1 /*- 2 * Copyright (c) 1989, 1992, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software developed by the Computer Systems 6 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract 7 * BG 91-66 and contributed to Berkeley. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #if defined(LIBC_SCCS) && !defined(lint) 38 #if 0 39 static char sccsid[] = "@(#)kvm.c 8.2 (Berkeley) 2/13/94"; 40 #endif 41 #endif /* LIBC_SCCS and not lint */ 42 43 #include <sys/param.h> 44 #include <sys/fnv_hash.h> 45 46 #define _WANT_VNET 47 48 #include <sys/user.h> 49 #include <sys/linker.h> 50 #include <sys/pcpu.h> 51 #include <sys/stat.h> 52 53 #include <net/vnet.h> 54 55 #include <fcntl.h> 56 #include <kvm.h> 57 #include <limits.h> 58 #include <paths.h> 59 #include <stdint.h> 60 #include <stdio.h> 61 #include <stdlib.h> 62 #include <string.h> 63 #include <unistd.h> 64 65 #include "kvm_private.h" 66 67 SET_DECLARE(kvm_arch, struct kvm_arch); 68 69 /* from src/lib/libc/gen/nlist.c */ 70 int __fdnlist(int, struct nlist *); 71 72 static int 73 kvm_fdnlist(kvm_t *kd, struct kvm_nlist *list) 74 { 75 kvaddr_t addr; 76 int error, nfail; 77 78 if (kd->resolve_symbol == NULL) { 79 struct nlist *nl; 80 int count, i; 81 82 for (count = 0; list[count].n_name != NULL && 83 list[count].n_name[0] != '\0'; count++) 84 ; 85 nl = calloc(count + 1, sizeof(*nl)); 86 for (i = 0; i < count; i++) 87 nl[i].n_name = list[i].n_name; 88 nfail = __fdnlist(kd->nlfd, nl); 89 for (i = 0; i < count; i++) { 90 list[i].n_type = nl[i].n_type; 91 list[i].n_value = nl[i].n_value; 92 } 93 free(nl); 94 return (nfail); 95 } 96 97 nfail = 0; 98 while (list->n_name != NULL && list->n_name[0] != '\0') { 99 error = kd->resolve_symbol(list->n_name, &addr); 100 if (error != 0) { 101 nfail++; 102 list->n_value = 0; 103 list->n_type = 0; 104 } else { 105 list->n_value = addr; 106 list->n_type = N_DATA | N_EXT; 107 } 108 list++; 109 } 110 return (nfail); 111 } 112 113 char * 114 kvm_geterr(kvm_t *kd) 115 { 116 return (kd->errbuf); 117 } 118 119 #include <stdarg.h> 120 121 /* 122 * Report an error using printf style arguments. "program" is kd->program 123 * on hard errors, and 0 on soft errors, so that under sun error emulation, 124 * only hard errors are printed out (otherwise, programs like gdb will 125 * generate tons of error messages when trying to access bogus pointers). 126 */ 127 void 128 _kvm_err(kvm_t *kd, const char *program, const char *fmt, ...) 129 { 130 va_list ap; 131 132 va_start(ap, fmt); 133 if (program != NULL) { 134 (void)fprintf(stderr, "%s: ", program); 135 (void)vfprintf(stderr, fmt, ap); 136 (void)fputc('\n', stderr); 137 } else 138 (void)vsnprintf(kd->errbuf, 139 sizeof(kd->errbuf), fmt, ap); 140 141 va_end(ap); 142 } 143 144 void 145 _kvm_syserr(kvm_t *kd, const char *program, const char *fmt, ...) 