1 /*- 2 * Copyright (c) 2014, Alexander V. Chernikov 3 * Copyright (c) 2020, Ryan Moeller <freqlabs@FreeBSD.org> 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/types.h> 28 #include <sys/param.h> 29 #include <sys/ioctl.h> 30 #include <sys/socket.h> 31 32 #include <net/if.h> 33 #include <net/sff8436.h> 34 #include <net/sff8472.h> 35 36 #include <math.h> 37 #include <err.h> 38 #include <errno.h> 39 #include <fcntl.h> 40 #include <stdbool.h> 41 #include <stdio.h> 42 #include <stdlib.h> 43 #include <string.h> 44 #include <unistd.h> 45 46 #include <libifconfig.h> 47 #include <libifconfig_internal.h> 48 #include <libifconfig_sfp.h> 49 #include <libifconfig_sfp_tables_internal.h> 50 51 #define SFF_8636_EXT_COMPLIANCE 0x80 52 53 struct i2c_info { 54 struct ifreq ifr; 55 ifconfig_handle_t *h; 56 int error; /* Store first error */ 57 enum sfp_id id; /* Module type */ 58 }; 59 60 static uint8_t 61 find_zero_bit(const struct sfp_enum_metadata *table, int value, int sz) 62 { 63 int v, m; 64 65 for (v = 1, m = 1 << (8 * sz); v < m; v <<= 1) { 66 if ((value & v) == 0) 67 continue; 68 if (find_metadata(table, value & v) != NULL) { 69 return (value & v); 70 } 71 } 72 return (0); 73 } 74 75 /* 76 * Reads i2c data from opened kernel socket. 77 */ 78 static int 79 read_i2c(struct i2c_info *ii, uint8_t addr, uint8_t off, uint8_t len, 80 uint8_t *buf) 81 { 82 struct ifi2creq req; 83 int i, l; 84 85 if (ii->error != 0) 86 return (ii->error); 87 88 ii->ifr.ifr_data = (caddr_t)&req; 89 90 i = 0; 91 l = 0; 92 memset(&req, 0, sizeof(req)); 93 req.dev_addr = addr; 94 req.offset = off; 95 req.len = len; 96 97 while (len > 0) { 98 l = MIN(sizeof(req.data), len); 99 req.len = l; 100 if (ifconfig_ioctlwrap(ii->h, AF_LOCAL, SIOCGI2C, 101 &ii->ifr) != 0) { 102 ii->error = errno; 103 return (errno); 104 } 105 106 memcpy(&buf[i], req.data, l); 107 len -= l; 108 i += l; 109 req.offset += l; 110 } 111 112 return (0); 113 } 114 115 static int 116 i2c_info_init(struct i2c_info *ii, ifconfig_handle_t *h, const char *name) 117 { 118 uint8_t id_byte; 119 120 memset(ii, 0, sizeof(*ii)); 121 strlcpy(ii->ifr.ifr_name, name, sizeof(ii->ifr.ifr_name)); 122 ii->h = h; 123 124 /* 125 * Try to read byte 0 from i2c: 126 * Both SFF-8472 and SFF-8436 use it as 127 * 'identification byte'. 128 * Stop reading status on zero as value - 129 * this might happen in case of empty transceiver slot. 130 */ 131 id_byte = 0; 132 read_i2c(ii, SFF_8472_BASE, SFF_8472_ID, 1, &id_byte); 133 if (ii->error != 0) 134 return (-1); 135 if (id_byte == 0) { 136 h->error.errtype = OTHER; 137 h->error.errcode = ENOENT; 138 return (-1); 139 } 140 ii->id = id_byte; 141 return (0); 142 } 143 144 static int 145 get_sfp_info(struct i2c_info *ii, struct ifconfig_sfp_info *sfp) 146 { 147 uint8_t code; 148 149 read_i2c(ii, SFF_8472_BASE, SFF_8472_ID, 1, &sfp->sfp_id); 150 read_i2c(ii, SFF_8472_BASE, SFF_8472_CONNECTOR, 1, &sfp->sfp_conn); 151 152 /* Use extended compliance code if it's valid */ 153 read_i2c(ii, SFF_8472_BASE, SFF_8472_TRANS, 