);
232 	return (0);
233 }
234 
235 /*
236  * The powerpc backend has a hack to strip a leading kerneldump
237  * header from the core before treating it as an ELF header.
238  *
239  * We can add that here if we can get a change to libelf to support
240  * an initial offset into the file.  Alternatively we could patch
241  * savecore to extract cores from a regular file instead.
242  */
243 int
244 _kvm_read_core_phdrs(kvm_t *kd, size_t *phnump, GElf_Phdr **phdrp)
245 {
246 	GElf_Ehdr ehdr;
247 	GElf_Phdr *phdr;
248 	Elf *elf;
249 	size_t i, phnum;
250 
251 	elf = elf_begin(kd->pmfd, ELF_C_READ, NULL);
252 	if (elf == NULL) {
253 		_kvm_err(kd, kd->program, "%s", elf_errmsg(0));
254 		return (-1);
255 	}
256 	if (elf_kind(elf) != ELF_K_ELF) {
257 		_kvm_err(kd, kd->program, "invalid core");
258 		goto bad;
259 	}
260 	if (gelf_getclass(elf) != kd->nlehdr.e_ident[EI_CLASS]) {
261 		_kvm_err(kd, kd->program, "invalid core");
262 		goto bad;
263 	}
264 	if (gelf_getehdr(elf, &ehdr) == NULL) {
265 		_kvm_err(kd, kd->program, "%s", elf_errmsg(0));
266 		goto bad;
267 	}
268 	if (ehdr.e_type != ET_CORE) {
269 		_kvm_err(kd, kd->program, "invalid core");
270 		goto bad;
271 	}
272 	if (ehdr.e_machine != kd->nlehdr.e_machine) {
273 		_kvm_err(kd, kd->program, "invalid core");
274 		goto bad;
275 	}
276 
277 	if (elf_getphdrnum(elf, &phnum) == -1) {
278 		_kvm_err(kd, kd->program, "%s", elf_errmsg(0));
279 		goto bad;
280 	}
281 
282 	phdr = calloc(phnum, sizeof(*phdr));
283 	if (phdr == NULL) {
284 		_kvm_err(kd, kd->program, "failed to allocate phdrs");
285 		goto bad;
286 	}
287 
288 	for (i = 0; i < phnum; i++) {
289 		if (gelf_getphdr(elf, i, &phdr[i]) == NULL) {
290 			_kvm_err(kd, kd->program, "%s", elf_errmsg(0));
291 			goto bad;
292 		}
293 	}
294 	elf_end(elf);
295 	*phnump = phnum;
296 	*phdrp = phdr;
297 	return (0);
298 
299 bad:
300 	elf_end(elf);
301 	return (-1);
302 }
303 
304 static void
305 _kvm_hpt_insert(struct hpt *hpt, uint64_t pa, off_t off)
306 {
307 	struct hpte *hpte;
308 	uint32_t fnv = FNV1_32_INIT;
309 
310 	fnv = fnv_32_buf(&pa, sizeof(pa), fnv);
311 	fnv &= (HPT_SIZE - 1);
312 	hpte = malloc(sizeof(*hpte));
313 	hpte->pa = pa;
314 	hpte->off = off;
315 	hpte->next = hpt->hpt_head[fnv];
316 	hpt->hpt_head[fnv] = hpte;
317 }
318 
319 void
320 _kvm_hpt_init(kvm_t *kd, struct hpt *hpt, void *base, size_t len, off_t off,
321     int page_size, int word_size)
322 {
323 	uint64_t bits, idx, pa;
324 	uint64_t *base64;
325 	uint32_t *base32;
326 
327 	base64 = base;
328 	base32 = base;
329 	for (idx = 0; idx < len / word_size; idx++) {
330 		if (word_size == sizeof(uint64_t))
331 			bits = _kvm64toh(kd, base64[idx]);
332 		else
333 			bits = _kvm32toh(kd, base32[idx]);
334 		pa = idx * word_size * NBBY * page_size;
335 		for (; bits != 0; bits >>= 1, pa += page_size) {
336 			if ((bits & 1) == 0)
337 				continue;
338 			_kvm_hpt_insert(hpt, pa, off);
339 			off += page_size;
340 		}
341 	}
342 }
343 
344 off_t
