1 /*- 2 * Copyright (c) 2014, Alexander V. Chernikov 3 * Copyright (c) 2020, Ryan Moeller <freqlabs@FreeBSD.org> 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/types.h> 28 #include <sys/param.h> 29 #include <sys/ioctl.h> 30 #include <sys/socket.h> 31 32 #include <net/if.h> 33 #include <net/sff8436.h> 34 #include <net/sff8472.h> 35 36 #include <math.h> 37 #include <err.h> 38 #include <errno.h> 39 #include <fcntl.h> 40 #include <stdbool.h> 41 #include <stdio.h> 42 #include <stdlib.h> 43 #include <string.h> 44 #include <unistd.h> 45 46 #include <libifconfig.h> 47 #include <libifconfig_internal.h> 48 #include <libifconfig_sfp.h> 49 #include <libifconfig_sfp_tables_internal.h> 50 51 #define SFF_8636_EXT_COMPLIANCE 0x80 52 53 struct i2c_info { 54 struct ifreq ifr; 55 ifconfig_handle_t *h; 56 int error; /* Store first error */ 57 enum sfp_id id; /* Module type */ 58 }; 59 60 static uint8_t 61 find_zero_bit(const struct sfp_enum_metadata *table, int value, int sz) 62 { 63 int v, m; 64 65 for (v = 1, m = 1 << (8 * sz); v < m; v <<= 1) { 66 if ((value & v) == 0) 67 continue; 68 if (find_metadata(table, value & v) != NULL) { 69 return (value & v); 70 } 71 } 72 return (0); 73 } 74 75 /* 76 * Reads i2c data from opened kernel socket. 77 */ 78 static int 79 read_i2c(struct i2c_info *ii, uint8_t addr, uint8_t off, uint8_t len, 80 uint8_t *buf) 81 { 82 struct ifi2creq req; 83 int i, l; 84 85 if (ii->error != 0) 86 return (ii->error); 87 88 ii->ifr.ifr_data = (caddr_t)&req; 89 90 i = 0; 91 l = 0; 92 memset(&req, 0, sizeof(req)); 93 req.dev_addr = addr; 94 req.offset = off; 95 req.len = len; 96 97 while (len > 0) { 98 l = MIN(sizeof(req.data), len); 99 req.len = l; 100 if (ifconfig_ioctlwrap(ii->h, AF_LOCAL, SIOCGI2C, 101 &ii->ifr) != 0) { 102 ii->error = errno; 103 return (errno); 104 } 105 106 memcpy(&buf[i], req.data, l); 107 len -= l; 108 i += l; 109 req.offset += l; 110 } 111 112 return (0); 113 } 114 115 static int 116 i2c_info_init(struct i2c_info *ii, ifconfig_handle_t *h, const char *name) 117 { 118 uint8_t id_byte; 119 120 memset(ii, 0, sizeof(*ii)); 121 strlcpy(ii->ifr.ifr_name, name, sizeof(ii->ifr.ifr_name)); 122 ii->h = h; 123 124 /* 125 * Try to read byte 0 from i2c: 126 * Both SFF-8472 and SFF-8436 use it as 127 * 'identification byte'. 128 * Stop reading status on zero as value - 129 * this might happen in case of empty transceiver slot. 130 */ 131 id_byte = 0; 132 read_i2c(ii, SFF_8472_BASE, SFF_8472_ID, 1, &id_byte); 133 if (ii->error != 0) 134 return (-1); 135 if (id_byte == 0) { 136 h->error.errtype = OTHER; 137 h->error.errcode = ENOENT; 138 return (-1); 139 } 140 ii->id = id_byte; 141 return (0); 142 } 143 144 static int 145 get_sfp_info(struct i2c_info *ii, struct ifconfig_sfp_info *sfp) 146 { 147 uint8_t code; 148 149 read_i2c(ii, SFF_8472_BASE, SFF_8472_ID, 1, &sfp->sfp_id); 150 read_i2c(ii, SFF_8472_BASE, SFF_8472_CONNECTOR, 1, &sfp->sfp_conn); 151 152 /* Use extended compliance code if it's valid */ 153 read_i2c(ii, SFF_8472_BASE, SFF_8472_TRANS, 