1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1997, 1998 Kenneth D. Merry. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. The name of the author may not be used to endorse or promote products 16 * derived from this software without specific prior written permission. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 28 * SUCH DAMAGE. 29 */ 30 31 #include <sys/cdefs.h> 32 __FBSDID("$FreeBSD$"); 33 34 #include <sys/types.h> 35 #include <sys/sysctl.h> 36 #include <sys/errno.h> 37 #include <sys/resource.h> 38 #include <sys/queue.h> 39 40 #include <ctype.h> 41 #include <err.h> 42 #include <fcntl.h> 43 #include <limits.h> 44 #include <stdio.h> 45 #include <stdlib.h> 46 #include <string.h> 47 #include <stdarg.h> 48 #include <kvm.h> 49 #include <nlist.h> 50 51 #include "devstat.h" 52 53 int 54 compute_stats(struct devstat *current, struct devstat *previous, 55 long double etime, u_int64_t *total_bytes, 56 u_int64_t *total_transfers, u_int64_t *total_blocks, 57 long double *kb_per_transfer, long double *transfers_per_second, 58 long double *mb_per_second, long double *blocks_per_second, 59 long double *ms_per_transaction); 60 61 typedef enum { 62 DEVSTAT_ARG_NOTYPE, 63 DEVSTAT_ARG_UINT64, 64 DEVSTAT_ARG_LD, 65 DEVSTAT_ARG_SKIP 66 } devstat_arg_type; 67 68 char devstat_errbuf[DEVSTAT_ERRBUF_SIZE]; 69 70 /* 71 * Table to match descriptive strings with device types. These are in 72 * order from most common to least common to speed search time. 73 */ 74 struct devstat_match_table match_table[] = { 75 {"da", DEVSTAT_TYPE_DIRECT, DEVSTAT_MATCH_TYPE}, 76 {"cd", DEVSTAT_TYPE_CDROM, DEVSTAT_MATCH_TYPE}, 77 {"scsi", DEVSTAT_TYPE_IF_SCSI, DEVSTAT_MATCH_IF}, 78 {"ide", DEVSTAT_TYPE_IF_IDE, DEVSTAT_MATCH_IF}, 79 {"other", DEVSTAT_TYPE_IF_OTHER, DEVSTAT_MATCH_IF}, 80 {"worm", DEVSTAT_TYPE_WORM, DEVSTAT_MATCH_TYPE}, 81 {"sa", DEVSTAT_TYPE_SEQUENTIAL,DEVSTAT_MATCH_TYPE}, 82 {"pass", DEVSTAT_TYPE_PASS, DEVSTAT_MATCH_PASS}, 83 {"optical", DEVSTAT_TYPE_OPTICAL, DEVSTAT_MATCH_TYPE}, 84 {"array", DEVSTAT_TYPE_STORARRAY, DEVSTAT_MATCH_TYPE}, 85 {"changer", DEVSTAT_TYPE_CHANGER, DEVSTAT_MATCH_TYPE}, 86 {"scanner", DEVSTAT_TYPE_SCANNER, DEVSTAT_MATCH_TYPE}, 87 {"printer", DEVSTAT_TYPE_PRINTER, DEVSTAT_MATCH_TYPE}, 88 {"floppy", DEVSTAT_TYPE_FLOPPY, DEVSTAT_MATCH_TYPE}, 89 {"proc", DEVSTAT_TYPE_PROCESSOR, DEVSTAT_MATCH_TYPE}, 90 {"comm", DEVSTAT_TYPE_COMM, DEVSTAT_MATCH_TYPE}, 91 {"enclosure", DEVSTAT_TYPE_ENCLOSURE, DEVSTAT_MATCH_TYPE}, 92 {NULL, 0, 0} 93 }; 94 95 struct devstat_args { 96 devstat_metric metric; 97 devstat_arg_type argtype; 98 } devstat_arg_list[] = { 99 { DSM_NONE, DEVSTAT_ARG_NOTYPE }, 100 { DSM_TOTAL_BYTES, DEVSTAT_ARG_UINT64 }, 101 { DSM_TOTAL_BYTES_READ, DEVSTAT_ARG_UINT64 }, 102 { DSM_TOTAL_BYTES_WRITE, DEVSTAT_ARG_UINT64 }, 103 { DSM_TOTAL_TRANSFERS, DEVSTAT_ARG_UINT64 }, 104 { DSM_TOTAL_TRANSFERS_READ, DEVSTAT_ARG_UINT64 }, 105 { DSM_TOTAL_TRANSFERS_WRITE, DEVSTAT_ARG_UINT64 }, 106 { DSM_TOTAL_TRANSFERS_OTHER, DEVSTAT_ARG_UINT64 }, 107 { DSM_TOTAL_BLOCKS, DEVSTAT_ARG_UINT64 }, 108 { DSM_TOTAL_BLOCKS_READ, DEVSTAT_ARG_UINT64 }, 109 { DSM_TOTAL_BLOCKS_WRITE, DEVSTAT_ARG_UINT64 }, 110 { DSM_KB_PER_TRANSFER, DEVSTAT_ARG_LD }, 111 { DSM_KB_PER_TRANSFER_READ, DEVSTAT_ARG_LD }, 112 { DSM_KB_PER_TRANSFER_WRITE, DEVSTAT_ARG_LD }, 113 { DSM_TRANSFERS_PER_SECOND, DEVSTAT_ARG_LD }, 114 { DSM_TRANSFERS_PER_SECOND_READ, DEVSTAT_ARG_LD }, 115 { DSM_TRANSFERS_PER_SECOND_WRITE, DEVSTAT_ARG_LD }, 116 { DSM_TRANSFERS_PER_SECOND_OTHER, DEVSTAT_ARG_LD }, 117 { DSM_MB_PER_SECOND, DEVSTAT_ARG_LD }, 118 { DSM_MB_PER_SECOND_READ, DEVSTAT_ARG_LD }, 119 { DSM_MB_PER_SECOND_WRITE, DEVSTAT_ARG_LD }, 120 { DSM_BLOCKS_PER_SECOND, DEVSTAT_ARG_LD }, 121 { DSM_BLOCKS_PER_SECOND_READ, DEVSTAT_ARG_LD }, 122 { DSM_BLOCKS_PER_SECOND_WRITE, DEVSTAT_ARG_LD }, 123 { DSM_MS_PER_TRANSACTION, DEVSTAT_ARG_LD }, 124 { DSM_MS_PER_TRANSACTION_READ, DEVSTAT_ARG_LD }, 125 { DSM_MS_PER_TRANSACTION_WRITE, DEVSTAT_ARG_LD }, 126 { DSM_SKIP, DEVSTAT_ARG_SKIP }, 127 { DSM_TOTAL_BYTES_FREE, DEVSTAT_ARG_UINT64 }, 128 { DSM_TOTAL_TRANSFERS_FREE, DEVSTAT_ARG_UINT64 }, 129 { DSM_TOTAL_BLOCKS_FREE, DEVSTAT_ARG_UINT64 }, 130 { DSM_KB_PER_TRANSFER_FREE, DEVSTAT_ARG_LD }, 131 { DSM_MB_PER_SECOND_FREE, DEVSTAT_ARG_LD }, 132 { DSM_TRANSFERS_PER_SECOND_FREE, DEVSTAT_ARG_LD }, 133 { DSM_BLOCKS_PER_SECOND_FREE, DEVSTAT_ARG_LD }, 134 { DSM_MS_PER_TRANSACTION_OTHER, DEVSTAT_ARG_LD }, 135 { DSM_MS_PER_TRANSACTION_FREE, DEVSTAT_ARG_LD }, 136 { DSM_BUSY_PCT, DEVSTAT_ARG_LD }, 137 { DSM_QUEUE_LENGTH, DEVSTAT_ARG_UINT64 }, 138 { DSM_TOTAL_DURATION, DEVSTAT_ARG_LD }, 139 { DSM_TOTAL_DURATION_READ, DEVSTAT_ARG_LD }, 140 { DSM_TOTAL_DURATION_WRITE, DEVSTAT_ARG_LD }, 141 { DSM_TOTAL_DURATION_FREE, DEVSTAT_ARG_LD }, 142 { DSM_TOTAL_DURATION_OTHER, DEVSTAT_ARG_LD }, 143 { DSM_TOTAL_BUSY_TIME, DEVSTAT_ARG_LD }, 144 }; 145 146 static const char *namelist[] = { 147 #define X_NUMDEVS 0 148 "_devstat_num_devs", 149 #define X_GENERATION 1 150 "_devstat_generation", 151 #define X_VERSION 2 152 "_devstat_version", 153 #define X_DEVICE_STATQ 3 154 "_device_statq", 155 #define X_TIME_UPTIME 4 156 "_time_uptime", 157 #define X_END 5 158 }; 159 160 /* 161 * Local function declarations. 