1 /*- 2 * Copyright (c) 1989, 1992, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software developed by the Computer Systems 6 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract 7 * BG 91-66 and contributed to Berkeley. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #if defined(LIBC_SCCS) && !defined(lint) 38 #if 0 39 static char sccsid[] = "@(#)kvm.c 8.2 (Berkeley) 2/13/94"; 40 #endif 41 #endif /* LIBC_SCCS and not lint */ 42 43 #include <sys/param.h> 44 #include <sys/fnv_hash.h> 45 46 #define _WANT_VNET 47 48 #include <sys/user.h> 49 #include <sys/linker.h> 50 #include <sys/pcpu.h> 51 #include <sys/stat.h> 52 53 #include <net/vnet.h> 54 55 #include <fcntl.h> 56 #include <kvm.h> 57 #include <limits.h> 58 #include <paths.h> 59 #include <stdint.h> 60 #include <stdio.h> 61 #include <stdlib.h> 62 #include <string.h> 63 #include <unistd.h> 64 65 #include "kvm_private.h" 66 67 SET_DECLARE(kvm_arch, struct kvm_arch); 68 69 /* from src/lib/libc/gen/nlist.c */ 70 int __fdnlist(int, struct nlist *); 71 72 static int 73 kvm_fdnlist(kvm_t *kd, struct kvm_nlist *list) 74 { 75 kvaddr_t addr; 76 int error, nfail; 77 78 if (kd->resolve_symbol == NULL) { 79 struct nlist *nl; 80 int count, i; 81 82 for (count = 0; list[count].n_name != NULL && 83 list[count].n_name[0] != '\0'; count++) 84 ; 85 nl = calloc(count + 1, sizeof(*nl)); 86 for (i = 0; i < count; i++) 87 nl[i].n_name = list[i].n_name; 88 nfail = __fdnlist(kd->nlfd, nl); 89 for (i = 0; i < count; i++) { 90 list[i].n_type = nl[i].n_type; 91 list[i].n_value = nl[i].n_value; 92 } 93 free(nl); 94 return (nfail); 95 } 96 97 nfail = 0; 98 while (list->n_name != NULL && list->n_name[0] != '\0') { 99 error = kd->resolve_symbol(list->n_name, &addr); 100 if (error != 0) { 101 nfail++; 102 list->n_value = 0; 103 list->n_type = 0; 104 } else { 105 list->n_value = addr; 106 list->n_type = N_DATA | N_EXT; 107 } 108 list++; 109 } 110 return (nfail); 111 } 112 113 char * 114 kvm_geterr(kvm_t *kd) 115 { 116 return (kd->errbuf); 117 } 118 119 #include <stdarg.h> 120 121 /* 122 * Report an error using printf style arguments. "program" is kd->program 123 * on hard errors, and 0 on soft errors, so that under sun error emulation, 124 * only hard errors are printed out (otherwise, programs like gdb will 125 * generate tons of error messages when trying to access bogus pointers). 126 */ 127 void 128 _kvm_err(kvm_t *kd, const char *program, const char *fmt, ...) 129 { 130 va_list ap; 131 132 va_start(ap, fmt); 133 if (program != NULL) { 134 (void)fprintf(stderr, "%s: ", program); 135 (void)vfprintf(stderr, fmt, ap); 136 (void)fputc('\n', stderr); 137 } else 138 (void)vsnprintf(kd->errbuf, 139 sizeof(kd->errbuf), fmt, ap); 140 141 va_end(ap); 142 } 143 144 void 145 _kvm_syserr(kvm_t *kd, const char *program, const char *fmt, ...) 