146 { 147 va_list ap; 148 int n; 149 150 va_start(ap, fmt); 151 if (program != NULL) { 152 (void)fprintf(stderr, "%s: ", program); 153 (void)vfprintf(stderr, fmt, ap); 154 (void)fprintf(stderr, ": %s\n", strerror(errno)); 155 } else { 156 char *cp = kd->errbuf; 157 158 (void)vsnprintf(cp, sizeof(kd->errbuf), fmt, ap); 159 n = strlen(cp); 160 (void)snprintf(&cp[n], sizeof(kd->errbuf) - n, ": %s", 161 strerror(errno)); 162 } 163 va_end(ap); 164 } 165 166 void * 167 _kvm_malloc(kvm_t *kd, size_t n) 168 { 169 void *p; 170 171 if ((p = calloc(n, sizeof(char))) == NULL) 172 _kvm_err(kd, kd->program, "can't allocate %zu bytes: %s", 173 n, strerror(errno)); 174 return (p); 175 } 176 177 static int 178 _kvm_read_kernel_ehdr(kvm_t *kd) 179 { 180 Elf *elf; 181 182 if (elf_version(EV_CURRENT) == EV_NONE) { 183 _kvm_err(kd, kd->program, "Unsupported libelf"); 184 return (-1); 185 } 186 elf = elf_begin(kd->nlfd, ELF_C_READ, NULL); 187 if (elf == NULL) { 188 _kvm_err(kd, kd->program, "%s", elf_errmsg(0)); 189 return (-1); 190 } 191 if (elf_kind(elf) != ELF_K_ELF) { 192 _kvm_err(kd, kd->program, "kernel is not an ELF file"); 193 return (-1); 194 } 195 if (gelf_getehdr(elf, &kd->nlehdr) == NULL) { 196 _kvm_err(kd, kd->program, "%s", elf_errmsg(0)); 197 elf_end(elf); 198 return (-1); 199 } 200 elf_end(elf); 201 202 switch (kd->nlehdr.e_ident[EI_DATA]) { 203 case ELFDATA2LSB: 204 case ELFDATA2MSB: 205 return (0); 206 default: 207 _kvm_err(kd, kd->program, 208 "unsupported ELF data encoding for kernel"); 209 return (-1); 210 } 211 } 212 213 int 214 _kvm_probe_elf_kernel(kvm_t *kd, int class, int machine) 215 { 216 217 return (kd->nlehdr.e_ident[EI_CLASS] == class && 218 kd->nlehdr.e_type == ET_EXEC && 219 kd->nlehdr.e_machine == machine); 220 } 221 222 int 223 _kvm_is_minidump(kvm_t *kd) 224 { 225 char minihdr[8]; 226 227 if (kd->rawdump) 228 return (0); 229 if (pread(kd->pmfd, &minihdr, 8, 0) == 8 && 230 memcmp(&minihdr, "minidump", 8) == 0) 231 return (1); 232 return (0); 233 } 234 235 /* 236 * The powerpc backend has a hack to strip a leading kerneldump 237 * header from the core before treating it as an ELF header. 238 * 239 * We can add that here if we can get a change to libelf to support 240 * an inital offset into the file. Alternatively we could patch 241 * savecore to extract cores from a regular file instead. 242 */ 243 int 244 _kvm_read_core_phdrs(kvm_t *kd, size_t *phnump, GElf_Phdr **phdrp) 245 { 246 GElf_Ehdr ehdr; 247 GElf_Phdr *phdr; 248 Elf *elf; 249 size_t i, phnum; 250 251 elf = elf_begin(kd->pmfd, ELF_C_READ, NULL); 252 if (elf == NULL) { 253 _kvm_err(kd, kd->program, "%s", elf_errmsg(0)); 254 return (-1); 255 } 256 if (elf_kind(elf) != ELF_K_ELF) { 257 _kvm_err(kd, kd->program, "invalid core"); 258 goto bad; 259 } 260 if (gelf_getclass(elf) != kd->nlehdr.e_ident[EI_CLASS]) { 261 _kvm_err(kd, kd->program, "invalid core"); 262 goto bad; 263 } 264 if (gelf_getehdr(elf, &ehdr) == NULL) { 265 _kvm_err(kd, kd->program, "%s", elf_errmsg(0)); 266 goto bad; 267 } 268 if (ehdr.e_type != ET_CORE) { 269 _kvm_err(kd, kd->program, "invalid core"); 270 goto bad; 271 } 272 if (ehdr.e_machine != kd->nlehdr.e_machine) { 273 _kvm_err(kd, kd->program, "invalid core"); 274 goto bad; 275 } 276 277 if (elf_getphdrnum(elf, &phnum) == -1) { 278 _kvm_err(kd, kd->program, "%s", elf_errmsg(0)); 279 goto bad; 280 } 281 282 phdr = calloc(phnum, sizeof(*phdr)); 283 if (phdr == NULL) { 284 _kvm_err(kd, kd->program, "failed to allocate phdrs"); 285 goto bad; 286 } 287 288 for (i = 0; i < phnum; i++) { 289 if (gelf_getphdr(elf, i, &phdr[i]) == NULL) { 290 _kvm_err(kd, kd->program, "%s", elf_errmsg(0)); 291 goto bad; 292 } 293 } 294 elf_end(elf); 295 *phnump = phnum; 296 *phdrp = phdr; 297 return (0); 298 299 bad: 300 elf_end(elf); 301 return (-1); 302 } 303 304 static void 305 _kvm_hpt_insert(struct hpt *hpt, uint64_t pa, off_t off) 306 { 307 struct hpte *hpte; 308 uint32_t fnv = FNV1_32_INIT; 309 310 fnv = fnv_32_buf(&pa, sizeof(pa), fnv); 311 fnv &= (HPT_SIZE - 1); 312 hpte = malloc(sizeof(*hpte)); 313 hpte->pa = pa; 314 hpte->off = off; 315 hpte->next = hpt->hpt_head[fnv]; 316 hpt->hpt_head[fnv] = hpte; 317 } 318 319 void 320 _kvm_hpt_init(kvm_t *kd, struct hpt *hpt, void *base, size_t len, off_t off, 321 int page_size, int word_size) 322 { 323 uint64_t bits, idx, pa; 324 uint64_t *base64; 325 uint32_t *base32; 326 327 base64 = base; 328 base32 = base; 329 for (idx = 0; idx < len / word_size; idx++) { 330 if (word_size == sizeof(uint64_t)) 331 bits = _kvm64toh(kd, base64[idx]); 332 else 333 bits = _kvm32toh(kd, base32[idx]); 334 pa = idx * word_size * NBBY * page_size; 335 for (; bits != 0; bits >>= 1, pa += page_size) { 336 if ((bits & 1) == 0) 337 continue; 338 _kvm_hpt_insert(hpt, pa, off); 339 off += page_size; 340 } 341 } 342 } 343 344 off_t 345 _kvm_hpt_find(struct hpt *hpt, uint64_t pa) 346 { 347 struct hpte *hpte; 348 uint32_t fnv = FNV1_32_INIT; 349 350 fnv = fnv_32_buf(&pa, sizeof(pa), fnv); 351 fnv &= (HPT_SIZE - 1); 352 for (hpte = hpt->hpt_head[fnv]; hpte != NULL; hpte = hpte->next) { 353 if (pa == hpte->pa) 354 return (hpte->off); 355 } 356 return (-1); 357 } 358 359 void 360 _kvm_hpt_free(struct hpt *hpt) 361 { 362 struct hpte *hpte, *next; 363 int i; 364 365 for (i = 0; i < HPT_SIZE; i++) { 366 for (hpte = hpt->hpt_head[i]; hpte != NULL; hpte = next) { 367 next = hpte->next; 368 free(hpte); 369 } 370 } 371 } 372 373 static kvm_t * 374 _kvm_open(kvm_t *kd, const char *uf, const char *mf, int flag, char *errout) 375 { 376 struct kvm_arch **parch; 377 struct stat st; 378 379 kd->vmfd = -1; 380 kd->pmfd = -1; 381 kd->nlfd = -1; 382 kd->vmst = 0; 383 kd->procbase = 0; 384 kd->argspc = 0; 385 kd->argv = 0; 386 387 if (uf == 0) 388 uf = getbootfile(); 389 else if (strlen(uf) >= MAXPATHLEN) { 390 _kvm_err(kd, kd->program, "exec file name too long"); 391 goto failed; 392 } 393 if (flag & ~O_RDWR) { 394 _kvm_err(kd, kd->program, "bad flags arg"); 395 goto failed; 396 } 397 if (mf == 0) 398 mf = _PATH_MEM; 399 400 if ((kd->pmfd = open(mf, flag | O_CLOEXEC, 0)) < 0) { 401 _kvm_syserr(kd, kd->program, "%s", mf); 402 goto failed; 403 } 404 if (fstat(kd->pmfd, &st) < 0) { 405 _kvm_syserr(kd, kd->program, "%s", mf); 406 goto failed; 407 } 408 if (S_ISREG(st.st_mode) && st.st_size <= 0) { 409 errno = EINVAL; 410 _kvm_syserr(kd, kd->program, "empty file"); 411 goto failed; 412 } 413 if (S_ISCHR(st.st_mode)) { 414 /* 415 * If this is a character special device, then check that 416 * it's /dev/mem. If so, open kmem too. (Maybe we should 417 * make it work for either /dev/mem or /dev/kmem -- in either 418 * case you're working with a live kernel.) 