1, &sfp->sfp_eth_ext); 154 if (sfp->sfp_eth_ext == 0) { 155 /* Next, check 10G Ethernet/IB CCs */ 156 read_i2c(ii, SFF_8472_BASE, SFF_8472_TRANS_START, 1, &code); 157 sfp->sfp_eth_10g = find_zero_bit(sfp_eth_10g_table, code, 1); 158 if (sfp->sfp_eth_10g == 0) { 159 /* No match. Try Ethernet 1G */ 160 read_i2c(ii, SFF_8472_BASE, SFF_8472_TRANS_START + 3, 161 1, &code); 162 sfp->sfp_eth = find_zero_bit(sfp_eth_table, code, 1); 163 } 164 } 165 166 return (ii->error); 167 } 168 169 static int 170 get_qsfp_info(struct i2c_info *ii, struct ifconfig_sfp_info *sfp) 171 { 172 uint8_t code; 173 174 read_i2c(ii, SFF_8436_BASE, SFF_8436_ID, 1, &sfp->sfp_id); 175 read_i2c(ii, SFF_8436_BASE, SFF_8436_CONNECTOR, 1, &sfp->sfp_conn); 176 177 read_i2c(ii, SFF_8436_BASE, SFF_8436_STATUS, 1, &sfp->sfp_rev); 178 179 /* Check for extended specification compliance */ 180 read_i2c(ii, SFF_8436_BASE, SFF_8436_CODE_E1040100G, 1, &code); 181 if (code & SFF_8636_EXT_COMPLIANCE) { 182 read_i2c(ii, SFF_8436_BASE, SFF_8436_OPTIONS_START, 1, 183 &sfp->sfp_eth_ext); 184 } else { 185 /* Check 10/40G Ethernet class only */ 186 sfp->sfp_eth_1040g = 187 find_zero_bit(sfp_eth_1040g_table, code, 1); 188 } 189 190 return (ii->error); 191 } 192 193 int 194 ifconfig_sfp_get_sfp_info(ifconfig_handle_t *h, 195 const char *name, struct ifconfig_sfp_info *sfp) 196 { 197 struct i2c_info ii; 198 char buf[8]; 199 200 memset(sfp, 0, sizeof(*sfp)); 201 202 if (i2c_info_init(&ii, h, name) != 0) 203 return (-1); 204 205 /* Read bytes 3-10 at once */ 206 read_i2c(&ii, SFF_8472_BASE, SFF_8472_TRANS_START, 8, buf); 207 if (ii.error != 0) 208 return (ii.error); 209 210 /* Check 10G ethernet first */ 211 sfp->sfp_eth_10g = find_zero_bit(sfp_eth_10g_table, buf[0], 1); 212 if (sfp->sfp_eth_10g == 0) { 213 /* No match. Try 1G */ 214 sfp->sfp_eth = find_zero_bit(sfp_eth_table, buf[3], 1); 215 } 216 sfp->sfp_fc_len = find_zero_bit(sfp_fc_len_table, buf[4], 1); 217 sfp->sfp_fc_media = find_zero_bit(sfp_fc_media_table, buf[6], 1); 218 sfp->sfp_fc_speed = find_zero_bit(sfp_fc_speed_table, buf[7], 1); 219 sfp->sfp_cab_tech = 220 find_zero_bit(sfp_cab_tech_table, (buf[4] << 8) | buf[5], 2); 221 222 if (ifconfig_sfp_id_is_qsfp(ii.id)) 223 return (get_qsfp_info(&ii, sfp)); 224 return (get_sfp_info(&ii, sfp)); 225 } 226 227 static size_t 228 channel_count(enum sfp_id id) 229 { 230 /* TODO: other ids */ 231 switch (id) { 232 case SFP_ID_UNKNOWN: 233 return (0); 234 case SFP_ID_QSFP: 235 case SFP_ID_QSFPPLUS: 236 case SFP_ID_QSFP28: 237 return (4); 238 default: 239 return (1); 240 } 241 } 242 243 size_t 244 ifconfig_sfp_channel_count(const struct ifconfig_sfp_info *sfp) 245 { 246 return (channel_count(sfp->sfp_id)); 247 } 248 249 /* 250 * Print SFF-8472/SFF-8436 string to supplied buffer. 251 * All (vendor-specific) strings are padded right with '0x20'. 