162 */ 163 static int compare_select(const void *arg1, const void *arg2); 164 static int readkmem(kvm_t *kd, unsigned long addr, void *buf, size_t nbytes); 165 static int readkmem_nl(kvm_t *kd, const char *name, void *buf, size_t nbytes); 166 static char *get_devstat_kvm(kvm_t *kd); 167 168 #define KREADNL(kd, var, val) \ 169 readkmem_nl(kd, namelist[var], &val, sizeof(val)) 170 171 int 172 devstat_getnumdevs(kvm_t *kd) 173 { 174 size_t numdevsize; 175 int numdevs; 176 177 numdevsize = sizeof(int); 178 179 /* 180 * Find out how many devices we have in the system. 181 */ 182 if (kd == NULL) { 183 if (sysctlbyname("kern.devstat.numdevs", &numdevs, 184 &numdevsize, NULL, 0) == -1) { 185 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 186 "%s: error getting number of devices\n" 187 "%s: %s", __func__, __func__, 188 strerror(errno)); 189 return(-1); 190 } else 191 return(numdevs); 192 } else { 193 194 if (KREADNL(kd, X_NUMDEVS, numdevs) == -1) 195 return(-1); 196 else 197 return(numdevs); 198 } 199 } 200 201 /* 202 * This is an easy way to get the generation number, but the generation is 203 * supplied in a more atmoic manner by the kern.devstat.all sysctl. 204 * Because this generation sysctl is separate from the statistics sysctl, 205 * the device list and the generation could change between the time that 206 * this function is called and the device list is retrieved. 207 */ 208 long 209 devstat_getgeneration(kvm_t *kd) 210 { 211 size_t gensize; 212 long generation; 213 214 gensize = sizeof(long); 215 216 /* 217 * Get the current generation number. 218 */ 219 if (kd == NULL) { 220 if (sysctlbyname("kern.devstat.generation", &generation, 221 &gensize, NULL, 0) == -1) { 222 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 223 "%s: error getting devstat generation\n%s: %s", 224 __func__, __func__, strerror(errno)); 225 return(-1); 226 } else 227 return(generation); 228 } else { 229 if (KREADNL(kd, X_GENERATION, generation) == -1) 230 return(-1); 231 else 232 return(generation); 233 } 234 } 235 236 /* 237 * Get the current devstat version. The return value of this function 238 * should be compared with DEVSTAT_VERSION, which is defined in 239 * sys/devicestat.h. This will enable userland programs to determine 240 * whether they are out of sync with the kernel. 241 */ 242 int 243 devstat_getversion(kvm_t *kd) 244 { 245 size_t versize; 246 int version; 247 248 versize = sizeof(int); 249 250 /* 251 * Get the current devstat version. 252 */ 253 if (kd == NULL) { 254 if (sysctlbyname("kern.devstat.version", &version, &versize, 255 NULL, 0) == -1) { 256 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 257 "%s: error getting devstat version\n%s: %s", 258 __func__, __func__, strerror(errno)); 259 return(-1); 260 } else 261 return(version); 262 } else { 263 if (KREADNL(kd, X_VERSION, version) == -1) 264 return(-1); 265 else 266 return(version); 267 } 268 } 269 270 /* 271 * Check the devstat version we know about against the devstat version the 272 * kernel knows about. If they don't match, print an error into the 273 * devstat error buffer, and return -1. If they match, return 0. 274 */ 275 int 276 devstat_checkversion(kvm_t *kd) 277 { 278 int buflen, res, retval = 0, version; 279 280 version = devstat_getversion(kd); 281 282 if (version != DEVSTAT_VERSION) { 283 /* 284 * If getversion() returns an error (i.e. -1), then it 285 * has printed an error message in the buffer. Therefore, 286 * we need to add a \n to the end of that message before we 287 * print our own message in the buffer. 