419 */ 420 if (strcmp(mf, _PATH_DEVNULL) == 0) { 421 kd->vmfd = open(_PATH_DEVNULL, O_RDONLY | O_CLOEXEC); 422 return (kd); 423 } else if (strcmp(mf, _PATH_MEM) == 0) { 424 if ((kd->vmfd = open(_PATH_KMEM, flag | O_CLOEXEC)) < 425 0) { 426 _kvm_syserr(kd, kd->program, "%s", _PATH_KMEM); 427 goto failed; 428 } 429 return (kd); 430 } 431 } 432 /* 433 * This is a crash dump. 434 * Open the namelist fd and determine the architecture. 435 */ 436 if ((kd->nlfd = open(uf, O_RDONLY | O_CLOEXEC, 0)) < 0) { 437 _kvm_syserr(kd, kd->program, "%s", uf); 438 goto failed; 439 } 440 if (_kvm_read_kernel_ehdr(kd) < 0) 441 goto failed; 442 if (strncmp(mf, _PATH_FWMEM, strlen(_PATH_FWMEM)) == 0) 443 kd->rawdump = 1; 444 SET_FOREACH(parch, kvm_arch) { 445 if ((*parch)->ka_probe(kd)) { 446 kd->arch = *parch; 447 break; 448 } 449 } 450 if (kd->arch == NULL) { 451 _kvm_err(kd, kd->program, "unsupported architecture"); 452 goto failed; 453 } 454 455 /* 456 * Non-native kernels require a symbol resolver. 457 */ 458 if (!kd->arch->ka_native(kd) && kd->resolve_symbol == NULL) { 459 _kvm_err(kd, kd->program, 460 "non-native kernel requires a symbol resolver"); 461 goto failed; 462 } 463 464 /* 465 * Initialize the virtual address translation machinery. 466 */ 467 if (kd->arch->ka_initvtop(kd) < 0) 468 goto failed; 469 return (kd); 470 failed: 471 /* 472 * Copy out the error if doing sane error semantics. 473 */ 474 if (errout != 0) 475 strlcpy(errout, kd->errbuf, _POSIX2_LINE_MAX); 476 (void)kvm_close(kd); 477 return (0); 478 } 479 480 kvm_t * 481 kvm_openfiles(const char *uf, const char *mf, const char *sf __unused, int flag, 482 char *errout) 483 { 484 kvm_t *kd; 485 486 if ((kd = calloc(1, sizeof(*kd))) == NULL) { 487 (void)strlcpy(errout, strerror(errno), _POSIX2_LINE_MAX); 488 return (0); 489 } 490 return (_kvm_open(kd, uf, mf, flag, errout)); 491 } 492 493 kvm_t * 494 kvm_open(const char *uf, const char *mf, const char *sf __unused, int flag, 495 const char *errstr) 496 { 497 kvm_t *kd; 498 499 if ((kd = calloc(1, sizeof(*kd))) == NULL) { 500 if (errstr != NULL) 501 (void)fprintf(stderr, "%s: %s\n", 502 errstr, strerror(errno)); 503 return (0); 504 } 505 kd->program = errstr; 506 return (_kvm_open(kd, uf, mf, flag, NULL)); 507 } 508 509 kvm_t * 510 kvm_open2(const char *uf, const char *mf, int flag, char *errout, 511 int (*resolver)(const char *, kvaddr_t *)) 512 { 513 kvm_t *kd; 514 515 if ((kd = calloc(1, sizeof(*kd))) == NULL) { 516 (void)strlcpy(errout, strerror(errno), _POSIX2_LINE_MAX); 517 return (0); 518 } 519 kd->resolve_symbol = resolver; 520 return (_kvm_open(kd, uf, mf, flag, errout)); 521 } 522 523 int 524 kvm_close(kvm_t *kd) 525 { 526 int error = 0; 527 528 if (kd->vmst != NULL) 529 kd->arch->ka_freevtop(kd); 530 if (kd->pmfd >= 0) 531 error |= close(kd->pmfd); 532 if (kd->vmfd >= 0) 533 error |= close(kd->vmfd); 534 if (kd->nlfd >= 0) 535 error |= close(kd->nlfd); 536 if (kd->procbase != 0) 537 free((void *)kd->procbase); 538 if (kd->argbuf != 0) 539 free((void *) kd->argbuf); 540 if (kd->argspc != 0) 541 free((void *) kd->argspc); 542 if (kd->argv != 0) 543 free((void *)kd->argv); 544 free((void *)kd); 545 546 return (0); 547 } 548 549 /* 550 * Walk the list of unresolved symbols, generate a new list and prefix the 551 * symbol names, try again, and merge back what we could resolve. 