345 _kvm_hpt_find(struct hpt *hpt, uint64_t pa)
346 {
347 	struct hpte *hpte;
348 	uint32_t fnv = FNV1_32_INIT;
349 
350 	fnv = fnv_32_buf(&pa, sizeof(pa), fnv);
351 	fnv &= (HPT_SIZE - 1);
352 	for (hpte = hpt->hpt_head[fnv]; hpte != NULL; hpte = hpte->next) {
353 		if (pa == hpte->pa)
354 			return (hpte->off);
355 	}
356 	return (-1);
357 }
358 
359 void
360 _kvm_hpt_free(struct hpt *hpt)
361 {
362 	struct hpte *hpte, *next;
363 	int i;
364 
365 	for (i = 0; i < HPT_SIZE; i++) {
366 		for (hpte = hpt->hpt_head[i]; hpte != NULL; hpte = next) {
367 			next = hpte->next;
368 			free(hpte);
369 		}
370 	}
371 }
372 
373 static kvm_t *
374 _kvm_open(kvm_t *kd, const char *uf, const char *mf, int flag, char *errout)
375 {
376 	struct kvm_arch **parch;
377 	struct stat st;
378 
379 	kd->vmfd = -1;
380 	kd->pmfd = -1;
381 	kd->nlfd = -1;
382 	kd->vmst = NULL;
383 	kd->procbase = NULL;
384 	kd->argspc = NULL;
385 	kd->argv = NULL;
386 
387 	if (uf == NULL)
388 		uf = getbootfile();
389 	else if (strlen(uf) >= MAXPATHLEN) {
390 		_kvm_err(kd, kd->program, "exec file name too long");
391 		goto failed;
392 	}
393 	if (flag & ~O_RDWR) {
394 		_kvm_err(kd, kd->program, "bad flags arg");
395 		goto failed;
396 	}
397 	if (mf == NULL)
398 		mf = _PATH_MEM;
399 
400 	if ((kd->pmfd = open(mf, flag | O_CLOEXEC, 0)) < 0) {
401 		_kvm_syserr(kd, kd->program, "%s", mf);
402 		goto failed;
403 	}
404 	if (fstat(kd->pmfd, &st) < 0) {
405 		_kvm_syserr(kd, kd->program, "%s", mf);
406 		goto failed;
407 	}
408 	if (S_ISREG(st.st_mode) && st.st_size <= 0) {
409 		errno = EINVAL;
410 		_kvm_syserr(kd, kd->program, "empty file");
411 		goto failed;
412 	}
413 	if (S_ISCHR(st.st_mode)) {
414 		/*
415 		 * If this is a character special device, then check that
416 		 * it's /dev/mem.  If so, open kmem too.  (Maybe we should
417 		 * make it work for either /dev/mem or /dev/kmem -- in either
418 		 * case you're working with a live kernel.)
419 		 */
420 		if (strcmp(mf, _PATH_DEVNULL) == 0) {
421 			kd->vmfd = open(_PATH_DEVNULL, O_RDONLY | O_CLOEXEC);
422 			return (kd);
423 		} else if (strcmp(mf, _PATH_MEM) == 0) {
424 			if ((kd->vmfd = open(_PATH_KMEM, flag | O_CLOEXEC)) <
425 			    0) {
426 				_kvm_syserr(kd, kd->program, "%s", _PATH_KMEM);
427 				goto failed;
428 			}
429 			return (kd);
430 		}
431 	}
432 	/*
433 	 * This is a crash dump.
434 	 * Open the namelist fd and determine the architecture.
435 	 */
436 	if ((kd->nlfd = open(uf, O_RDONLY | O_CLOEXEC, 0)) < 0) {
437 		_kvm_syserr(kd, kd->program, "%s", uf);
438 		goto failed;
439 	}
440 	if (_kvm_read_kernel_ehdr(kd) < 0)
441 		goto failed;
442 	if (strncmp(mf, _PATH_FWMEM, strlen(_PATH_FWMEM)) == 0)
443 		kd->rawdump = 1;
444 	SET_FOREACH(parch, kvm_arch) {
445 		if ((*parch)->ka_probe(kd)) {
446 			kd->arch = *parch;
447 			break;
448 		}
449 	}
450 	if (kd->arch == NULL) {
451 		_kvm_err(kd, kd->program, "unsupported architecture");
452 		goto failed;
453 	}
454 
455 	/*
456 	 * Non-native kernels require a symbol resolver.