146 { 147 va_list ap; 148 int n; 149 150 va_start(ap, fmt); 151 if (program != NULL) { 152 (void)fprintf(stderr, "%s: ", program); 153 (void)vfprintf(stderr, fmt, ap); 154 (void)fprintf(stderr, ": %s\n", strerror(errno)); 155 } else { 156 char *cp = kd->errbuf; 157 158 (void)vsnprintf(cp, sizeof(kd->errbuf), fmt, ap); 159 n = strlen(cp); 160 (void)snprintf(&cp[n], sizeof(kd->errbuf) - n, ": %s", 161 strerror(errno)); 162 } 163 va_end(ap); 164 } 165 166 void * 167 _kvm_malloc(kvm_t *kd, size_t n) 168 { 169 void *p; 170 171 if ((p = calloc(n, sizeof(char))) == NULL) 172 _kvm_err(kd, kd->program, "can't allocate %zu bytes: %s", 173 n, strerror(errno)); 174 return (p); 175 } 176 177 static int 178 _kvm_read_kernel_ehdr(kvm_t *kd) 179 { 180 Elf *elf; 181 182 if (elf_version(EV_CURRENT) == EV_NONE) { 183 _kvm_err(kd, kd->program, "Unsupported libelf"); 184 return (-1); 185 } 186 elf = elf_begin(kd->nlfd, ELF_C_READ, NULL); 187 if (elf == NULL) { 188 _kvm_err(kd, kd->program, "%s", elf_errmsg(0)); 189 return (-1); 190 } 191 if (elf_kind(elf) != ELF_K_ELF) { 192 _kvm_err(kd, kd->program, "kernel is not an ELF file"); 193 return (-1); 194 } 195 if (gelf_getehdr(elf, &kd->nlehdr) == NULL) { 196 _kvm_err(kd, kd->program, "%s", elf_errmsg(0)); 197 elf_end(elf); 198 return (-1); 199 } 200 elf_end(elf); 201 202 switch (kd->nlehdr.e_ident[EI_DATA]) { 203 case ELFDATA2LSB: 204 case ELFDATA2MSB: 205 return (0); 206 default: 207 _kvm_err(kd, kd->program, 208 "unsupported ELF data encoding for kernel"); 209 return (-1); 210 } 211 } 212 213 int 214 _kvm_probe_elf_kernel(kvm_t *kd, int class, int machine) 215 { 216 217 return (kd->nlehdr.e_ident[EI_CLASS] == class && 218 kd->nlehdr.e_type == ET_EXEC && 219 kd->nlehdr.e_machine == machine); 220 } 221 222 int 223 _kvm_is_minidump(kvm_t *kd) 224 { 225 char minihdr[8]; 226 227 if (kd->rawdump) 228 return (0); 229 if (pread(kd->pmfd, &minihdr, 8, 0) == 8 && 230 memcmp(&minihdr, "minidump", 8) == 0) 231 return (1); 232 return (0); 233 } 234 235 /* 236 * The powerpc backend has a hack to strip a leading kerneldump 237 * header from the core before treating it as an ELF header. 238 * 239 * We can add that here if we can get a change to libelf to support 240 * an initial offset into the file. Alternatively we could patch 241 * savecore to extract cores from a regular file instead. 242 */ 243 int 244 _kvm_read_core_phdrs(kvm_t *kd, size_t *phnump, GElf_Phdr **phdrp) 245 { 246 GElf_Ehdr ehdr; 247 GElf_Phdr *phdr; 248 Elf *elf; 249 size_t i, phnum; 250 251 elf = elf_begin(kd->pmfd, ELF_C_READ, NULL); 252 if (elf == NULL) { 253 _kvm_err(kd, kd->program, "%s", elf_errmsg(0)); 254 return (-1); 255 } 256 if (elf_kind(elf) != ELF_K_ELF) { 257 _kvm_err(kd, kd->program, "invalid core"); 258 goto bad; 259 } 260 if (gelf_getclass(elf) != kd->nlehdr.e_ident[EI_CLASS]) { 261 _kvm_err(kd, kd->program, "invalid core"); 262 goto bad; 263 } 264 if (gelf_getehdr(elf, &ehdr) == NULL) { 265 _kvm_err(kd, kd->program, "%s", elf_errmsg(0)); 266 goto bad; 267 } 268 if (ehdr.e_type != ET_CORE) { 269 _kvm_err(kd, kd->program, "invalid core"); 270 goto bad; 271 } 272 if (ehdr.e_machine != kd->nlehdr.e_machine) { 273 _kvm_err(kd, kd->program, "invalid core"); 274 goto bad; 275 } 276 277 if (elf_getphdrnum(elf, &phnum) == -1) { 278 _kvm_err(kd, kd->program, "%s", elf_errmsg(0)); 279 goto bad; 280 } 281 282 phdr = calloc(phnum, sizeof(*phdr)); 283 if (phdr == NULL) { 284 _kvm_err(kd, kd->program, "failed to allocate phdrs"); 285 goto bad; 286 } 287 288 for (i = 0; i < phnum; i++) { 289 if (gelf_getphdr(elf, i, &phdr[i]) == NULL) { 290 _kvm_err(kd, kd->program, "%s", elf_errmsg(0)); 291 goto bad; 292 } 293 } 294 elf_end(elf); 295 *phnump = phnum; 296 *phdrp = phdr; 297 return (0); 298 299 bad: 300 elf_end(elf); 301 return (-1); 302 } 303 304 static void 305 _kvm_hpt_insert(struct hpt *hpt, uint64_t pa, off_t off) 306 { 307 struct hpte *hpte; 308 uint32_t fnv = FNV1_32_INIT; 309 310 fnv = fnv_32_buf(&pa, sizeof(pa), fnv); 311 fnv &= (HPT_SIZE - 1); 312 hpte = malloc(sizeof(*hpte)); 313 hpte->pa = pa; 314 hpte->off = off; 315 hpte->next = hpt->hpt_head[fnv]; 316 hpt->hpt_head[fnv] = hpte; 317 } 318 319 void 320 _kvm_hpt_init(kvm_t *kd, struct hpt *hpt, void *base, size_t len, off_t off, 321 int page_size, int word_size) 322 { 323 uint64_t bits, idx, pa; 324 uint64_t *base64; 325 uint32_t *base32; 326 327 base64 = base; 328 base32 = base; 329 for (idx = 0; idx < len / word_size; idx++) { 330 if (word_size == sizeof(uint64_t)) 331 bits = _kvm64toh(kd, base64[idx]); 332 else 333 bits = _kvm32toh(kd, base32[idx]); 334 pa = idx * word_size * NBBY * page_size; 335 for (; bits != 0; bits >>= 1, pa += page_size) { 336 if ((bits & 1) == 0) 337 continue; 338 _kvm_hpt_insert(hpt, pa, off); 339 off += page_size; 340 } 341 } 342 } 343 344 off_t 345 _kvm_hpt_find(struct hpt *hpt, uint64_t pa) 346 { 347 struct hpte *hpte; 348 uint32_t fnv = FNV1_32_INIT; 349 350 fnv = fnv_32_buf(&pa, sizeof(pa), fnv); 351 fnv &= (HPT_SIZE - 1); 352 for (hpte = hpt->hpt_head[fnv]; hpte != NULL; hpte = hpte->next) { 353 if (pa == hpte->pa) 354 return (hpte->off); 355 } 356 return (-1); 357 } 358 359 void 360 _kvm_hpt_free(struct hpt *hpt) 361 { 362 struct hpte *hpte, *next; 363 int i; 364 365 for (i = 0; i < HPT_SIZE; i++) { 366 for (hpte = hpt->hpt_head[i]; hpte != NULL; hpte = next) { 367 next = hpte->next; 368 free(hpte); 369 } 370 } 371 } 372 373 static kvm_t * 374 _kvm_open(kvm_t *kd, const char *uf, const char *mf, int flag, char *errout) 375 { 376 struct kvm_arch **parch; 377 struct stat st; 378 379 kd->vmfd = -1; 380 kd->pmfd = -1; 381 kd->nlfd = -1; 382 kd->vmst = NULL; 383 kd->procbase = NULL; 384 kd->argspc = NULL; 385 kd->argv = NULL; 386 387 if (uf == NULL) 388 uf = getbootfile(); 389 else if (strlen(uf) >= MAXPATHLEN) { 390 _kvm_err(kd, kd->program, "exec file name too long"); 391 goto failed; 392 } 393 if (flag & ~O_RDWR) { 394 _kvm_err(kd, kd->program, "bad flags arg"); 395 goto failed; 396 } 397 if (mf == NULL) 398 mf = _PATH_MEM; 399 400 if ((kd->pmfd = open(mf, flag | O_CLOEXEC, 0)) < 0) { 401 _kvm_syserr(kd, kd->program, "%s", mf); 402 goto failed; 403 } 404 if (fstat(kd->pmfd, &st) < 0) { 405 _kvm_syserr(kd, kd->program, "%s", mf); 406 goto failed; 407 } 408 if (S_ISREG(st.st_mode) && st.st_size <= 0) { 409 errno = EINVAL; 410 _kvm_syserr(kd, kd->program, "empty file"); 411 goto failed; 412 } 413 if (S_ISCHR(st.st_mode)) { 414 /* 415 * If this is a character special device, then check that 416 * it's /dev/mem. If so, open kmem too. (Maybe we should 417 * make it work for either /dev/mem or /dev/kmem -- in either 418 * case you're working with a live kernel.) 