288 */ 289 if (version == -1) 290 buflen = strlen(devstat_errbuf); 291 else 292 buflen = 0; 293 294 res = snprintf(devstat_errbuf + buflen, 295 DEVSTAT_ERRBUF_SIZE - buflen, 296 "%s%s: userland devstat version %d is not " 297 "the same as the kernel\n%s: devstat " 298 "version %d\n", version == -1 ? "\n" : "", 299 __func__, DEVSTAT_VERSION, __func__, version); 300 301 if (res < 0) 302 devstat_errbuf[buflen] = '\0'; 303 304 buflen = strlen(devstat_errbuf); 305 if (version < DEVSTAT_VERSION) 306 res = snprintf(devstat_errbuf + buflen, 307 DEVSTAT_ERRBUF_SIZE - buflen, 308 "%s: libdevstat newer than kernel\n", 309 __func__); 310 else 311 res = snprintf(devstat_errbuf + buflen, 312 DEVSTAT_ERRBUF_SIZE - buflen, 313 "%s: kernel newer than libdevstat\n", 314 __func__); 315 316 if (res < 0) 317 devstat_errbuf[buflen] = '\0'; 318 319 retval = -1; 320 } 321 322 return(retval); 323 } 324 325 /* 326 * Get the current list of devices and statistics, and the current 327 * generation number. 328 * 329 * Return values: 330 * -1 -- error 331 * 0 -- device list is unchanged 332 * 1 -- device list has changed 333 */ 334 int 335 devstat_getdevs(kvm_t *kd, struct statinfo *stats) 336 { 337 int error; 338 size_t dssize; 339 long oldgeneration; 340 int retval = 0; 341 struct devinfo *dinfo; 342 struct timespec ts; 343 344 dinfo = stats->dinfo; 345 346 if (dinfo == NULL) { 347 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 348 "%s: stats->dinfo was NULL", __func__); 349 return(-1); 350 } 351 352 oldgeneration = dinfo->generation; 353 354 if (kd == NULL) { 355 clock_gettime(CLOCK_MONOTONIC, &ts); 356 stats->snap_time = ts.tv_sec + ts.tv_nsec * 1e-9; 357 358 /* If this is our first time through, mem_ptr will be null. */ 359 if (dinfo->mem_ptr == NULL) { 360 /* 361 * Get the number of devices. If it's negative, it's an 362 * error. Don't bother setting the error string, since 363 * getnumdevs() has already done that for us. 364 */ 365 if ((dinfo->numdevs = devstat_getnumdevs(kd)) < 0) 366 return(-1); 367 368 /* 369 * The kern.devstat.all sysctl returns the current 370 * generation number, as well as all the devices. 371 * So we need four bytes more. 372 */ 373 dssize = (dinfo->numdevs * sizeof(struct devstat)) + 374 sizeof(long); 375 dinfo->mem_ptr = (u_int8_t *)malloc(dssize); 376 if (dinfo->mem_ptr == NULL) { 377 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 378 "%s: Cannot allocate memory for mem_ptr element", 379 __func__); 380 return(-1); 381 } 382 } else 383 dssize = (dinfo->numdevs * sizeof(struct devstat)) + 384 sizeof(long); 385 386 /* 387 * Request all of the devices. We only really allow for one 388 * ENOMEM failure. It would, of course, be possible to just go 389 * in a loop and keep reallocing the device structure until we 390 * don't get ENOMEM back. I'm not sure it's worth it, though. 391 * If devices are being added to the system that quickly, maybe 392 * the user can just wait until all devices are added. 393 */ 394 for (;;) { 395 error = sysctlbyname("kern.devstat.all", 396 dinfo->mem_ptr, 397 &dssize, NULL, 0); 398 if (error != -1 || errno != EBUSY) 399 break; 400 } 401 if (error == -1) { 402 /* 403 * If we get ENOMEM back, that means that there are 404 * more devices now, so we need to allocate more 405 * space for the device array. 406 */ 407 if (errno == ENOMEM) { 408 /* 409 * No need to set the error string here, 410 * devstat_getnumdevs() will do that if it fails. 411 */ 412 if ((dinfo->numdevs = devstat_getnumdevs(kd)) < 0) 413 return(-1); 414 415 dssize = (dinfo->numdevs * 416 sizeof(struct devstat)) + sizeof(long); 417 dinfo->mem_ptr = (u_int8_t *) 418 realloc(dinfo->mem_ptr, dssize); 419 if ((error = sysctlbyname("kern.devstat.all", 420 dinfo->mem_ptr, &dssize, NULL, 0)) == -1) { 421 snprintf(devstat_errbuf, 422 sizeof(devstat_errbuf), 423 "%s: error getting device " 424 "stats\n%s: %s", __func__, 425 __func__, strerror(errno)); 426 return(-1); 427 } 428 } else { 429 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 430 "%s: error getting device stats\n" 431 "%s: %s", __func__, __func__, 432 strerror(errno)); 433 return(-1); 434 } 435 } 436 437 } else { 438 if (KREADNL(kd, X_TIME_UPTIME, ts.tv_sec) == -1) 439 return(-1); 440 else 441 stats->snap_time = ts.tv_sec; 442 443 /* 444 * This is of course non-atomic, but since we are working 445 * on a core dump, the generation is unlikely to change 446 */ 447 if ((dinfo->numdevs = devstat_getnumdevs(kd)) == -1) 448 return(-1); 449 if ((dinfo->mem_ptr = (u_int8_t *)get_devstat_kvm(kd)) == NULL) 450 return(-1); 451 } 452 /* 453 * The sysctl spits out the generation as the first four bytes, 454 * then all of the device statistics structures. 455 */ 456 dinfo->generation = *(long *)dinfo->mem_ptr; 457 458 /* 459 * If the generation has changed, and if the current number of 460 * devices is not the same as the number of devices recorded in the 461 * devinfo structure, it is likely that the device list has shrunk. 