457 	 */
458 	if (!kd->arch->ka_native(kd) && kd->resolve_symbol == NULL) {
459 		_kvm_err(kd, kd->program,
460 		    "non-native kernel requires a symbol resolver");
461 		goto failed;
462 	}
463 
464 	/*
465 	 * Initialize the virtual address translation machinery.
466 	 */
467 	if (kd->arch->ka_initvtop(kd) < 0)
468 		goto failed;
469 	return (kd);
470 failed:
471 	/*
472 	 * Copy out the error if doing sane error semantics.
473 	 */
474 	if (errout != NULL)
475 		strlcpy(errout, kd->errbuf, _POSIX2_LINE_MAX);
476 	(void)kvm_close(kd);
477 	return (0);
478 }
479 
480 kvm_t *
481 kvm_openfiles(const char *uf, const char *mf, const char *sf __unused, int flag,
482     char *errout)
483 {
484 	kvm_t *kd;
485 
486 	if ((kd = calloc(1, sizeof(*kd))) == NULL) {
487 		if (errout != NULL)
488 			(void)strlcpy(errout, strerror(errno),
489 			    _POSIX2_LINE_MAX);
490 		return (0);
491 	}
492 	return (_kvm_open(kd, uf, mf, flag, errout));
493 }
494 
495 kvm_t *
496 kvm_open(const char *uf, const char *mf, const char *sf __unused, int flag,
497     const char *errstr)
498 {
499 	kvm_t *kd;
500 
501 	if ((kd = calloc(1, sizeof(*kd))) == NULL) {
502 		if (errstr != NULL)
503 			(void)fprintf(stderr, "%s: %s\n",
504 				      errstr, strerror(errno));
505 		return (0);
506 	}
507 	kd->program = errstr;
508 	return (_kvm_open(kd, uf, mf, flag, NULL));
509 }
510 
511 kvm_t *
512 kvm_open2(const char *uf, const char *mf, int flag, char *errout,
513     int (*resolver)(const char *, kvaddr_t *))
514 {
515 	kvm_t *kd;
516 
517 	if ((kd = calloc(1, sizeof(*kd))) == NULL) {
518 		if (errout != NULL)
519 			(void)strlcpy(errout, strerror(errno),
520 			    _POSIX2_LINE_MAX);
521 		return (0);
522 	}
523 	kd->resolve_symbol = resolver;
524 	return (_kvm_open(kd, uf, mf, flag, errout));
525 }
526 
527 int
528 kvm_close(kvm_t *kd)
529 {
530 	int error = 0;
531 
532 	if (kd->vmst != NULL)
533 		kd->arch->ka_freevtop(kd);
534 	if (kd->pmfd >= 0)
535 		error |= close(kd->pmfd);
536 	if (kd->vmfd >= 0)
537 		error |= close(kd->vmfd);
538 	if (kd->nlfd >= 0)
539 		error |= close(kd->nlfd);
540 	if (kd->procbase != 0)
541 		free((void *)kd->procbase);
542 	if (kd->argbuf != 0)
543 		free((void *) kd->argbuf);
544 	if (kd->argspc != 0)
545 		free((void *) kd->argspc);
546 	if (kd->argv != 0)
547 		free((void *)kd->argv);
548 	free((void *)kd);
549 
550 	return (0);
551 }
552 
553 /*
554  * Walk the list of unresolved symbols, generate a new list and prefix the
555  * symbol names, try again, and merge back what we could resolve.
556  */
557 static int
558 kvm_fdnlist_prefix(kvm_t *kd, struct kvm_nlist *nl, int missing,
559     const char *prefix, kvaddr_t (*validate_fn)(kvm_t *, kvaddr_t))
560 {
561 	struct kvm_nlist *n, *np, *p;
562 	char *cp, *ce;
563 	const char *ccp;
564 	size_t len;
565 	int slen, unresolved;
566 
567 	/*
568 	 * Calculate the space we need to malloc for nlist and names.