552 */ 553 static int 554 kvm_fdnlist_prefix(kvm_t *kd, struct kvm_nlist *nl, int missing, 555 const char *prefix, kvaddr_t (*validate_fn)(kvm_t *, kvaddr_t)) 556 { 557 struct kvm_nlist *n, *np, *p; 558 char *cp, *ce; 559 const char *ccp; 560 size_t len; 561 int slen, unresolved; 562 563 /* 564 * Calculate the space we need to malloc for nlist and names. 565 * We are going to store the name twice for later lookups: once 566 * with the prefix and once the unmodified name delmited by \0. 567 */ 568 len = 0; 569 unresolved = 0; 570 for (p = nl; p->n_name && p->n_name[0]; ++p) { 571 if (p->n_type != N_UNDF) 572 continue; 573 len += sizeof(struct kvm_nlist) + strlen(prefix) + 574 2 * (strlen(p->n_name) + 1); 575 unresolved++; 576 } 577 if (unresolved == 0) 578 return (unresolved); 579 /* Add space for the terminating nlist entry. */ 580 len += sizeof(struct kvm_nlist); 581 unresolved++; 582 583 /* Alloc one chunk for (nlist, [names]) and setup pointers. */ 584 n = np = malloc(len); 585 bzero(n, len); 586 if (n == NULL) 587 return (missing); 588 cp = ce = (char *)np; 589 cp += unresolved * sizeof(struct kvm_nlist); 590 ce += len; 591 592 /* Generate shortened nlist with special prefix. */ 593 unresolved = 0; 594 for (p = nl; p->n_name && p->n_name[0]; ++p) { 595 if (p->n_type != N_UNDF) 596 continue; 597 *np = *p; 598 /* Save the new\0orig. name so we can later match it again. */ 599 slen = snprintf(cp, ce - cp, "%s%s%c%s", prefix, 600 (prefix[0] != '\0' && p->n_name[0] == '_') ? 601 (p->n_name + 1) : p->n_name, '\0', p->n_name); 602 if (slen < 0 || slen >= ce - cp) 603 continue; 604 np->n_name = cp; 605 cp += slen + 1; 606 np++; 607 unresolved++; 608 } 609 610 /* Do lookup on the reduced list. */ 611 np = n; 612 unresolved = kvm_fdnlist(kd, np); 613 614 /* Check if we could resolve further symbols and update the list. */ 615 if (unresolved >= 0 && unresolved < missing) { 616 /* Find the first freshly resolved entry. */ 617 for (; np->n_name && np->n_name[0]; np++) 618 if (np->n_type != N_UNDF) 619 break; 620 /* 621 * The lists are both in the same order, 622 * so we can walk them in parallel. 623 */ 624 for (p = nl; np->n_name && np->n_name[0] && 625 p->n_name && p->n_name[0]; ++p) { 626 if (p->n_type != N_UNDF) 627 continue; 628 /* Skip expanded name and compare to orig. one. */ 629 ccp = np->n_name + strlen(np->n_name) + 1; 630 if (strcmp(ccp, p->n_name) != 0) 631 continue; 632 /* Update nlist with new, translated results. */ 633 p->n_type = np->n_type; 634 if (validate_fn) 635 p->n_value = (*validate_fn)(kd, np->n_value); 636 else 637 p->n_value = np->n_value; 638 missing--; 639 /* Find next freshly resolved entry. */ 640 for (np++; np->n_name && np->n_name[0]; np++) 641 if (np->n_type != N_UNDF) 642 break; 