462 * The reason that it is likely that the device list has shrunk in 463 * this case is that if the device list has grown, the sysctl above 464 * will return an ENOMEM error, and we will reset the number of 465 * devices and reallocate the device array. If the second sysctl 466 * fails, we will return an error and therefore never get to this 467 * point. If the device list has shrunk, the sysctl will not 468 * return an error since we have more space allocated than is 469 * necessary. So, in the shrinkage case, we catch it here and 470 * reallocate the array so that we don't use any more space than is 471 * necessary. 472 */ 473 if (oldgeneration != dinfo->generation) { 474 if (devstat_getnumdevs(kd) != dinfo->numdevs) { 475 if ((dinfo->numdevs = devstat_getnumdevs(kd)) < 0) 476 return(-1); 477 dssize = (dinfo->numdevs * sizeof(struct devstat)) + 478 sizeof(long); 479 dinfo->mem_ptr = (u_int8_t *)realloc(dinfo->mem_ptr, 480 dssize); 481 } 482 retval = 1; 483 } 484 485 dinfo->devices = (struct devstat *)(dinfo->mem_ptr + sizeof(long)); 486 487 return(retval); 488 } 489 490 /* 491 * selectdevs(): 492 * 493 * Devices are selected/deselected based upon the following criteria: 494 * - devices specified by the user on the command line 495 * - devices matching any device type expressions given on the command line 496 * - devices with the highest I/O, if 'top' mode is enabled 497 * - the first n unselected devices in the device list, if maxshowdevs 498 * devices haven't already been selected and if the user has not 499 * specified any devices on the command line and if we're in "add" mode. 500 * 501 * Input parameters: 502 * - device selection list (dev_select) 503 * - current number of devices selected (num_selected) 504 * - total number of devices in the selection list (num_selections) 505 * - devstat generation as of the last time selectdevs() was called 506 * (select_generation) 507 * - current devstat generation (current_generation) 508 * - current list of devices and statistics (devices) 509 * - number of devices in the current device list (numdevs) 510 * - compiled version of the command line device type arguments (matches) 511 * - This is optional. If the number of devices is 0, this will be ignored. 512 * - The matching code pays attention to the current selection mode. So 513 * if you pass in a matching expression, it will be evaluated based 514 * upon the selection mode that is passed in. See below for details. 515 * - number of device type matching expressions (num_matches) 516 * - Set to 0 to disable the matching code. 517 * - list of devices specified on the command line by the user (dev_selections) 518 * - number of devices selected on the command line by the user 519 * (num_dev_selections) 520 * - Our selection mode. There are four different selection modes: 521 * - add mode. (DS_SELECT_ADD) Any devices matching devices explicitly 522 * selected by the user or devices matching a pattern given by the 523 * user will be selected in addition to devices that are already 524 * selected. Additional devices will be selected, up to maxshowdevs 525 * number of devices. 526 * - only mode. (DS_SELECT_ONLY) Only devices matching devices 527 * explicitly given by the user or devices matching a pattern 528 * given by the user will be selected. No other devices will be 529 * selected. 530 * - addonly mode. (DS_SELECT_ADDONLY) This is similar to add and 531 * only. Basically, this will not de-select any devices that are 532 * current selected, as only mode would, but it will also not 533 * gratuitously select up to maxshowdevs devices as add mode would. 534 * - remove mode. (DS_SELECT_REMOVE) Any devices matching devices 535 * explicitly selected by the user or devices matching a pattern 536 * given by the user will be de-selected. 537 * - maximum number of devices we can select (maxshowdevs) 538 * - flag indicating whether or not we're in 'top' mode (perf_select) 539 * 540 * Output data: 541 * - the device selection list may be modified and passed back out 542 * - the number of devices selected and the total number of items in the 543 * device selection list may be changed 544 * - the selection generation may be changed to match the current generation 545 * 546 * Return values: 547 * -1 -- error 548 * 0 -- selected devices are unchanged 549 * 1 -- selected devices changed 550 */ 551 int 552 devstat_selectdevs(struct device_selection **dev_select, int *num_selected, 553 int *num_selections, long *select_generation, 554 long current_generation, struct devstat *devices, 555 int numdevs, struct devstat_match *matches, int num_matches, 556 char **dev_selections, int num_dev_selections, 557 devstat_select_mode select_mode, int maxshowdevs, 558 int perf_select) 559 { 560 int i, j, k; 561 int init_selections = 0, init_selected_var = 0; 562 struct device_selection *old_dev_select = NULL; 563 int old_num_selections = 0, old_num_selected; 564 int selection_number = 0; 565 int changed = 0, found = 0; 566 567 if ((dev_select == NULL) || (devices == NULL) || (numdevs < 0)) 568 return(-1); 569 570 /* 571 * We always want to make sure that we have as many dev_select 572 * entries as there are devices. 