1, &sfp->sfp_eth_ext); 154 if (sfp->sfp_eth_ext == 0) { 155 /* Next, check 10G Ethernet/IB CCs */ 156 read_i2c(ii, SFF_8472_BASE, SFF_8472_TRANS_START, 1, &code); 157 sfp->sfp_eth_10g = find_zero_bit(sfp_eth_10g_table, code, 1); 158 if (sfp->sfp_eth_10g == 0) { 159 /* No match. Try Ethernet 1G */ 160 read_i2c(ii, SFF_8472_BASE, SFF_8472_TRANS_START + 3, 161 1, &code); 162 sfp->sfp_eth = find_zero_bit(sfp_eth_table, code, 1); 163 } 164 } 165 166 return (ii->error); 167 } 168 169 static int 170 get_qsfp_info(struct i2c_info *ii, struct ifconfig_sfp_info *sfp) 171 { 172 uint8_t code; 173 174 read_i2c(ii, SFF_8436_BASE, SFF_8436_ID, 1, &sfp->sfp_id); 175 read_i2c(ii, SFF_8436_BASE, SFF_8436_CONNECTOR, 1, &sfp->sfp_conn); 176 177 read_i2c(ii, SFF_8436_BASE, SFF_8436_STATUS, 1, &sfp->sfp_rev); 178 179 /* Check for extended specification compliance */ 180 read_i2c(ii, SFF_8436_BASE, SFF_8436_CODE_E1040100G, 1, &code); 181 if (code & SFF_8636_EXT_COMPLIANCE) { 182 read_i2c(ii, SFF_8436_BASE, SFF_8436_OPTIONS_START, 1, 183 &sfp->sfp_eth_ext); 184 sfp->sfp_eth_1040g = code; 185 } else { 186 /* Check 10/40G Ethernet class only */ 187 sfp->sfp_eth_1040g = 188 find_zero_bit(sfp_eth_1040g_table, code, 1); 189 } 190 191 return (ii->error); 192 } 193 194 int 195 ifconfig_sfp_get_sfp_info(ifconfig_handle_t *h, 196 const char *name, struct ifconfig_sfp_info *sfp) 197 { 198 struct i2c_info ii; 199 char buf[8]; 200 201 memset(sfp, 0, sizeof(*sfp)); 202 203 if (i2c_info_init(&ii, h, name) != 0) 204 return (-1); 205 206 /* Read bytes 3-10 at once */ 207 read_i2c(&ii, SFF_8472_BASE, SFF_8472_TRANS_START, 8, buf); 208 if (ii.error != 0) 209 return (ii.error); 210 211 /* Check 10G ethernet first */ 212 sfp->sfp_eth_10g = find_zero_bit(sfp_eth_10g_table, buf[0], 1); 213 if (sfp->sfp_eth_10g == 0) { 214 /* No match. Try 1G */ 215 sfp->sfp_eth = find_zero_bit(sfp_eth_table, buf[3], 1); 216 } 217 sfp->sfp_fc_len = find_zero_bit(sfp_fc_len_table, buf[4], 1); 218 sfp->sfp_fc_media = find_zero_bit(sfp_fc_media_table, buf[6], 1); 219 sfp->sfp_fc_speed = find_zero_bit(sfp_fc_speed_table, buf[7], 1); 220 sfp->sfp_cab_tech = 221 find_zero_bit(sfp_cab_tech_table, (buf[4] << 8) | buf[5], 2); 222 223 if (ifconfig_sfp_id_is_qsfp(ii.id)) 224 return (get_qsfp_info(&ii, sfp)); 225 return (get_sfp_info(&ii, sfp)); 226 } 227 228 static size_t 229 channel_count(enum sfp_id id) 230 { 231 /* TODO: other ids */ 232 switch (id) { 233 case SFP_ID_UNKNOWN: 234 return (0); 235 case SFP_ID_QSFP: 236 case SFP_ID_QSFPPLUS: 237 case SFP_ID_QSFP28: 238 return (4); 239 default: 240 return (1); 241 } 242 } 243 244 size_t 245 ifconfig_sfp_channel_count(const struct ifconfig_sfp_info *sfp) 246 { 247 return (channel_count(sfp->sfp_id)); 248 } 249 250 /* 251 * Print SFF-8472/SFF-8436 string to supplied buffer. 252 * All (vendor-specific) strings are padded right with '0x20'. 