252 */ 253 static void 254 get_sff_string(struct i2c_info *ii, uint8_t addr, uint8_t off, char *dst) 255 { 256 read_i2c(ii, addr, off, SFF_VENDOR_STRING_SIZE, dst); 257 dst += SFF_VENDOR_STRING_SIZE; 258 do { *dst-- = '\0'; } while (*dst == 0x20); 259 } 260 261 static void 262 get_sff_date(struct i2c_info *ii, uint8_t addr, uint8_t off, char *dst) 263 { 264 char buf[SFF_VENDOR_DATE_SIZE]; 265 266 read_i2c(ii, addr, off, SFF_VENDOR_DATE_SIZE, buf); 267 sprintf(dst, "20%c%c-%c%c-%c%c", buf[0], buf[1], buf[2], buf[3], 268 buf[4], buf[5]); 269 } 270 271 static int 272 get_sfp_vendor_info(struct i2c_info *ii, struct ifconfig_sfp_vendor_info *vi) 273 { 274 get_sff_string(ii, SFF_8472_BASE, SFF_8472_VENDOR_START, vi->name); 275 get_sff_string(ii, SFF_8472_BASE, SFF_8472_PN_START, vi->pn); 276 get_sff_string(ii, SFF_8472_BASE, SFF_8472_SN_START, vi->sn); 277 get_sff_date(ii, SFF_8472_BASE, SFF_8472_DATE_START, vi->date); 278 return (ii->error); 279 } 280 281 static int 282 get_qsfp_vendor_info(struct i2c_info *ii, struct ifconfig_sfp_vendor_info *vi) 283 { 284 get_sff_string(ii, SFF_8436_BASE, SFF_8436_VENDOR_START, vi->name); 285 get_sff_string(ii, SFF_8436_BASE, SFF_8436_PN_START, vi->pn); 286 get_sff_string(ii, SFF_8436_BASE, SFF_8436_SN_START, vi->sn); 287 get_sff_date(ii, SFF_8436_BASE, SFF_8436_DATE_START, vi->date); 288 return (ii->error); 289 } 290 291 int 292 ifconfig_sfp_get_sfp_vendor_info(ifconfig_handle_t *h, 293 const char *name, struct ifconfig_sfp_vendor_info *vi) 294 { 295 struct i2c_info ii; 296 297 memset(vi, 0, sizeof(*vi)); 298 299 if (i2c_info_init(&ii, h, name) != 0) 300 return (-1); 301 302 if (ifconfig_sfp_id_is_qsfp(ii.id)) 303 return (get_qsfp_vendor_info(&ii, vi)); 304 return (get_sfp_vendor_info(&ii, vi)); 305 } 306 307 /* 308 * Converts internal temperature (SFF-8472, SFF-8436) 309 * 16-bit unsigned value to human-readable representation: 310 * 311 * Internally measured Module temperature are represented 312 * as a 16-bit signed twos complement value in increments of 313 * 1/256 degrees Celsius, yielding a total range of –128C to +128C 314 * that is considered valid between –40 and +125C. 315 */ 316 static double 317 get_sff_temp(struct i2c_info *ii, uint8_t addr, uint8_t off) 318 { 319 double d; 320 uint8_t buf[2]; 321 322 read_i2c(ii, addr, off, 2, buf); 323 d = (double)buf[0]; 324 d += (double)buf[1] / 256; 325 return (d); 326 } 327 328 /* 329 * Retrieves supplied voltage (SFF-8472, SFF-8436). 330 * 16-bit usigned value, treated as range 0..+6.55 Volts 331 */ 332 static double 333 get_sff_voltage(struct i2c_info *ii, uint8_t addr, uint8_t off) 334 { 335 double d; 336 uint8_t buf[2]; 337 338 read_i2c(ii, addr, off, 2, buf); 339 d = (double)((buf[0] << 8) | buf[1]); 340 return (d / 10000); 341 } 342 343 /* 344 * The following conversions assume internally-calibrated data. 345 * This is always true for SFF-8346, and explicitly checked for SFF-8472. 