1 /*- 2 * Copyright (c) 2014, Alexander V. Chernikov 3 * Copyright (c) 2020, Ryan Moeller <freqlabs@FreeBSD.org> 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 * 26 * $FreeBSD$ 27 */ 28 29 #include <sys/types.h> 30 #include <sys/param.h> 31 #include <sys/ioctl.h> 32 #include <sys/socket.h> 33 34 #include <net/if.h> 35 #include <net/sff8436.h> 36 #include <net/sff8472.h> 37 38 #include <math.h> 39 #include <err.h> 40 #include <errno.h> 41 #include <fcntl.h> 42 #include <stdbool.h> 43 #include <stdio.h> 44 #include <stdlib.h> 45 #include <string.h> 46 #include <unistd.h> 47 48 #include <libifconfig.h> 49 #include <libifconfig_internal.h> 50 #include <libifconfig_sfp.h> 51 #include <libifconfig_sfp_tables_internal.h> 52 53 #define SFF_8636_EXT_COMPLIANCE 0x80 54 55 struct i2c_info { 56 struct ifreq ifr; 57 ifconfig_handle_t *h; 58 int error; /* Store first error */ 59 enum sfp_id id; /* Module type */ 60 }; 61 62 static uint8_t 63 find_zero_bit(const struct sfp_enum_metadata *table, int value, int sz) 64 { 65 int v, m; 66 67 for (v = 1, m = 1 << (8 * sz); v < m; v <<= 1) { 68 if ((value & v) == 0) 69 continue; 70 if (find_metadata(table, value & v) != NULL) { 71 return (value & v); 72 } 73 } 74 return (0); 75 } 76 77 /* 78 * Reads i2c data from opened kernel socket. 79 */ 80 static int 81 read_i2c(struct i2c_info *ii, uint8_t addr, uint8_t off, uint8_t len, 82 uint8_t *buf) 83 { 84 struct ifi2creq req; 85 int i, l; 86 87 if (ii->error != 0) 88 return (ii->error); 89 90 ii->ifr.ifr_data = (caddr_t)&req; 91 92 i = 0; 93 l = 0; 94 memset(&req, 0, sizeof(req)); 95 req.dev_addr = addr; 96 req.offset = off; 97 req.len = len; 98 99 while (len > 0) { 100 l = MIN(sizeof(req.data), len); 101 req.len = l; 102 if (ifconfig_ioctlwrap(ii->h, AF_LOCAL, SIOCGI2C, 103 &ii->ifr) != 0) { 104 ii->error = errno; 105 return (errno); 106 } 107 108 memcpy(&buf[i], req.data, l); 109 len -= l; 110 i += l; 111 req.offset += l; 112 } 113 114 return (0); 115 } 116 117 static int 118 i2c_info_init(struct i2c_info *ii, ifconfig_handle_t *h, const char *name) 119 { 120 uint8_t id_byte; 121 122 memset(ii, 0, sizeof(*ii)); 123 strlcpy(ii->ifr.ifr_name, name, sizeof(ii->ifr.ifr_name)); 124 ii->h = h; 125 126 /* 127 * Try to read byte 0 from i2c: 128 * Both SFF-8472 and SFF-8436 use it as 129 * 'identification byte'. 130 * Stop reading status on zero as value - 131 * this might happen in case of empty transceiver slot. 132 */ 133 id_byte = 0; 134 read_i2c(ii, SFF_8472_BASE, SFF_8472_ID, 1, &id_byte); 135 if (ii->error != 0) 136 return (-1); 137 if (id_byte == 0) { 138 h->error.errtype = OTHER; 139 h->error.errcode = ENOENT; 140 return (-1); 141 } 142 ii->id = id_byte; 143 return (0); 144 } 145 146 static int 147 get_sfp_info(struct i2c_info *ii, struct ifconfig_sfp_info *sfp) 148 { 149 uint8_t code; 150 151 read_i2c(ii, SFF_8472_BASE, SFF_8472_ID, 1, &sfp->sfp_id); 152 read_i2c(ii, SFF_8472_BASE, SFF_8472_CONNECTOR, 1, &sfp->sfp_conn); 153 154 /* Use extended compliance code if it's