569 	 * We are going to store the name twice for later lookups: once
570 	 * with the prefix and once the unmodified name delmited by \0.
571 	 */
572 	len = 0;
573 	unresolved = 0;
574 	for (p = nl; p->n_name && p->n_name[0]; ++p) {
575 		if (p->n_type != N_UNDF)
576 			continue;
577 		len += sizeof(struct kvm_nlist) + strlen(prefix) +
578 		    2 * (strlen(p->n_name) + 1);
579 		unresolved++;
580 	}
581 	if (unresolved == 0)
582 		return (unresolved);
583 	/* Add space for the terminating nlist entry. */
584 	len += sizeof(struct kvm_nlist);
585 	unresolved++;
586 
587 	/* Alloc one chunk for (nlist, [names]) and setup pointers. */
588 	n = np = malloc(len);
589 	bzero(n, len);
590 	if (n == NULL)
591 		return (missing);
592 	cp = ce = (char *)np;
593 	cp += unresolved * sizeof(struct kvm_nlist);
594 	ce += len;
595 
596 	/* Generate shortened nlist with special prefix. */
597 	unresolved = 0;
598 	for (p = nl; p->n_name && p->n_name[0]; ++p) {
599 		if (p->n_type != N_UNDF)
600 			continue;
601 		*np = *p;
602 		/* Save the new\0orig. name so we can later match it again. */
603 		slen = snprintf(cp, ce - cp, "%s%s%c%s", prefix,
604 		    (prefix[0] != '\0' && p->n_name[0] == '_') ?
605 			(p->n_name + 1) : p->n_name, '\0', p->n_name);
606 		if (slen < 0 || slen >= ce - cp)
607 			continue;
608 		np->n_name = cp;
609 		cp += slen + 1;
610 		np++;
611 		unresolved++;
612 	}
613 
614 	/* Do lookup on the reduced list. */
615 	np = n;
616 	unresolved = kvm_fdnlist(kd, np);
617 
618 	/* Check if we could resolve further symbols and update the list. */
619 	if (unresolved >= 0 && unresolved < missing) {
620 		/* Find the first freshly resolved entry. */
621 		for (; np->n_name && np->n_name[0]; np++)
622 			if (np->n_type != N_UNDF)
623 				break;
624 		/*
625 		 * The lists are both in the same order,
626 		 * so we can walk them in parallel.
627 		 */
628 		for (p = nl; np->n_name && np->n_name[0] &&
629 		    p->n_name && p->n_name[0]; ++p) {
630 			if (p->n_type != N_UNDF)
631 				continue;
632 			/* Skip expanded name and compare to orig. one. */
633 			ccp = np->n_name + strlen(np->n_name) + 1;
634 			if (strcmp(ccp, p->n_name) != 0)
635 				continue;
636 			/* Update nlist with new, translated results. */
637 			p->n_type = np->n_type;
638 			if (validate_fn)
639 				p->n_value = (*validate_fn)(kd, np->n_value);
640 			else
641 				p->n_value = np->n_value;
642 			missing--;
643 			/* Find next freshly resolved entry. */
644 			for (np++; np->n_name && np->n_name[0]; np++)
645 				if (np->n_type != N_UNDF)
646 					break;
647 		}
648 	}
649 	/* We could assert missing = unresolved here. */
650 
651 	free(n);
652 	return (unresolved);
653 }
654 
655 int
656 _kvm_nlist(kvm_t *kd, struct kvm_nlist *nl, int initialize)
657 {
658 	struct kvm_nlist *p;
659 	int nvalid;
660 	struct kld_sym_lookup lookup;
661 	int error;
662 	const char *prefix = "";
663 	char symname[1024]; /* XXX-BZ symbol name length limit? */
664 	int tried_vnet, tried_dpcpu;
665 
666 	/*
667 	 * If we can't use the kld symbol lookup, revert to the
668 	 * slow library call.