346 */ 347 348 double 349 power_mW(uint16_t power) 350 { 351 /* Power is specified in units of 0.1 uW. */ 352 return (1.0 * power / 10000); 353 } 354 355 double 356 power_dBm(uint16_t power) 357 { 358 return (10.0 * log10(power_mW(power))); 359 } 360 361 double 362 bias_mA(uint16_t bias) 363 { 364 /* Bias current is specified in units of 2 uA. */ 365 return (1.0 * bias / 500); 366 } 367 368 static uint16_t 369 get_sff_channel(struct i2c_info *ii, uint8_t addr, uint8_t off) 370 { 371 uint8_t buf[2]; 372 373 read_i2c(ii, addr, off, 2, buf); 374 if (ii->error != 0) 375 return (0); 376 377 return ((buf[0] << 8) + buf[1]); 378 } 379 380 static int 381 get_sfp_status(struct i2c_info *ii, struct ifconfig_sfp_status *ss) 382 { 383 uint8_t diag_type, flags; 384 385 /* Read diagnostic monitoring type */ 386 read_i2c(ii, SFF_8472_BASE, SFF_8472_DIAG_TYPE, 1, (caddr_t)&diag_type); 387 if (ii->error != 0) 388 return (-1); 389 390 /* 391 * Read monitoring data IFF it is supplied AND is 392 * internally calibrated 393 */ 394 flags = SFF_8472_DDM_DONE | SFF_8472_DDM_INTERNAL; 395 if ((diag_type & flags) != flags) { 396 ii->h->error.errtype = OTHER; 397 ii->h->error.errcode = ENXIO; 398 return (-1); 399 } 400 401 ss->temp = get_sff_temp(ii, SFF_8472_DIAG, SFF_8472_TEMP); 402 ss->voltage = get_sff_voltage(ii, SFF_8472_DIAG, SFF_8472_VCC); 403 ss->channel = calloc(channel_count(ii->id), sizeof(*ss->channel)); 404 if (ss->channel == NULL) { 405 ii->h->error.errtype = OTHER; 406 ii->h->error.errcode = ENOMEM; 407 return (-1); 408 } 409 ss->channel[0].rx = get_sff_channel(ii, SFF_8472_DIAG, SFF_8472_RX_POWER); 410 ss->channel[0].tx = get_sff_channel(ii, SFF_8472_DIAG, SFF_8472_TX_BIAS); 411 return (ii->error); 412 } 413 414 static uint32_t 415 get_qsfp_bitrate(struct i2c_info *ii) 416 { 417 uint8_t code; 418 uint32_t rate; 419 420 code = 0; 421 read_i2c(ii, SFF_8436_BASE, SFF_8436_BITRATE, 1, &code); 422 rate = code * 100; 423 if (code == 0xFF) { 424 read_i2c(ii, SFF_8436_BASE, SFF_8636_BITRATE, 1, &code); 425 rate = code * 250; 426 } 427 428 return (rate); 429 } 430 431 static int 432 get_qsfp_status(struct i2c_info *ii, struct ifconfig_sfp_status *ss) 433 { 434 size_t channels; 435 436 ss->temp = get_sff_temp(ii, SFF_8436_BASE, SFF_8436_TEMP); 437 ss->voltage = get_sff_voltage(ii, SFF_8436_BASE, SFF_8436_VCC); 438 channels = channel_count(ii->id); 439 ss->channel = calloc(channels, sizeof(*ss->channel)); 440 if (ss->channel == NULL) { 441 ii->h->error.errtype = OTHER; 442 ii->h->error.errcode = ENOMEM; 443 return (-1); 444 } 445 for (size_t chan = 0; chan < channels; ++chan) { 446 uint8_t rxoffs = SFF_8436_RX_CH1_MSB + chan * sizeof(uint16_t); 447 uint8_t txoffs = SFF_8436_TX_CH1_MSB + chan * sizeof(uint16_t); 448 ss->channel[chan].rx = 449 get_sff_channel(ii, SFF_8436_BASE, rxoffs); 450 ss->channel[chan].tx = 451 get_sff_channel(ii, SFF_8436_BASE, txoffs); 452 } 453 ss->bitrate = get_qsfp_bitrate(ii); 454 return (ii->error); 455 } 456 457 int 458 ifconfig_sfp_get_sfp_status(ifconfig_handle_t *h, const char *name, 459 struct ifconfig_sfp_status *ss) 460 { 461 struct i2c_info ii; 462 463 memset(ss, 0, sizeof(*ss)); 464 465 if (i2c_info_init(&ii, h, name) != 0) 466 return (-1); 467 