253 */ 254 static void 255 get_sff_string(struct i2c_info *ii, uint8_t addr, uint8_t off, char *dst) 256 { 257 read_i2c(ii, addr, off, SFF_VENDOR_STRING_SIZE, dst); 258 dst += SFF_VENDOR_STRING_SIZE; 259 do { *dst-- = '\0'; } while (*dst == 0x20); 260 } 261 262 static void 263 get_sff_date(struct i2c_info *ii, uint8_t addr, uint8_t off, char *dst) 264 { 265 char buf[SFF_VENDOR_DATE_SIZE]; 266 267 read_i2c(ii, addr, off, SFF_VENDOR_DATE_SIZE, buf); 268 sprintf(dst, "20%c%c-%c%c-%c%c", buf[0], buf[1], buf[2], buf[3], 269 buf[4], buf[5]); 270 } 271 272 static int 273 get_sfp_vendor_info(struct i2c_info *ii, struct ifconfig_sfp_vendor_info *vi) 274 { 275 get_sff_string(ii, SFF_8472_BASE, SFF_8472_VENDOR_START, vi->name); 276 get_sff_string(ii, SFF_8472_BASE, SFF_8472_PN_START, vi->pn); 277 get_sff_string(ii, SFF_8472_BASE, SFF_8472_SN_START, vi->sn); 278 get_sff_date(ii, SFF_8472_BASE, SFF_8472_DATE_START, vi->date); 279 return (ii->error); 280 } 281 282 static int 283 get_qsfp_vendor_info(struct i2c_info *ii, struct ifconfig_sfp_vendor_info *vi) 284 { 285 get_sff_string(ii, SFF_8436_BASE, SFF_8436_VENDOR_START, vi->name); 286 get_sff_string(ii, SFF_8436_BASE, SFF_8436_PN_START, vi->pn); 287 get_sff_string(ii, SFF_8436_BASE, SFF_8436_SN_START, vi->sn); 288 get_sff_date(ii, SFF_8436_BASE, SFF_8436_DATE_START, vi->date); 289 return (ii->error); 290 } 291 292 int 293 ifconfig_sfp_get_sfp_vendor_info(ifconfig_handle_t *h, 294 const char *name, struct ifconfig_sfp_vendor_info *vi) 295 { 296 struct i2c_info ii; 297 298 memset(vi, 0, sizeof(*vi)); 299 300 if (i2c_info_init(&ii, h, name) != 0) 301 return (-1); 302 303 if (ifconfig_sfp_id_is_qsfp(ii.id)) 304 return (get_qsfp_vendor_info(&ii, vi)); 305 return (get_sfp_vendor_info(&ii, vi)); 306 } 307 308 /* 309 * Converts internal temperature (SFF-8472, SFF-8436) 310 * 16-bit unsigned value to human-readable representation: 311 * 312 * Internally measured Module temperature are represented 313 * as a 16-bit signed twos complement value in increments of 314 * 1/256 degrees Celsius, yielding a total range of –128C to +128C 315 * that is considered valid between –40 and +125C. 316 */ 317 static double 318 get_sff_temp(struct i2c_info *ii, uint8_t addr, uint8_t off) 319 { 320 double d; 321 uint8_t buf[2]; 322 323 read_i2c(ii, addr, off, 2, buf); 324 d = (double)buf[0]; 325 d += (double)buf[1] / 256; 326 return (d); 327 } 328 329 /* 330 * Retrieves supplied voltage (SFF-8472, SFF-8436). 331 * 16-bit usigned value, treated as range 0..+6.55 Volts 332 */ 333 static double 334 get_sff_voltage(struct i2c_info *ii, uint8_t addr, uint8_t off) 335 { 336 double d; 337 uint8_t buf[2]; 338 339 read_i2c(ii, addr, off, 2, buf); 340 d = (double)((buf[0] << 8) | buf[1]); 341 return (d / 10000); 342 } 343 344 /* 345 * The following conversions assume internally-calibrated data. 346 * This is always true for SFF-8346, and explicitly checked for SFF-8472. 