669 	 */
670 	if (!ISALIVE(kd)) {
671 		error = kvm_fdnlist(kd, nl);
672 		if (error <= 0)			/* Hard error or success. */
673 			return (error);
674 
675 		if (_kvm_vnet_initialized(kd, initialize))
676 			error = kvm_fdnlist_prefix(kd, nl, error,
677 			    VNET_SYMPREFIX, _kvm_vnet_validaddr);
678 
679 		if (error > 0 && _kvm_dpcpu_initialized(kd, initialize))
680 			error = kvm_fdnlist_prefix(kd, nl, error,
681 			    DPCPU_SYMPREFIX, _kvm_dpcpu_validaddr);
682 
683 		return (error);
684 	}
685 
686 	/*
687 	 * We can use the kld lookup syscall.  Go through each nlist entry
688 	 * and look it up with a kldsym(2) syscall.
689 	 */
690 	nvalid = 0;
691 	tried_vnet = 0;
692 	tried_dpcpu = 0;
693 again:
694 	for (p = nl; p->n_name && p->n_name[0]; ++p) {
695 		if (p->n_type != N_UNDF)
696 			continue;
697 
698 		lookup.version = sizeof(lookup);
699 		lookup.symvalue = 0;
700 		lookup.symsize = 0;
701 
702 		error = snprintf(symname, sizeof(symname), "%s%s", prefix,
703 		    (prefix[0] != '\0' && p->n_name[0] == '_') ?
704 			(p->n_name + 1) : p->n_name);
705 		if (error < 0 || error >= (int)sizeof(symname))
706 			continue;
707 		lookup.symname = symname;
708 		if (lookup.symname[0] == '_')
709 			lookup.symname++;
710 
711 		if (kldsym(0, KLDSYM_LOOKUP, &lookup) != -1) {
712 			p->n_type = N_TEXT;
713 			if (_kvm_vnet_initialized(kd, initialize) &&
714 			    strcmp(prefix, VNET_SYMPREFIX) == 0)
715 				p->n_value =
716 				    _kvm_vnet_validaddr(kd, lookup.symvalue);
717 			else if (_kvm_dpcpu_initialized(kd, initialize) &&
718 			    strcmp(prefix, DPCPU_SYMPREFIX) == 0)
719 				p->n_value =
720 				    _kvm_dpcpu_validaddr(kd, lookup.symvalue);
721 			else
722 				p->n_value = lookup.symvalue;
723 			++nvalid;
724 			/* lookup.symsize */
725 		}
726 	}
727 
728 	/*
729 	 * Check the number of entries that weren't found. If they exist,
730 	 * try again with a prefix for virtualized or DPCPU symbol names.
731 	 */
732 	error = ((p - nl) - nvalid);
733 	if (error && _kvm_vnet_initialized(kd, initialize) && !tried_vnet) {
734 		tried_vnet = 1;
735 		prefix = VNET_SYMPREFIX;
736 		goto again;
737 	}
738 	if (error && _kvm_dpcpu_initialized(kd, initialize) && !tried_dpcpu) {
739 		tried_dpcpu = 1;
740 		prefix = DPCPU_SYMPREFIX;
741 		goto again;
742 	}
743 
744 	/*
745 	 * Return the number of entries that weren't found. If they exist,
746 	 * also fill internal error buffer.
747 	 */
748 	error = ((p - nl) - nvalid);
749 	if (error)
750 		_kvm_syserr(kd, kd->program, "kvm_nlist");
751 	return (error);
752 }
753 
754 int
755 kvm_nlist2(kvm_t *kd, struct kvm_nlist *nl)
756 {
757 
758 	/*
759 	 * If called via the public interface, permit initialization of
760 	 * further virtualized modules on demand.
761 	 */
762 	return (_kvm_nlist(kd, nl, 1));
763 }
764 
765 int
766 kvm_nlist(kvm_t *kd, struct nlist *nl)
767 {
768 	struct kvm_nlist *kl;
769 	int count, i, nfail;
770 
771 	/*
772 	 * Avoid reporting truncated addresses by failing for non-native
773 	 * cores.