573 */ 574 /* 575 * In this case, we haven't selected devices before. 576 */ 577 if (*dev_select == NULL) { 578 *dev_select = (struct device_selection *)malloc(numdevs * 579 sizeof(struct device_selection)); 580 *select_generation = current_generation; 581 init_selections = 1; 582 changed = 1; 583 /* 584 * In this case, we have selected devices before, but the device 585 * list has changed since we last selected devices, so we need to 586 * either enlarge or reduce the size of the device selection list. 587 */ 588 } else if (*num_selections != numdevs) { 589 *dev_select = (struct device_selection *)reallocf(*dev_select, 590 numdevs * sizeof(struct device_selection)); 591 *select_generation = current_generation; 592 init_selections = 1; 593 /* 594 * In this case, we've selected devices before, and the selection 595 * list is the same size as it was the last time, but the device 596 * list has changed. 597 */ 598 } else if (*select_generation < current_generation) { 599 *select_generation = current_generation; 600 init_selections = 1; 601 } 602 603 if (*dev_select == NULL) { 604 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 605 "%s: Cannot (re)allocate memory for dev_select argument", 606 __func__); 607 return(-1); 608 } 609 610 /* 611 * If we're in "only" mode, we want to clear out the selected 612 * variable since we're going to select exactly what the user wants 613 * this time through. 614 */ 615 if (select_mode == DS_SELECT_ONLY) 616 init_selected_var = 1; 617 618 /* 619 * In all cases, we want to back up the number of selected devices. 620 * It is a quick and accurate way to determine whether the selected 621 * devices have changed. 622 */ 623 old_num_selected = *num_selected; 624 625 /* 626 * We want to make a backup of the current selection list if 627 * the list of devices has changed, or if we're in performance 628 * selection mode. In both cases, we don't want to make a backup 629 * if we already know for sure that the list will be different. 630 * This is certainly the case if this is our first time through the 631 * selection code. 632 */ 633 if (((init_selected_var != 0) || (init_selections != 0) 634 || (perf_select != 0)) && (changed == 0)){ 635 old_dev_select = (struct device_selection *)malloc( 636 *num_selections * sizeof(struct device_selection)); 637 if (old_dev_select == NULL) { 638 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 639 "%s: Cannot allocate memory for selection list backup", 640 __func__); 641 return(-1); 642 } 643 old_num_selections = *num_selections; 644 bcopy(*dev_select, old_dev_select, 645 sizeof(struct device_selection) * *num_selections); 646 } 647 648 if (init_selections != 0) { 649 bzero(*dev_select, sizeof(struct device_selection) * numdevs); 650 651 for (i = 0; i < numdevs; i++) { 652 (*dev_select)[i].device_number = 653 devices[i].device_number; 654 strncpy((*dev_select)[i].device_name, 655 devices[i].device_name, 656 DEVSTAT_NAME_LEN); 657 (*dev_select)[i].device_name[DEVSTAT_NAME_LEN - 1]='\0'; 658 (*dev_select)[i].unit_number = devices[i].unit_number; 659 (*dev_select)[i].position = i; 660 } 661 *num_selections = numdevs; 662 } else if (init_selected_var != 0) { 663 for (i = 0; i < numdevs; i++) 664 (*dev_select)[i].selected = 0; 665 } 666 667 /* we haven't gotten around to selecting anything yet.. */ 668 if ((select_mode == DS_SELECT_ONLY) || (init_selections != 0) 669 || (init_selected_var != 0)) 670 *num_selected = 0; 671 672 /* 673 * Look through any devices the user specified on the command line 674 * and see if they match known devices. If so, select them. 675 */ 676 for (i = 0; (i < *num_selections) && (num_dev_selections > 0); i++) { 677 char tmpstr[80]; 678 679 snprintf(tmpstr, sizeof(tmpstr), "%s%d", 680 (*dev_select)[i].device_name, 681 (*dev_select)[i].unit_number); 682 for (j = 0; j < num_dev_selections; j++) { 683 if (strcmp(tmpstr, dev_selections[j]) == 0) { 684 /* 685 * Here we do different things based on the 686 * mode we're in. If we're in add or 687 * addonly mode, we only select this device 688 * if it hasn't already been selected. 