419 */ 420 if (strcmp(mf, _PATH_DEVNULL) == 0) { 421 kd->vmfd = open(_PATH_DEVNULL, O_RDONLY | O_CLOEXEC); 422 return (kd); 423 } else if (strcmp(mf, _PATH_MEM) == 0) { 424 if ((kd->vmfd = open(_PATH_KMEM, flag | O_CLOEXEC)) < 425 0) { 426 _kvm_syserr(kd, kd->program, "%s", _PATH_KMEM); 427 goto failed; 428 } 429 return (kd); 430 } 431 } 432 /* 433 * This is a crash dump. 434 * Open the namelist fd and determine the architecture. 435 */ 436 if ((kd->nlfd = open(uf, O_RDONLY | O_CLOEXEC, 0)) < 0) { 437 _kvm_syserr(kd, kd->program, "%s", uf); 438 goto failed; 439 } 440 if (_kvm_read_kernel_ehdr(kd) < 0) 441 goto failed; 442 if (strncmp(mf, _PATH_FWMEM, strlen(_PATH_FWMEM)) == 0) 443 kd->rawdump = 1; 444 SET_FOREACH(parch, kvm_arch) { 445 if ((*parch)->ka_probe(kd)) { 446 kd->arch = *parch; 447 break; 448 } 449 } 450 if (kd->arch == NULL) { 451 _kvm_err(kd, kd->program, "unsupported architecture"); 452 goto failed; 453 } 454 455 /* 456 * Non-native kernels require a symbol resolver. 457 */ 458 if (!kd->arch->ka_native(kd) && kd->resolve_symbol == NULL) { 459 _kvm_err(kd, kd->program, 460 "non-native kernel requires a symbol resolver"); 461 goto failed; 462 } 463 464 /* 465 * Initialize the virtual address translation machinery. 466 */ 467 if (kd->arch->ka_initvtop(kd) < 0) 468 goto failed; 469 return (kd); 470 failed: 471 /* 472 * Copy out the error if doing sane error semantics. 473 */ 474 if (errout != NULL) 475 strlcpy(errout, kd->errbuf, _POSIX2_LINE_MAX); 476 (void)kvm_close(kd); 477 return (0); 478 } 479 480 kvm_t * 481 kvm_openfiles(const char *uf, const char *mf, const char *sf __unused, int flag, 482 char *errout) 483 { 484 kvm_t *kd; 485 486 if ((kd = calloc(1, sizeof(*kd))) == NULL) { 487 if (errout != NULL) 488 (void)strlcpy(errout, strerror(errno), 489 _POSIX2_LINE_MAX); 490 return (0); 491 } 492 return (_kvm_open(kd, uf, mf, flag, errout)); 493 } 494 495 kvm_t * 496 kvm_open(const char *uf, const char *mf, const char *sf __unused, int flag, 497 const char *errstr) 498 { 499 kvm_t *kd; 500 501 if ((kd = calloc(1, sizeof(*kd))) == NULL) { 502 if (errstr != NULL) 503 (void)fprintf(stderr, "%s: %s\n", 504 errstr, strerror(errno)); 505 return (0); 506 } 507 kd->program = errstr; 508 return (_kvm_open(kd, uf, mf, flag, NULL)); 509 } 510 511 kvm_t * 512 kvm_open2(const char *uf, const char *mf, int flag, char *errout, 513 int (*resolver)(const char *, kvaddr_t *)) 514 { 515 kvm_t *kd; 516 517 if ((kd = calloc(1, sizeof(*kd))) == NULL) { 518 if (errout != NULL) 519 (void)strlcpy(errout, strerror(errno), 520 _POSIX2_LINE_MAX); 521 return (0); 522 } 523 kd->resolve_symbol = resolver; 524 return (_kvm_open(kd, uf, mf, flag, errout)); 525 } 526 527 int 528 kvm_close(kvm_t *kd) 529 { 530 int error = 0; 531 532 if (kd->vmst != NULL) 533 kd->arch->ka_freevtop(kd); 534 if (kd->pmfd >= 0) 535 error |= close(kd->pmfd); 536 if (kd->vmfd >= 0) 537 error |= close(kd->vmfd); 538 if (kd->nlfd >= 0) 539 error |= close(kd->nlfd); 540 if (kd->procbase != 0) 541 free((void *)kd->procbase); 542 if (kd->argbuf != 0) 543 free((void *) kd->argbuf); 544 if (kd->argspc != 0) 545 free((void *) kd->argspc); 546 if (kd->argv != 0) 547 free((void *)kd->argv); 548 free((void *)kd); 549 550 return (0); 551 } 552 553 /* 554 * Walk the list of unresolved symbols, generate a new list and prefix the 555 * symbol names, try again, and merge back what we could resolve. 