347 */ 348 349 double 350 power_mW(uint16_t power) 351 { 352 /* Power is specified in units of 0.1 uW. */ 353 return (1.0 * power / 10000); 354 } 355 356 double 357 power_dBm(uint16_t power) 358 { 359 return (10.0 * log10(power_mW(power))); 360 } 361 362 double 363 bias_mA(uint16_t bias) 364 { 365 /* Bias current is specified in units of 2 uA. */ 366 return (1.0 * bias / 500); 367 } 368 369 static uint16_t 370 get_sff_channel(struct i2c_info *ii, uint8_t addr, uint8_t off) 371 { 372 uint8_t buf[2]; 373 374 read_i2c(ii, addr, off, 2, buf); 375 if (ii->error != 0) 376 return (0); 377 378 return ((buf[0] << 8) + buf[1]); 379 } 380 381 static int 382 get_sfp_status(struct i2c_info *ii, struct ifconfig_sfp_status *ss) 383 { 384 uint8_t diag_type, flags; 385 386 /* Read diagnostic monitoring type */ 387 read_i2c(ii, SFF_8472_BASE, SFF_8472_DIAG_TYPE, 1, (caddr_t)&diag_type); 388 if (ii->error != 0) 389 return (-1); 390 391 /* 392 * Read monitoring data IFF it is supplied AND is 393 * internally calibrated 394 */ 395 flags = SFF_8472_DDM_DONE | SFF_8472_DDM_INTERNAL; 396 if ((diag_type & flags) != flags) { 397 ii->h->error.errtype = OTHER; 398 ii->h->error.errcode = ENXIO; 399 return (-1); 400 } 401 402 ss->temp = get_sff_temp(ii, SFF_8472_DIAG, SFF_8472_TEMP); 403 ss->voltage = get_sff_voltage(ii, SFF_8472_DIAG, SFF_8472_VCC); 404 ss->channel = calloc(channel_count(ii->id), sizeof(*ss->channel)); 405 if (ss->channel == NULL) { 406 ii->h->error.errtype = OTHER; 407 ii->h->error.errcode = ENOMEM; 408 return (-1); 409 } 410 ss->channel[0].rx = get_sff_channel(ii, SFF_8472_DIAG, SFF_8472_RX_POWER); 411 ss->channel[0].tx = get_sff_channel(ii, SFF_8472_DIAG, SFF_8472_TX_BIAS); 412 return (ii->error); 413 } 414 415 static uint32_t 416 get_qsfp_bitrate(struct i2c_info *ii) 417 { 418 uint8_t code; 419 uint32_t rate; 420 421 code = 0; 422 read_i2c(ii, SFF_8436_BASE, SFF_8436_BITRATE, 1, &code); 423 rate = code * 100; 424 if (code == 0xFF) { 425 read_i2c(ii, SFF_8436_BASE, SFF_8636_BITRATE, 1, &code); 426 rate = code * 250; 427 } 428 429 return (rate); 430 } 431 432 static int 433 get_qsfp_status(struct i2c_info *ii, struct ifconfig_sfp_status *ss) 434 { 435 size_t channels; 436 437 ss->temp = get_sff_temp(ii, SFF_8436_BASE, SFF_8436_TEMP); 438 ss->voltage = get_sff_voltage(ii, SFF_8436_BASE, SFF_8436_VCC); 439 channels = channel_count(ii->id); 440 ss->channel = calloc(channels, sizeof(*ss->channel)); 441 if (ss->channel == NULL) { 442 ii->h->error.errtype = OTHER; 443 ii->h->error.errcode = ENOMEM; 444 return (-1); 445 } 446 for (size_t chan = 0; chan < channels; ++chan) { 447 uint8_t rxoffs = SFF_8436_RX_CH1_MSB + chan * sizeof(uint16_t); 448 uint8_t txoffs = SFF_8436_TX_CH1_MSB + chan * sizeof(uint16_t); 449 ss->channel[chan].rx = 450 get_sff_channel(ii, SFF_8436_BASE, rxoffs); 451 ss->channel[chan].tx = 452 get_sff_channel(ii, SFF_8436_BASE, txoffs); 453 } 454 ss->bitrate = get_qsfp_bitrate(ii); 455 return (ii->error); 456 } 457 458 int 459 ifconfig_sfp_get_sfp_status(ifconfig_handle_t *h, const char *name, 460 struct ifconfig_sfp_status *ss) 461 { 462 struct i2c_info ii; 463 464 memset(ss, 0, sizeof(*ss)); 465 466 if (i2c_info_init(&ii, h, name) != 0) 467 return (-1); 