643 } 644 } 645 /* We could assert missing = unresolved here. */ 646 647 free(n); 648 return (unresolved); 649 } 650 651 int 652 _kvm_nlist(kvm_t *kd, struct kvm_nlist *nl, int initialize) 653 { 654 struct kvm_nlist *p; 655 int nvalid; 656 struct kld_sym_lookup lookup; 657 int error; 658 const char *prefix = ""; 659 char symname[1024]; /* XXX-BZ symbol name length limit? */ 660 int tried_vnet, tried_dpcpu; 661 662 /* 663 * If we can't use the kld symbol lookup, revert to the 664 * slow library call. 665 */ 666 if (!ISALIVE(kd)) { 667 error = kvm_fdnlist(kd, nl); 668 if (error <= 0) /* Hard error or success. */ 669 return (error); 670 671 if (_kvm_vnet_initialized(kd, initialize)) 672 error = kvm_fdnlist_prefix(kd, nl, error, 673 VNET_SYMPREFIX, _kvm_vnet_validaddr); 674 675 if (error > 0 && _kvm_dpcpu_initialized(kd, initialize)) 676 error = kvm_fdnlist_prefix(kd, nl, error, 677 DPCPU_SYMPREFIX, _kvm_dpcpu_validaddr); 678 679 return (error); 680 } 681 682 /* 683 * We can use the kld lookup syscall. Go through each nlist entry 684 * and look it up with a kldsym(2) syscall. 685 */ 686 nvalid = 0; 687 tried_vnet = 0; 688 tried_dpcpu = 0; 689 again: 690 for (p = nl; p->n_name && p->n_name[0]; ++p) { 691 if (p->n_type != N_UNDF) 692 continue; 693 694 lookup.version = sizeof(lookup); 695 lookup.symvalue = 0; 696 lookup.symsize = 0; 697 698 error = snprintf(symname, sizeof(symname), "%s%s", prefix, 699 (prefix[0] != '\0' && p->n_name[0] == '_') ? 700 (p->n_name + 1) : p->n_name); 701 if (error < 0 || error >= (int)sizeof(symname)) 702 continue; 703 lookup.symname = symname; 704 if (lookup.symname[0] == '_') 705 lookup.symname++; 706 707 if (kldsym(0, KLDSYM_LOOKUP, &lookup) != -1) { 708 p->n_type = N_TEXT; 709 if (_kvm_vnet_initialized(kd, initialize) && 710 strcmp(prefix, VNET_SYMPREFIX) == 0) 711 p->n_value = 712 _kvm_vnet_validaddr(kd, lookup.symvalue); 713 else if (_kvm_dpcpu_initialized(kd, initialize) && 714 strcmp(prefix, DPCPU_SYMPREFIX) == 0) 715 p->n_value = 716 _kvm_dpcpu_validaddr(kd, lookup.symvalue); 717 else 718 p->n_value = lookup.symvalue; 719 ++nvalid; 720 /* lookup.symsize */ 721 } 722 } 723 724 /* 725 * Check the number of entries that weren't found. If they exist, 726 * try again with a prefix for virtualized or DPCPU symbol names. 727 */ 728 error = ((p - nl) - nvalid); 729 if (error && _kvm_vnet_initialized(kd, initialize) && !tried_vnet) { 730 tried_vnet = 1; 731 prefix = VNET_SYMPREFIX; 732 goto again; 733 } 734 if (error && _kvm_dpcpu_initialized(kd, initialize) && !tried_dpcpu) { 735 tried_dpcpu = 1; 736 prefix = DPCPU_SYMPREFIX; 737 goto again; 738 } 739 740 /* 741 * Return the number of entries that weren't found. If they exist, 742 * also fill internal error buffer. 743 */ 744 error = ((p - nl) - nvalid); 745 if (error) 746 _kvm_syserr(kd, kd->program, "kvm_nlist"); 747 return (error); 748 } 749 750 int 751 kvm_nlist2(kvm_t *kd, struct kvm_nlist *nl) 752 { 753 754 /* 755 * If called via the public interface, permit intialization of 756 * further virtualized modules on demand. 