556 */ 557 static int 558 kvm_fdnlist_prefix(kvm_t *kd, struct kvm_nlist *nl, int missing, 559 const char *prefix, kvaddr_t (*validate_fn)(kvm_t *, kvaddr_t)) 560 { 561 struct kvm_nlist *n, *np, *p; 562 char *cp, *ce; 563 const char *ccp; 564 size_t len; 565 int slen, unresolved; 566 567 /* 568 * Calculate the space we need to malloc for nlist and names. 569 * We are going to store the name twice for later lookups: once 570 * with the prefix and once the unmodified name delmited by \0. 571 */ 572 len = 0; 573 unresolved = 0; 574 for (p = nl; p->n_name && p->n_name[0]; ++p) { 575 if (p->n_type != N_UNDF) 576 continue; 577 len += sizeof(struct kvm_nlist) + strlen(prefix) + 578 2 * (strlen(p->n_name) + 1); 579 unresolved++; 580 } 581 if (unresolved == 0) 582 return (unresolved); 583 /* Add space for the terminating nlist entry. */ 584 len += sizeof(struct kvm_nlist); 585 unresolved++; 586 587 /* Alloc one chunk for (nlist, [names]) and setup pointers. */ 588 n = np = malloc(len); 589 bzero(n, len); 590 if (n == NULL) 591 return (missing); 592 cp = ce = (char *)np; 593 cp += unresolved * sizeof(struct kvm_nlist); 594 ce += len; 595 596 /* Generate shortened nlist with special prefix. */ 597 unresolved = 0; 598 for (p = nl; p->n_name && p->n_name[0]; ++p) { 599 if (p->n_type != N_UNDF) 600 continue; 601 *np = *p; 602 /* Save the new\0orig. name so we can later match it again. */ 603 slen = snprintf(cp, ce - cp, "%s%s%c%s", prefix, 604 (prefix[0] != '\0' && p->n_name[0] == '_') ? 605 (p->n_name + 1) : p->n_name, '\0', p->n_name); 606 if (slen < 0 || slen >= ce - cp) 607 continue; 608 np->n_name = cp; 609 cp += slen + 1; 610 np++; 611 unresolved++; 612 } 613 614 /* Do lookup on the reduced list. */ 615 np = n; 616 unresolved = kvm_fdnlist(kd, np); 617 618 /* Check if we could resolve further symbols and update the list. */ 619 if (unresolved >= 0 && unresolved < missing) { 620 /* Find the first freshly resolved entry. */ 621 for (; np->n_name && np->n_name[0]; np++) 622 if (np->n_type != N_UNDF) 623 break; 624 /* 625 * The lists are both in the same order, 626 * so we can walk them in parallel. 627 */ 628 for (p = nl; np->n_name && np->n_name[0] && 629 p->n_name && p->n_name[0]; ++p) { 630 if (p->n_type != N_UNDF) 631 continue; 632 /* Skip expanded name and compare to orig. one. */ 633 ccp = np->n_name + strlen(np->n_name) + 1; 634 if (strcmp(ccp, p->n_name) != 0) 635 continue; 636 /* Update nlist with new, translated results. */ 637 p->n_type = np->n_type; 638 if (validate_fn) 639 p->n_value = (*validate_fn)(kd, np->n_value); 640 else 641 p->n_value = np->n_value; 642 missing--; 643 /* Find next freshly resolved entry. */ 644 for (np++; np->n_name && np->n_name[0]; np++) 645 if (np->n_type != N_UNDF) 646 break; 647 } 648 } 649 /* We could assert missing = unresolved here. */ 650 651 free(n); 652 return (unresolved); 653 } 654 655 int 656 _kvm_nlist(kvm_t *kd, struct kvm_nlist *nl, int initialize) 657 { 658 struct kvm_nlist *p; 659 int nvalid; 660 struct kld_sym_lookup lookup; 661 int error; 662 const char *prefix = ""; 663 char symname[1024]; /* XXX-BZ symbol name length limit? */ 664 int tried_vnet, tried_dpcpu; 665 666 /* 667 * If we can't use the kld symbol lookup, revert to the 668 * slow library call. 669 */ 670 if (!ISALIVE(kd)) { 671 error = kvm_fdnlist(kd, nl); 672 if (error <= 0) /* Hard error or success. */ 673 return (error); 674 675 if (_kvm_vnet_initialized(kd, initialize)) 676 error = kvm_fdnlist_prefix(kd, nl, error, 677 VNET_SYMPREFIX, _kvm_vnet_validaddr); 678 679 if (error > 0 && _kvm_dpcpu_initialized(kd, initialize)) 680 error = kvm_fdnlist_prefix(kd, nl, error, 681 DPCPU_SYMPREFIX, _kvm_dpcpu_validaddr); 682 683 return (error); 684 } 685 686 /* 687 * We can use the kld lookup syscall. Go through each nlist entry 688 * and look it up with a kldsym(2) syscall. 689 */ 690 nvalid = 0; 691 tried_vnet = 0; 692 tried_dpcpu = 0; 693 again: 694 for (p = nl; p->n_name && p->n_name[0]; ++p) { 695 if (p->n_type != N_UNDF) 696 continue; 697 698 lookup.version = sizeof(lookup); 699 lookup.symvalue = 0; 700 lookup.symsize = 0; 701 702 error = snprintf(symname, sizeof(symname), "%s%s", prefix, 703 (prefix[0] != '\0' && p->n_name[0] == '_') ? 704 (p->n_name + 1) : p->n_name); 705 if (error < 0 || error >= (int)sizeof(symname)) 706 continue; 707 lookup.symname = symname; 708 if (lookup.symname[0] == '_') 709 lookup.symname++; 710 711 if (kldsym(0, KLDSYM_LOOKUP, &lookup) != -1) { 712 p->n_type = N_TEXT; 713 if (_kvm_vnet_initialized(kd, initialize) && 714 strcmp(prefix, VNET_SYMPREFIX) == 0) 715 p->n_value = 716 _kvm_vnet_validaddr(kd, lookup.symvalue); 717 else if (_kvm_dpcpu_initialized(kd, initialize) && 718 strcmp(prefix, DPCPU_SYMPREFIX) == 0) 719 p->n_value = 720 _kvm_dpcpu_validaddr(kd, lookup.symvalue); 721 else 722 p->n_value = lookup.symvalue; 723 ++nvalid; 724 /* lookup.symsize */ 725 } 726 } 727 728 /* 729 * Check the number of entries that weren't found. If they exist, 730 * try again with a prefix for virtualized or DPCPU symbol names. 731 */ 732 error = ((p - nl) - nvalid); 733 if (error && _kvm_vnet_initialized(kd, initialize) && !tried_vnet) { 734 tried_vnet = 1; 735 prefix = VNET_SYMPREFIX; 736 goto again; 737 } 738 if (error && _kvm_dpcpu_initialized(kd, initialize) && !tried_dpcpu) { 739 tried_dpcpu = 1; 740 prefix = DPCPU_SYMPREFIX; 741 goto again; 742 } 743 744 /* 745 * Return the number of entries that weren't found. If they exist, 746 * also fill internal error buffer. 747 */ 748 error = ((p - nl) - nvalid); 749 if (error) 750 _kvm_syserr(kd, kd->program, "kvm_nlist"); 751 return (error); 752 } 753 754 int 755 kvm_nlist2(kvm_t *kd, struct kvm_nlist *nl) 756 { 757 758 /* 759 * If called via the public interface, permit initialization of 760 * further virtualized modules on demand. 