valid */ 155 read_i2c(ii, SFF_8472_BASE, SFF_8472_TRANS, 1, &sfp->sfp_eth_ext); 156 if (sfp->sfp_eth_ext == 0) { 157 /* Next, check 10G Ethernet/IB CCs */ 158 read_i2c(ii, SFF_8472_BASE, SFF_8472_TRANS_START, 1, &code); 159 sfp->sfp_eth_10g = find_zero_bit(sfp_eth_10g_table, code, 1); 160 if (sfp->sfp_eth_10g == 0) { 161 /* No match. Try Ethernet 1G */ 162 read_i2c(ii, SFF_8472_BASE, SFF_8472_TRANS_START + 3, 163 1, &code); 164 sfp->sfp_eth = find_zero_bit(sfp_eth_table, code, 1); 165 } 166 } 167 168 return (ii->error); 169 } 170 171 static int 172 get_qsfp_info(struct i2c_info *ii, struct ifconfig_sfp_info *sfp) 173 { 174 uint8_t code; 175 176 read_i2c(ii, SFF_8436_BASE, SFF_8436_ID, 1, &sfp->sfp_id); 177 read_i2c(ii, SFF_8436_BASE, SFF_8436_CONNECTOR, 1, &sfp->sfp_conn); 178 179 read_i2c(ii, SFF_8436_BASE, SFF_8436_STATUS, 1, &sfp->sfp_rev); 180 181 /* Check for extended specification compliance */ 182 read_i2c(ii, SFF_8436_BASE, SFF_8436_CODE_E1040100G, 1, &code); 183 if (code & SFF_8636_EXT_COMPLIANCE) { 184 read_i2c(ii, SFF_8436_BASE, SFF_8436_OPTIONS_START, 1, 185 &sfp->sfp_eth_ext); 186 } else { 187 /* Check 10/40G Ethernet class only */ 188 sfp->sfp_eth_1040g = 189 find_zero_bit(sfp_eth_1040g_table, code, 1); 190 } 191 192 return (ii->error); 193 } 194 195 int 196 ifconfig_sfp_get_sfp_info(ifconfig_handle_t *h, 197 const char *name, struct ifconfig_sfp_info *sfp) 198 { 199 struct i2c_info ii; 200 char buf[8]; 201 202 memset(sfp, 0, sizeof(*sfp)); 203 204 if (i2c_info_init(&ii, h, name) != 0) 205 return (-1); 206 207 /* Read bytes 3-10 at once */ 208 read_i2c(&ii, SFF_8472_BASE, SFF_8472_TRANS_START, 8, buf); 209 if (ii.error != 0) 210 return (ii.error); 211 212 /* Check 10G ethernet first */ 213 sfp->sfp_eth_10g = find_zero_bit(sfp_eth_10g_table, buf[0], 1); 214 if (sfp->sfp_eth_10g == 0) { 215 /* No match. Try 1G */ 216 sfp->sfp_eth = find_zero_bit(sfp_eth_table, buf[3], 1); 217 } 218 sfp->sfp_fc_len = find_zero_bit(sfp_fc_len_table, buf[4], 1); 219 sfp->sfp_fc_media = find_zero_bit(sfp_fc_media_table, buf[6], 1); 220 sfp->sfp_fc_speed = find_zero_bit(sfp_fc_speed_table, buf[7], 1); 221 sfp->sfp_cab_tech = 222 find_zero_bit(sfp_cab_tech_table, (buf[4] << 8) | buf[5], 2); 223 224 if (ifconfig_sfp_id_is_qsfp(ii.id)) 225 return (get_qsfp_info(&ii, sfp)); 226 return (get_sfp_info(&ii, sfp)); 227 } 228 229 static size_t 230 channel_count(enum sfp_id id) 231 { 232 /* TODO: other ids */ 233 switch (id) { 234 case SFP_ID_UNKNOWN: 235 return (0); 236 case SFP_ID_QSFP: 237 case SFP_ID_QSFPPLUS: 238 case SFP_ID_QSFP28: 239 return (4); 240 default: 241 return (1); 242 } 243 } 244 245 size_t 246 ifconfig_sfp_channel_count(const struct ifconfig_sfp_info *sfp) 247 { 248 return (channel_count(sfp->sfp_id)); 249 } 250 251 /* 252 * Print SFF-8472/SFF-8436 string to supplied buffer. 253 * All (vendor-specific) strings are padded right with '0x20'. 