689 * Otherwise, we would be unnecessarily 690 * changing the selection order and 691 * incrementing the selection count. If 692 * we're in only mode, we unconditionally 693 * select this device, since in only mode 694 * any previous selections are erased and 695 * manually specified devices are the first 696 * ones to be selected. If we're in remove 697 * mode, we de-select the specified device and 698 * decrement the selection count. 699 */ 700 switch(select_mode) { 701 case DS_SELECT_ADD: 702 case DS_SELECT_ADDONLY: 703 if ((*dev_select)[i].selected) 704 break; 705 /* FALLTHROUGH */ 706 case DS_SELECT_ONLY: 707 (*dev_select)[i].selected = 708 ++selection_number; 709 (*num_selected)++; 710 break; 711 case DS_SELECT_REMOVE: 712 (*dev_select)[i].selected = 0; 713 (*num_selected)--; 714 /* 715 * This isn't passed back out, we 716 * just use it to keep track of 717 * how many devices we've removed. 718 */ 719 num_dev_selections--; 720 break; 721 } 722 break; 723 } 724 } 725 } 726 727 /* 728 * Go through the user's device type expressions and select devices 729 * accordingly. We only do this if the number of devices already 730 * selected is less than the maximum number we can show. 731 */ 732 for (i = 0; (i < num_matches) && (*num_selected < maxshowdevs); i++) { 733 /* We should probably indicate some error here */ 734 if ((matches[i].match_fields == DEVSTAT_MATCH_NONE) 735 || (matches[i].num_match_categories <= 0)) 736 continue; 737 738 for (j = 0; j < numdevs; j++) { 739 int num_match_categories; 740 741 num_match_categories = matches[i].num_match_categories; 742 743 /* 744 * Determine whether or not the current device 745 * matches the given matching expression. This if 746 * statement consists of three components: 747 * - the device type check 748 * - the device interface check 749 * - the passthrough check 750 * If a the matching test is successful, it 751 * decrements the number of matching categories, 752 * and if we've reached the last element that 753 * needed to be matched, the if statement succeeds. 754 * 755 */ 756 if ((((matches[i].match_fields & DEVSTAT_MATCH_TYPE)!=0) 757 && ((devices[j].device_type & DEVSTAT_TYPE_MASK) == 758 (matches[i].device_type & DEVSTAT_TYPE_MASK)) 759 &&(((matches[i].match_fields & DEVSTAT_MATCH_PASS)!=0) 760 || (((matches[i].match_fields & 761 DEVSTAT_MATCH_PASS) == 0) 762 && ((devices[j].device_type & 763 DEVSTAT_TYPE_PASS) == 0))) 764 && (--num_match_categories == 0)) 765 || (((matches[i].match_fields & DEVSTAT_MATCH_IF) != 0) 766 && ((devices[j].device_type & DEVSTAT_TYPE_IF_MASK) == 767 (matches[i].device_type & DEVSTAT_TYPE_IF_MASK)) 768 &&(((matches[i].match_fields & DEVSTAT_MATCH_PASS)!=0) 769 || (((matches[i].match_fields & 770 DEVSTAT_MATCH_PASS) == 0) 771 && ((devices[j].device_type & 772 DEVSTAT_TYPE_PASS) == 0))) 773 && (--num_match_categories == 0)) 774 || (((matches[i].match_fields & DEVSTAT_MATCH_PASS)!=0) 775 && ((devices[j].device_type & DEVSTAT_TYPE_PASS) != 0) 776 && (--num_match_categories == 0))) { 777 778 /* 779 * This is probably a non-optimal solution 780 * to the problem that the devices in the 781 * device list will not be in the same 782 * order as the devices in the selection 783 * array. 784 */ 785 for (k = 0; k < numdevs; k++) { 786 if ((*dev_select)[k].position == j) { 787 found = 1; 788 break; 789 } 790 } 791 792 /* 793 * There shouldn't be a case where a device 794 * in the device list is not in the 795 * selection list...but it could happen. 796 */ 797 if (found != 1) { 798 fprintf(stderr, "selectdevs: couldn't" 799 " find %s%d in selection " 800 "list\n", 801 devices[j].device_name, 802 devices[j].unit_number); 803 break; 804 } 805 806 /* 807 * We do different things based upon the 808 * mode we're in. If we're in add or only 809 * mode, we go ahead and select this device 810 * if it hasn't already been selected. If 811 * it has already been selected, we leave 812 * it alone so we don't mess up the 813 * selection ordering. Manually specified 814 * devices have already been selected, and 815 * they have higher priority than pattern 816 * matched devices. If we're in remove 817 * mode, we de-select the given device and 818 * decrement the selected count. 