774 	 */
775 	if (!kvm_native(kd)) {
776 		_kvm_err(kd, kd->program, "kvm_nlist of non-native vmcore");
777 		return (-1);
778 	}
779 
780 	for (count = 0; nl[count].n_name != NULL && nl[count].n_name[0] != '\0';
781 	     count++)
782 		;
783 	if (count == 0)
784 		return (0);
785 	kl = calloc(count + 1, sizeof(*kl));
786 	for (i = 0; i < count; i++)
787 		kl[i].n_name = nl[i].n_name;
788 	nfail = kvm_nlist2(kd, kl);
789 	for (i = 0; i < count; i++) {
790 		nl[i].n_type = kl[i].n_type;
791 		nl[i].n_other = 0;
792 		nl[i].n_desc = 0;
793 		nl[i].n_value = kl[i].n_value;
794 	}
795 	return (nfail);
796 }
797 
798 ssize_t
799 kvm_read(kvm_t *kd, u_long kva, void *buf, size_t len)
800 {
801 
802 	return (kvm_read2(kd, kva, buf, len));
803 }
804 
805 ssize_t
806 kvm_read2(kvm_t *kd, kvaddr_t kva, void *buf, size_t len)
807 {
808 	int cc;
809 	ssize_t cr;
810 	off_t pa;
811 	char *cp;
812 
813 	if (ISALIVE(kd)) {
814 		/*
815 		 * We're using /dev/kmem.  Just read straight from the
816 		 * device and let the active kernel do the address translation.
817 		 */
818 		errno = 0;
819 		if (lseek(kd->vmfd, (off_t)kva, 0) == -1 && errno != 0) {
820 			_kvm_err(kd, 0, "invalid address (0x%jx)",
821 			    (uintmax_t)kva);
822 			return (-1);
823 		}
824 		cr = read(kd->vmfd, buf, len);
825 		if (cr < 0) {
826 			_kvm_syserr(kd, 0, "kvm_read");
827 			return (-1);
828 		} else if (cr < (ssize_t)len)
829 			_kvm_err(kd, kd->program, "short read");
830 		return (cr);
831 	}
832 
833 	cp = buf;
834 	while (len > 0) {
835 		cc = kd->arch->ka_kvatop(kd, kva, &pa);
836 		if (cc == 0)
837 			return (-1);
838 		if (cc > (ssize_t)len)
839 			cc = len;
840 		errno = 0;
841 		if (lseek(kd->pmfd, pa, 0) == -1 && errno != 0) {
842 			_kvm_syserr(kd, 0, _PATH_MEM);
843 			break;
844 		}
845 		cr = read(kd->pmfd, cp, cc);
846 		if (cr < 0) {
847 			_kvm_syserr(kd, kd->program, "kvm_read");
848 			break;
849 		}
850 		/*
851 		 * If ka_kvatop returns a bogus value or our core file is
852 		 * truncated, we might wind up seeking beyond the end of the
853 		 * core file in which case the read will return 0 (EOF).
854 		 */
855 		if (cr == 0)
856 			break;
857 		cp += cr;
858 		kva += cr;
859 		len -= cr;
860 	}
861 
862 	return (cp - (char *)buf);
863 }
864 
865 ssize_t
866 kvm_write(kvm_t *kd, u_long kva, const void *buf, size_t len)
867 {
868 	int cc;
869 
870 	if (ISALIVE(kd)) {
871 		/*
872 		 * Just like kvm_read, only we write.
873 		 */
874 		errno = 0;
875 		if (lseek(kd->vmfd, (off_t)kva, 0) == -1 && errno != 0) {
876 			_kvm_err(kd, 0, "invalid address (%lx)", kva);
877 			return (-1);
878 		}
879 		cc = write(kd->vmfd, buf, len);
880 		if (cc < 0) {
881 			_kvm_syserr(kd, 0, "kvm_write");
882 			return (-1);
883 		} else if ((size_t)cc < len)
884 			_kvm_err(kd, kd->program, "short write");
885 		return (cc);
886 	} else {
887 		_kvm_err(kd, kd->program,
888 		    "kvm_write not implemented for dead kernels");
889 		return (-1);
890 	}
891 	/* NOTREACHED */
892 }
893 
894 int
895 kvm_native(kvm_t *kd)
896 {
897 
898 	if (ISALIVE(kd))
899 		return (1);
900 	return (kd->arch->ka_native(kd));
901 }
902