254 */ 255 static void 256 get_sff_string(struct i2c_info *ii, uint8_t addr, uint8_t off, char *dst) 257 { 258 read_i2c(ii, addr, off, SFF_VENDOR_STRING_SIZE, dst); 259 dst += SFF_VENDOR_STRING_SIZE; 260 do { *dst-- = '\0'; } while (*dst == 0x20); 261 } 262 263 static void 264 get_sff_date(struct i2c_info *ii, uint8_t addr, uint8_t off, char *dst) 265 { 266 char buf[SFF_VENDOR_DATE_SIZE]; 267 268 read_i2c(ii, addr, off, SFF_VENDOR_DATE_SIZE, buf); 269 sprintf(dst, "20%c%c-%c%c-%c%c", buf[0], buf[1], buf[2], buf[3], 270 buf[4], buf[5]); 271 } 272 273 static int 274 get_sfp_vendor_info(struct i2c_info *ii, struct ifconfig_sfp_vendor_info *vi) 275 { 276 get_sff_string(ii, SFF_8472_BASE, SFF_8472_VENDOR_START, vi->name); 277 get_sff_string(ii, SFF_8472_BASE, SFF_8472_PN_START, vi->pn); 278 get_sff_string(ii, SFF_8472_BASE, SFF_8472_SN_START, vi->sn); 279 get_sff_date(ii, SFF_8472_BASE, SFF_8472_DATE_START, vi->date); 280 return (ii->error); 281 } 282 283 static int 284 get_qsfp_vendor_info(struct i2c_info *ii, struct ifconfig_sfp_vendor_info *vi) 285 { 286 get_sff_string(ii, SFF_8436_BASE, SFF_8436_VENDOR_START, vi->name); 287 get_sff_string(ii, SFF_8436_BASE, SFF_8436_PN_START, vi->pn); 288 get_sff_string(ii, SFF_8436_BASE, SFF_8436_SN_START, vi->sn); 289 get_sff_date(ii, SFF_8436_BASE, SFF_8436_DATE_START, vi->date); 290 return (ii->error); 291 } 292 293 int 294 ifconfig_sfp_get_sfp_vendor_info(ifconfig_handle_t *h, 295 const char *name, struct ifconfig_sfp_vendor_info *vi) 296 { 297 struct i2c_info ii; 298 299 memset(vi, 0, sizeof(*vi)); 300 301 if (i2c_info_init(&ii, h, name) != 0) 302 return (-1); 303 304 if (ifconfig_sfp_id_is_qsfp(ii.id)) 305 return (get_qsfp_vendor_info(&ii, vi)); 306 return (get_sfp_vendor_info(&ii, vi)); 307 } 308 309 /* 310 * Converts internal temperature (SFF-8472, SFF-8436) 311 * 16-bit unsigned value to human-readable representation: 312 * 313 * Internally measured Module temperature are represented 314 * as a 16-bit signed twos complement value in increments of 315 * 1/256 degrees Celsius, yielding a total range of –128C to +128C 316 * that is considered valid between –40 and +125C. 317 */ 318 static double 319 get_sff_temp(struct i2c_info *ii, uint8_t addr, uint8_t off) 320 { 321 double d; 322 uint8_t buf[2]; 323 324 read_i2c(ii, addr, off, 2, buf); 325 d = (double)buf[0]; 326 d += (double)buf[1] / 256; 327 return (d); 328 } 329 330 /* 331 * Retrieves supplied voltage (SFF-8472, SFF-8436). 332 * 16-bit usigned value, treated as range 0..+6.55 Volts 333 */ 334 static double 335 get_sff_voltage(struct i2c_info *ii, uint8_t addr, uint8_t off) 336 { 337 double d; 338 uint8_t buf[2]; 339 340 read_i2c(ii, addr, off, 2, buf); 341 d = (double)((buf[0] << 8) | buf[1]); 342 return (d / 10000); 343 } 344 345 /* 346 * The following conversions assume internally-calibrated data. 347 * This is always true for SFF-8346, and explicitly checked for SFF-8472. 