819 */ 820 switch(select_mode) { 821 case DS_SELECT_ADD: 822 case DS_SELECT_ADDONLY: 823 case DS_SELECT_ONLY: 824 if ((*dev_select)[k].selected != 0) 825 break; 826 (*dev_select)[k].selected = 827 ++selection_number; 828 (*num_selected)++; 829 break; 830 case DS_SELECT_REMOVE: 831 (*dev_select)[k].selected = 0; 832 (*num_selected)--; 833 break; 834 } 835 } 836 } 837 } 838 839 /* 840 * Here we implement "top" mode. Devices are sorted in the 841 * selection array based on two criteria: whether or not they are 842 * selected (not selection number, just the fact that they are 843 * selected!) and the number of bytes in the "bytes" field of the 844 * selection structure. The bytes field generally must be kept up 845 * by the user. In the future, it may be maintained by library 846 * functions, but for now the user has to do the work. 847 * 848 * At first glance, it may seem wrong that we don't go through and 849 * select every device in the case where the user hasn't specified 850 * any devices or patterns. In fact, though, it won't make any 851 * difference in the device sorting. In that particular case (i.e. 852 * when we're in "add" or "only" mode, and the user hasn't 853 * specified anything) the first time through no devices will be 854 * selected, so the only criterion used to sort them will be their 855 * performance. The second time through, and every time thereafter, 856 * all devices will be selected, so again selection won't matter. 857 */ 858 if (perf_select != 0) { 859 860 /* Sort the device array by throughput */ 861 qsort(*dev_select, *num_selections, 862 sizeof(struct device_selection), 863 compare_select); 864 865 if (*num_selected == 0) { 866 /* 867 * Here we select every device in the array, if it 868 * isn't already selected. Because the 'selected' 869 * variable in the selection array entries contains 870 * the selection order, the devstats routine can show 871 * the devices that were selected first. 872 */ 873 for (i = 0; i < *num_selections; i++) { 874 if ((*dev_select)[i].selected == 0) { 875 (*dev_select)[i].selected = 876 ++selection_number; 877 (*num_selected)++; 878 } 879 } 880 } else { 881 selection_number = 0; 882 for (i = 0; i < *num_selections; i++) { 883 if ((*dev_select)[i].selected != 0) { 884 (*dev_select)[i].selected = 885 ++selection_number; 886 } 887 } 888 } 889 } 890 891 /* 892 * If we're in the "add" selection mode and if we haven't already 893 * selected maxshowdevs number of devices, go through the array and 894 * select any unselected devices. If we're in "only" mode, we 895 * obviously don't want to select anything other than what the user 896 * specifies. If we're in "remove" mode, it probably isn't a good 897 * idea to go through and select any more devices, since we might 898 * end up selecting something that the user wants removed. Through 899 * more complicated logic, we could actually figure this out, but 900 * that would probably require combining this loop with the various 901 * selections loops above. 902 */ 903 if ((select_mode == DS_SELECT_ADD) && (*num_selected < maxshowdevs)) { 904 for (i = 0; i < *num_selections; i++) 905 if ((*dev_select)[i].selected == 0) { 906 (*dev_select)[i].selected = ++selection_number; 907 (*num_selected)++; 908 } 909 } 910 911 /* 912 * Look at the number of devices that have been selected. If it 913 * has changed, set the changed variable. Otherwise, if we've 914 * made a backup of the selection list, compare it to the current 915 * selection list to see if the selected devices have changed. 916 */ 917 if ((changed == 0) && (old_num_selected != *num_selected)) 918 changed = 1; 919 else if ((changed == 0) && (old_dev_select != NULL)) { 920 /* 921 * Now we go through the selection list and we look at 922 * it three different ways. 923 */ 924 for (i = 0; (i < *num_selections) && (changed == 0) && 925 (i < old_num_selections); i++) { 926 /* 927 * If the device at index i in both the new and old 928 * selection arrays has the same device number and 929 * selection status, it hasn't changed. We 930 * continue on to the next index. 931 */ 932 if (((*dev_select)[i].device_number == 933 old_dev_select[i].device_number) 934 && ((*dev_select)[i].selected == 935 old_dev_select[i].selected)) 936 continue; 937 938 /* 939 * Now, if we're still going through the if 940 * statement, the above test wasn't true. So we 941 * check here to see if the device at index i in 942 * the current array is the same as the device at 943 * index i in the old array. If it is, that means 944 * that its selection number has changed. Set 945 * changed to 1 and exit the loop. 946 */ 947 else if ((*dev_select)[i].device_number == 948 old_dev_select[i].device_number) { 949 changed = 1; 950 break; 951 } 952 /* 953 * If we get here, then the device at index i in 954 * the current array isn't the same device as the 955 * device at index i in the old array. 956 */ 957 else { 958 found = 0; 959 960 /* 961 * Search through the old selection array 962 * looking for a device with the same 963 * device number as the device at index i 964 * in the current array. If the selection 965 * status is the same, then we mark it as 966 * found. If the selection status isn't 967 * the same, we break out of the loop. 968 * Since found isn't set, changed will be 969 * set to 1 below. 