757 */ 758 return (_kvm_nlist(kd, nl, 1)); 759 } 760 761 int 762 kvm_nlist(kvm_t *kd, struct nlist *nl) 763 { 764 struct kvm_nlist *kl; 765 int count, i, nfail; 766 767 /* 768 * Avoid reporting truncated addresses by failing for non-native 769 * cores. 770 */ 771 if (!kvm_native(kd)) { 772 _kvm_err(kd, kd->program, "kvm_nlist of non-native vmcore"); 773 return (-1); 774 } 775 776 for (count = 0; nl[count].n_name != NULL && nl[count].n_name[0] != '\0'; 777 count++) 778 ; 779 if (count == 0) 780 return (0); 781 kl = calloc(count + 1, sizeof(*kl)); 782 for (i = 0; i < count; i++) 783 kl[i].n_name = nl[i].n_name; 784 nfail = kvm_nlist2(kd, kl); 785 for (i = 0; i < count; i++) { 786 nl[i].n_type = kl[i].n_type; 787 nl[i].n_other = 0; 788 nl[i].n_desc = 0; 789 nl[i].n_value = kl[i].n_value; 790 } 791 return (nfail); 792 } 793 794 ssize_t 795 kvm_read(kvm_t *kd, u_long kva, void *buf, size_t len) 796 { 797 798 return (kvm_read2(kd, kva, buf, len)); 799 } 800 801 ssize_t 802 kvm_read2(kvm_t *kd, kvaddr_t kva, void *buf, size_t len) 803 { 804 int cc; 805 ssize_t cr; 806 off_t pa; 807 char *cp; 808 809 if (ISALIVE(kd)) { 810 /* 811 * We're using /dev/kmem. Just read straight from the 812 * device and let the active kernel do the address translation. 813 */ 814 errno = 0; 815 if (lseek(kd->vmfd, (off_t)kva, 0) == -1 && errno != 0) { 816 _kvm_err(kd, 0, "invalid address (0x%jx)", 817 (uintmax_t)kva); 818 return (-1); 819 } 820 cr = read(kd->vmfd, buf, len); 821 if (cr < 0) { 822 _kvm_syserr(kd, 0, "kvm_read"); 823 return (-1); 824 } else if (cr < (ssize_t)len) 825 _kvm_err(kd, kd->program, "short read"); 826 return (cr); 827 } 828 829 cp = buf; 830 while (len > 0) { 831 cc = kd->arch->ka_kvatop(kd, kva, &pa); 832 if (cc == 0) 833 return (-1); 834 if (cc > (ssize_t)len) 835 cc = len; 836 errno = 0; 837 if (lseek(kd->pmfd, pa, 0) == -1 && errno != 0) { 838 _kvm_syserr(kd, 0, _PATH_MEM); 839 break; 840 } 841 cr = read(kd->pmfd, cp, cc); 842 if (cr < 0) { 843 _kvm_syserr(kd, kd->program, "kvm_read"); 844 break; 845 } 846 /* 847 * If ka_kvatop returns a bogus value or our core file is 848 * truncated, we might wind up seeking beyond the end of the 849 * core file in which case the read will return 0 (EOF). 850 */ 851 if (cr == 0) 852 break; 853 cp += cr; 854 kva += cr; 855 len -= cr; 856 } 857 858 return (cp - (char *)buf); 859 } 860 861 ssize_t 862 kvm_write(kvm_t *kd, u_long kva, const void *buf, size_t len) 863 { 864 int cc; 865 866 if (ISALIVE(kd)) { 867 /* 868 * Just like kvm_read, only we write. 869 */ 870 errno = 0; 871 if (lseek(kd->vmfd, (off_t)kva, 0) == -1 && errno != 0) { 872 _kvm_err(kd, 0, "invalid address (%lx)", kva); 873 return (-1); 874 } 875 cc = write(kd->vmfd, buf, len); 876 if (cc < 0) { 877 _kvm_syserr(kd, 0, "kvm_write"); 878 return (-1); 879 } else if ((size_t)cc < len) 880 _kvm_err(kd, kd->program, "short write"); 881 return (cc); 882 } else { 883 _kvm_err(kd, kd->program, 884 "kvm_write not implemented for dead kernels"); 885 return (-1); 886 } 887 /* NOTREACHED */ 888 } 889 890 int 891 kvm_native(kvm_t *kd) 892 { 893 894 if (ISALIVE(kd)) 895 return (1); 896 return (kd->arch->ka_native(kd)); 897 } 898