348 */ 349 350 double 351 power_mW(uint16_t power) 352 { 353 /* Power is specified in units of 0.1 uW. */ 354 return (1.0 * power / 10000); 355 } 356 357 double 358 power_dBm(uint16_t power) 359 { 360 return (10.0 * log10(power_mW(power))); 361 } 362 363 double 364 bias_mA(uint16_t bias) 365 { 366 /* Bias current is specified in units of 2 uA. */ 367 return (1.0 * bias / 500); 368 } 369 370 static uint16_t 371 get_sff_channel(struct i2c_info *ii, uint8_t addr, uint8_t off) 372 { 373 uint8_t buf[2]; 374 375 read_i2c(ii, addr, off, 2, buf); 376 if (ii->error != 0) 377 return (0); 378 379 return ((buf[0] << 8) + buf[1]); 380 } 381 382 static int 383 get_sfp_status(struct i2c_info *ii, struct ifconfig_sfp_status *ss) 384 { 385 uint8_t diag_type, flags; 386 387 /* Read diagnostic monitoring type */ 388 read_i2c(ii, SFF_8472_BASE, SFF_8472_DIAG_TYPE, 1, (caddr_t)&diag_type); 389 if (ii->error != 0) 390 return (-1); 391 392 /* 393 * Read monitoring data IFF it is supplied AND is 394 * internally calibrated 395 */ 396 flags = SFF_8472_DDM_DONE | SFF_8472_DDM_INTERNAL; 397 if ((diag_type & flags) != flags) { 398 ii->h->error.errtype = OTHER; 399 ii->h->error.errcode = ENXIO; 400 return (-1); 401 } 402 403 ss->temp = get_sff_temp(ii, SFF_8472_DIAG, SFF_8472_TEMP); 404 ss->voltage = get_sff_voltage(ii, SFF_8472_DIAG, SFF_8472_VCC); 405 ss->channel = calloc(channel_count(ii->id), sizeof(*ss->channel)); 406 if (ss->channel == NULL) { 407 ii->h->error.errtype = OTHER; 408 ii->h->error.errcode = ENOMEM; 409 return (-1); 410 } 411 ss->channel[0].rx = get_sff_channel(ii, SFF_8472_DIAG, SFF_8472_RX_POWER); 412 ss->channel[0].tx = get_sff_channel(ii, SFF_8472_DIAG, SFF_8472_TX_BIAS); 413 return (ii->error); 414 } 415 416 static uint32_t 417 get_qsfp_bitrate(struct i2c_info *ii) 418 { 419 uint8_t code; 420 uint32_t rate; 421 422 code = 0; 423 read_i2c(ii, SFF_8436_BASE, SFF_8436_BITRATE, 1, &code); 424 rate = code * 100; 425 if (code == 0xFF) { 426 read_i2c(ii, SFF_8436_BASE, SFF_8636_BITRATE, 1, &code); 427 rate = code * 250; 428 } 429 430 return (rate); 431 } 432 433 static int 434 get_qsfp_status(struct i2c_info *ii, struct ifconfig_sfp_status *ss) 435 { 436 size_t channels; 437 438 ss->temp = get_sff_temp(ii, SFF_8436_BASE, SFF_8436_TEMP); 439 ss->voltage = get_sff_voltage(ii, SFF_8436_BASE, SFF_8436_VCC); 440 channels = channel_count(ii->id); 441 ss->channel = calloc(channels, sizeof(*ss->channel)); 442 if (ss->channel == NULL) { 443 ii->h->error.errtype = OTHER; 444 ii->h->error.errcode = ENOMEM; 445 return (-1); 446 } 447 for (size_t chan = 0; chan < channels; ++chan) { 448 uint8_t rxoffs = SFF_8436_RX_CH1_MSB + chan * sizeof(uint16_t); 449 uint8_t txoffs = SFF_8436_TX_CH1_MSB + chan * sizeof(uint16_t); 450 ss->channel[chan].rx = 451 get_sff_channel(ii, SFF_8436_BASE, rxoffs); 452 ss->channel[chan].tx = 453 get_sff_channel(ii, SFF_8436_BASE, txoffs); 454 } 455 ss->bitrate = get_qsfp_bitrate(ii); 456 return (ii->error); 457 } 458 459 int 460 ifconfig_sfp_get_sfp_status(ifconfig_handle_t *h, const char *name, 461 struct ifconfig_sfp_status *ss) 462 { 463 struct i2c_info ii; 464 465 memset(ss, 0, sizeof(*ss)); 466 467 if (i2c_info_init(&ii, h, name) != 0) 468 return (-1); 469 470 if (ifconfig_sfp_id_is_qsfp(ii.id)) 471 return (get_qsfp_status(&ii, ss)); 472 return (get_sfp_status(&ii, ss)); 473 } 474 475 void 476 ifconfig_sfp_free_sfp_status(struct ifconfig_sfp_status *ss) 477 { 478 if (ss != NULL) 479 free(ss->channel); 480 } 481 482 static const char * 483 sfp_id_string_alt(uint8_t value) 484 { 485 const char *id; 486 487 if (value <= SFF_8024_ID_LAST) 488 id = sff_8024_id[value]; 489 else if (value > 0x80) 490 id = "Vendor specific"; 491 else 492 id = "Reserved"; 493 494 return (id); 495 } 496 497 static const char * 498 sfp_conn_string_alt(uint8_t value) 499 { 500 const char *conn; 501 502 if (value >= 0x0D && value <= 0x1F) 503 conn = "Unallocated"; 504 else if (value >= 0x24 && value <= 0x7F) 505 conn = "Unallocated"; 506 else 507 conn = "Vendor specific"; 508 509 return (conn); 510 } 511 512 void 513 ifconfig_sfp_get_sfp_info_strings(const struct ifconfig_sfp_info *sfp, 514 struct ifconfig_sfp_info_strings *strings) 515 { 516 get_sfp_info_strings(sfp, strings); 517 if (strings->sfp_id == NULL) 518 strings->sfp_id = sfp_id_string_alt(sfp->sfp_id); 519 if (strings->sfp_conn == NULL) 520 strings->sfp_conn = sfp_conn_string_alt(sfp->sfp_conn); 521 if (strings->sfp_rev == NULL) 522 strings->sfp_rev = "Unallocated"; 523 } 524 525 const char * 526 ifconfig_sfp_physical_spec(const struct ifconfig_sfp_info *sfp, 527 const struct ifconfig_sfp_info_strings *strings) 528 { 529 switch (sfp->sfp_id) { 530 case SFP_ID_UNKNOWN: 531 break; 532 case SFP_ID_QSFP: 533 case SFP_ID_QSFPPLUS: 534 case SFP_ID_QSFP28: 535 if (sfp->sfp_eth_1040g & SFP_ETH_1040G_EXTENDED) 536 return (strings->sfp_eth_ext); 537 else if (sfp->sfp_eth_1040g) 538 return (strings->sfp_eth_1040g); 539 break; 540 default: 541 if (sfp->sfp_eth_ext) 542 return (strings->sfp_eth_ext); 543 else if (sfp->sfp_eth_10g) 544 return (strings->sfp_eth_10g); 545 else if (sfp->sfp_eth) 546 return (strings->sfp_eth); 547 break; 548 } 549 return ("Unknown"); 550 } 551 552 int 553 ifconfig_sfp_get_sfp_dump(ifconfig_handle_t *h, const char *name, 554 struct ifconfig_sfp_dump *dump) 555 { 556 struct i2c_info ii; 557 uint8_t *buf = dump->data; 558 559 memset(dump->data, 0, sizeof(dump->data)); 560 561 if (i2c_info_init(&ii, h, name) != 0) 562 return (-1); 563 564 if (ifconfig_sfp_id_is_qsfp(ii.id)) { 565 read_i2c(&ii, SFF_8436_BASE, QSFP_DUMP0_START, QSFP_DUMP0_SIZE, 566 buf + QSFP_DUMP0_START); 567 read_i2c(&ii, SFF_8436_BASE, QSFP_DUMP1_START, QSFP_DUMP1_SIZE, 568 buf + QSFP_DUMP1_START); 569 } else { 570 read_i2c(&ii, SFF_8472_BASE, SFP_DUMP_START, SFP_DUMP_SIZE, 571 buf + SFP_DUMP_START); 572 } 573 574 return (ii.error != 0 ? -1 : 0); 575 } 576 577 size_t 578 ifconfig_sfp_dump_region_count(const struct ifconfig_sfp_dump *dp) 579 { 580 uint8_t id_byte = dp->data[0]; 581 582 switch ((enum sfp_id)id_byte) { 583 case SFP_ID_UNKNOWN: 584 return (0); 585 case SFP_ID_QSFP: 586 case SFP_ID_QSFPPLUS: 587 case SFP_ID_QSFP28: 588 return (2); 589 default: 590 return (1); 591 } 592 } 593