761 */ 762 return (_kvm_nlist(kd, nl, 1)); 763 } 764 765 int 766 kvm_nlist(kvm_t *kd, struct nlist *nl) 767 { 768 struct kvm_nlist *kl; 769 int count, i, nfail; 770 771 /* 772 * Avoid reporting truncated addresses by failing for non-native 773 * cores. 774 */ 775 if (!kvm_native(kd)) { 776 _kvm_err(kd, kd->program, "kvm_nlist of non-native vmcore"); 777 return (-1); 778 } 779 780 for (count = 0; nl[count].n_name != NULL && nl[count].n_name[0] != '\0'; 781 count++) 782 ; 783 if (count == 0) 784 return (0); 785 kl = calloc(count + 1, sizeof(*kl)); 786 for (i = 0; i < count; i++) 787 kl[i].n_name = nl[i].n_name; 788 nfail = kvm_nlist2(kd, kl); 789 for (i = 0; i < count; i++) { 790 nl[i].n_type = kl[i].n_type; 791 nl[i].n_other = 0; 792 nl[i].n_desc = 0; 793 nl[i].n_value = kl[i].n_value; 794 } 795 return (nfail); 796 } 797 798 ssize_t 799 kvm_read(kvm_t *kd, u_long kva, void *buf, size_t len) 800 { 801 802 return (kvm_read2(kd, kva, buf, len)); 803 } 804 805 ssize_t 806 kvm_read2(kvm_t *kd, kvaddr_t kva, void *buf, size_t len) 807 { 808 int cc; 809 ssize_t cr; 810 off_t pa; 811 char *cp; 812 813 if (ISALIVE(kd)) { 814 /* 815 * We're using /dev/kmem. Just read straight from the 816 * device and let the active kernel do the address translation. 817 */ 818 errno = 0; 819 if (lseek(kd->vmfd, (off_t)kva, 0) == -1 && errno != 0) { 820 _kvm_err(kd, 0, "invalid address (0x%jx)", 821 (uintmax_t)kva); 822 return (-1); 823 } 824 cr = read(kd->vmfd, buf, len); 825 if (cr < 0) { 826 _kvm_syserr(kd, 0, "kvm_read"); 827 return (-1); 828 } else if (cr < (ssize_t)len) 829 _kvm_err(kd, kd->program, "short read"); 830 return (cr); 831 } 832 833 cp = buf; 834 while (len > 0) { 835 cc = kd->arch->ka_kvatop(kd, kva, &pa); 836 if (cc == 0) 837 return (-1); 838 if (cc > (ssize_t)len) 839 cc = len; 840 errno = 0; 841 if (lseek(kd->pmfd, pa, 0) == -1 && errno != 0) { 842 _kvm_syserr(kd, 0, _PATH_MEM); 843 break; 844 } 845 cr = read(kd->pmfd, cp, cc); 846 if (cr < 0) { 847 _kvm_syserr(kd, kd->program, "kvm_read"); 848 break; 849 } 850 /* 851 * If ka_kvatop returns a bogus value or our core file is 852 * truncated, we might wind up seeking beyond the end of the 853 * core file in which case the read will return 0 (EOF). 854 */ 855 if (cr == 0) 856 break; 857 cp += cr; 858 kva += cr; 859 len -= cr; 860 } 861 862 return (cp - (char *)buf); 863 } 864 865 ssize_t 866 kvm_write(kvm_t *kd, u_long kva, const void *buf, size_t len) 867 { 868 int cc; 869 870 if (ISALIVE(kd)) { 871 /* 872 * Just like kvm_read, only we write. 873 */ 874 errno = 0; 875 if (lseek(kd->vmfd, (off_t)kva, 0) == -1 && errno != 0) { 876 _kvm_err(kd, 0, "invalid address (%lx)", kva); 877 return (-1); 878 } 879 cc = write(kd->vmfd, buf, len); 880 if (cc < 0) { 881 _kvm_syserr(kd, 0, "kvm_write"); 882 return (-1); 883 } else if ((size_t)cc < len) 884 _kvm_err(kd, kd->program, "short write"); 885 return (cc); 886 } else { 887 _kvm_err(kd, kd->program, 888 "kvm_write not implemented for dead kernels"); 889 return (-1); 890 } 891 /* NOTREACHED */ 892 } 893 894 int 895 kvm_native(kvm_t *kd) 896 { 897 898 if (ISALIVE(kd)) 899 return (1); 900 return (kd->arch->ka_native(kd)); 901 } 902