468 if (ifconfig_sfp_id_is_qsfp(ii.id)) 469 return (get_qsfp_status(&ii, ss)); 470 return (get_sfp_status(&ii, ss)); 471 } 472 473 void 474 ifconfig_sfp_free_sfp_status(struct ifconfig_sfp_status *ss) 475 { 476 if (ss != NULL) 477 free(ss->channel); 478 } 479 480 static const char * 481 sfp_id_string_alt(uint8_t value) 482 { 483 const char *id; 484 485 if (value <= SFF_8024_ID_LAST) 486 id = sff_8024_id[value]; 487 else if (value > 0x80) 488 id = "Vendor specific"; 489 else 490 id = "Reserved"; 491 492 return (id); 493 } 494 495 static const char * 496 sfp_conn_string_alt(uint8_t value) 497 { 498 const char *conn; 499 500 if (value >= 0x0D && value <= 0x1F) 501 conn = "Unallocated"; 502 else if (value >= 0x24 && value <= 0x7F) 503 conn = "Unallocated"; 504 else 505 conn = "Vendor specific"; 506 507 return (conn); 508 } 509 510 void 511 ifconfig_sfp_get_sfp_info_strings(const struct ifconfig_sfp_info *sfp, 512 struct ifconfig_sfp_info_strings *strings) 513 { 514 get_sfp_info_strings(sfp, strings); 515 if (strings->sfp_id == NULL) 516 strings->sfp_id = sfp_id_string_alt(sfp->sfp_id); 517 if (strings->sfp_conn == NULL) 518 strings->sfp_conn = sfp_conn_string_alt(sfp->sfp_conn); 519 if (strings->sfp_rev == NULL) 520 strings->sfp_rev = "Unallocated"; 521 } 522 523 const char * 524 ifconfig_sfp_physical_spec(const struct ifconfig_sfp_info *sfp, 525 const struct ifconfig_sfp_info_strings *strings) 526 { 527 switch (sfp->sfp_id) { 528 case SFP_ID_UNKNOWN: 529 break; 530 case SFP_ID_QSFP: 531 case SFP_ID_QSFPPLUS: 532 case SFP_ID_QSFP28: 533 if (sfp->sfp_eth_1040g & SFP_ETH_1040G_EXTENDED) 534 return (strings->sfp_eth_ext); 535 else if (sfp->sfp_eth_1040g) 536 return (strings->sfp_eth_1040g); 537 break; 538 default: 539 if (sfp->sfp_eth_ext) 540 return (strings->sfp_eth_ext); 541 else if (sfp->sfp_eth_10g) 542 return (strings->sfp_eth_10g); 543 else if (sfp->sfp_eth) 544 return (strings->sfp_eth); 545 break; 546 } 547 return ("Unknown"); 548 } 549 550 int 551 ifconfig_sfp_get_sfp_dump(ifconfig_handle_t *h, const char *name, 552 struct ifconfig_sfp_dump *dump) 553 { 554 struct i2c_info ii; 555 uint8_t *buf = dump->data; 556 557 memset(dump->data, 0, sizeof(dump->data)); 558 559 if (i2c_info_init(&ii, h, name) != 0) 560 return (-1); 561 562 if (ifconfig_sfp_id_is_qsfp(ii.id)) { 563 read_i2c(&ii, SFF_8436_BASE, QSFP_DUMP0_START, QSFP_DUMP0_SIZE, 564 buf + QSFP_DUMP0_START); 565 read_i2c(&ii, SFF_8436_BASE, QSFP_DUMP1_START, QSFP_DUMP1_SIZE, 566 buf + QSFP_DUMP1_START); 567 } else { 568 read_i2c(&ii, SFF_8472_BASE, SFP_DUMP_START, SFP_DUMP_SIZE, 569 buf + SFP_DUMP_START); 570 } 571 572 return (ii.error != 0 ? -1 : 0); 573 } 574 575 size_t 576 ifconfig_sfp_dump_region_count(const struct ifconfig_sfp_dump *dp) 577 { 578 uint8_t id_byte = dp->data[0]; 579 580 switch ((enum sfp_id)id_byte) { 581 case SFP_ID_UNKNOWN: 582 return (0); 583 case SFP_ID_QSFP: 584 case SFP_ID_QSFPPLUS: 585 case SFP_ID_QSFP28: 586 return (2); 587 default: 588 return (1); 589 } 590 } 591