468 469 if (ifconfig_sfp_id_is_qsfp(ii.id)) 470 return (get_qsfp_status(&ii, ss)); 471 return (get_sfp_status(&ii, ss)); 472 } 473 474 void 475 ifconfig_sfp_free_sfp_status(struct ifconfig_sfp_status *ss) 476 { 477 if (ss != NULL) 478 free(ss->channel); 479 } 480 481 static const char * 482 sfp_id_string_alt(uint8_t value) 483 { 484 const char *id; 485 486 if (value <= SFF_8024_ID_LAST) 487 id = sff_8024_id[value]; 488 else if (value > 0x80) 489 id = "Vendor specific"; 490 else 491 id = "Reserved"; 492 493 return (id); 494 } 495 496 static const char * 497 sfp_conn_string_alt(uint8_t value) 498 { 499 const char *conn; 500 501 if (value >= 0x0D && value <= 0x1F) 502 conn = "Unallocated"; 503 else if (value >= 0x24 && value <= 0x7F) 504 conn = "Unallocated"; 505 else 506 conn = "Vendor specific"; 507 508 return (conn); 509 } 510 511 void 512 ifconfig_sfp_get_sfp_info_strings(const struct ifconfig_sfp_info *sfp, 513 struct ifconfig_sfp_info_strings *strings) 514 { 515 get_sfp_info_strings(sfp, strings); 516 if (strings->sfp_id == NULL) 517 strings->sfp_id = sfp_id_string_alt(sfp->sfp_id); 518 if (strings->sfp_conn == NULL) 519 strings->sfp_conn = sfp_conn_string_alt(sfp->sfp_conn); 520 if (strings->sfp_rev == NULL) 521 strings->sfp_rev = "Unallocated"; 522 } 523 524 const char * 525 ifconfig_sfp_physical_spec(const struct ifconfig_sfp_info *sfp, 526 const struct ifconfig_sfp_info_strings *strings) 527 { 528 switch (sfp->sfp_id) { 529 case SFP_ID_UNKNOWN: 530 break; 531 case SFP_ID_QSFP: 532 case SFP_ID_QSFPPLUS: 533 case SFP_ID_QSFP28: 534 if (sfp->sfp_eth_1040g & SFP_ETH_1040G_EXTENDED) 535 return (strings->sfp_eth_ext); 536 else if (sfp->sfp_eth_1040g) 537 return (strings->sfp_eth_1040g); 538 break; 539 default: 540 if (sfp->sfp_eth_ext) 541 return (strings->sfp_eth_ext); 542 else if (sfp->sfp_eth_10g) 543 return (strings->sfp_eth_10g); 544 else if (sfp->sfp_eth) 545 return (strings->sfp_eth); 546 break; 547 } 548 return ("Unknown"); 549 } 550 551 int 552 ifconfig_sfp_get_sfp_dump(ifconfig_handle_t *h, const char *name, 553 struct ifconfig_sfp_dump *dump) 554 { 555 struct i2c_info ii; 556 uint8_t *buf = dump->data; 557 558 memset(dump->data, 0, sizeof(dump->data)); 559 560 if (i2c_info_init(&ii, h, name) != 0) 561 return (-1); 562 563 if (ifconfig_sfp_id_is_qsfp(ii.id)) { 564 read_i2c(&ii, SFF_8436_BASE, QSFP_DUMP0_START, QSFP_DUMP0_SIZE, 565 buf + QSFP_DUMP0_START); 566 read_i2c(&ii, SFF_8436_BASE, QSFP_DUMP1_START, QSFP_DUMP1_SIZE, 567 buf + QSFP_DUMP1_START); 568 } else { 569 read_i2c(&ii, SFF_8472_BASE, SFP_DUMP_START, SFP_DUMP_SIZE, 570 buf + SFP_DUMP_START); 571 } 572 573 return (ii.error != 0 ? -1 : 0); 574 } 575 576 size_t 577 ifconfig_sfp_dump_region_count(const struct ifconfig_sfp_dump *dp) 578 { 579 uint8_t id_byte = dp->data[0]; 580 581 switch ((enum sfp_id)id_byte) { 582 case SFP_ID_UNKNOWN: 583 return (0); 584 case SFP_ID_QSFP: 585 case SFP_ID_QSFPPLUS: 586 case SFP_ID_QSFP28: 587 return (2); 588 default: 589 return (1); 590 } 591 } 592