970 */ 971 for (j = 0; j < old_num_selections; j++) { 972 if (((*dev_select)[i].device_number == 973 old_dev_select[j].device_number) 974 && ((*dev_select)[i].selected == 975 old_dev_select[j].selected)){ 976 found = 1; 977 break; 978 } 979 else if ((*dev_select)[i].device_number 980 == old_dev_select[j].device_number) 981 break; 982 } 983 if (found == 0) 984 changed = 1; 985 } 986 } 987 } 988 if (old_dev_select != NULL) 989 free(old_dev_select); 990 991 return(changed); 992 } 993 994 /* 995 * Comparison routine for qsort() above. Note that the comparison here is 996 * backwards -- generally, it should return a value to indicate whether 997 * arg1 is <, =, or > arg2. Instead, it returns the opposite. The reason 998 * it returns the opposite is so that the selection array will be sorted in 999 * order of decreasing performance. We sort on two parameters. The first 1000 * sort key is whether or not one or the other of the devices in question 1001 * has been selected. If one of them has, and the other one has not, the 1002 * selected device is automatically more important than the unselected 1003 * device. If neither device is selected, we judge the devices based upon 1004 * performance. 1005 */ 1006 static int 1007 compare_select(const void *arg1, const void *arg2) 1008 { 1009 if ((((const struct device_selection *)arg1)->selected) 1010 && (((const struct device_selection *)arg2)->selected == 0)) 1011 return(-1); 1012 else if ((((const struct device_selection *)arg1)->selected == 0) 1013 && (((const struct device_selection *)arg2)->selected)) 1014 return(1); 1015 else if (((const struct device_selection *)arg2)->bytes < 1016 ((const struct device_selection *)arg1)->bytes) 1017 return(-1); 1018 else if (((const struct device_selection *)arg2)->bytes > 1019 ((const struct device_selection *)arg1)->bytes) 1020 return(1); 1021 else 1022 return(0); 1023 } 1024 1025 /* 1026 * Take a string with the general format "arg1,arg2,arg3", and build a 1027 * device matching expression from it. 1028 */ 1029 int 1030 devstat_buildmatch(char *match_str, struct devstat_match **matches, 1031 int *num_matches) 1032 { 1033 char *tstr[5]; 1034 char **tempstr; 1035 int num_args; 1036 int i, j; 1037 1038 /* We can't do much without a string to parse */ 1039 if (match_str == NULL) { 1040 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 1041 "%s: no match expression", __func__); 1042 return(-1); 1043 } 1044 1045 /* 1046 * Break the (comma delimited) input string out into separate strings. 1047 */ 1048 for (tempstr = tstr, num_args = 0; 1049 (*tempstr = strsep(&match_str, ",")) != NULL && (num_args < 5);) 1050 if (**tempstr != '\0') { 1051 num_args++; 1052 if (++tempstr >= &tstr[5]) 1053 break; 1054 } 1055 1056 /* The user gave us too many type arguments */ 1057 if (num_args > 3) { 1058 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 1059 "%s: too many type arguments", __func__); 1060 return(-1); 1061 } 1062 1063 if (*num_matches == 0) 1064 *matches = NULL; 1065 1066 *matches = (struct devstat_match *)reallocf(*matches, 1067 sizeof(struct devstat_match) * (*num_matches + 1)); 1068 1069 if (*matches == NULL) { 1070 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 1071 "%s: Cannot allocate memory for matches list", __func__); 1072 return(-1); 1073 } 1074 1075 /* Make sure the current entry is clear */ 1076 bzero(&matches[0][*num_matches], sizeof(struct devstat_match)); 1077 1078 /* 1079 * Step through the arguments the user gave us and build a device 1080 * matching expression from them. 1081 */ 1082 for (i = 0; i < num_args; i++) { 1083 char *tempstr2, *tempstr3; 1084 1085 /* 1086 * Get rid of leading white space. 1087 */ 1088 tempstr2 = tstr[i]; 1089 while (isspace(*tempstr2) && (*tempstr2 != '\0')) 1090 tempstr2++; 1091 1092 /* 1093 * Get rid of trailing white space. 1094 */ 1095 tempstr3 = &tempstr2[strlen(tempstr2) - 1]; 1096 1097 while ((*tempstr3 != '\0') && (tempstr3 > tempstr2) 1098 && (isspace(*tempstr3))) { 1099 *tempstr3 = '\0'; 1100 tempstr3--; 1101 } 1102 1103 /* 1104 * Go through the match table comparing the user's 1105 * arguments to known device types, interfaces, etc. 1106 */ 1107 for (j = 0; match_table[j].match_str != NULL; j++) { 1108 /* 1109 * We do case-insensitive matching, in case someone 1110 * wants to enter "SCSI" instead of "scsi" or 1111 * something like that. Only compare as many 1112 * characters as are in the string in the match 1113 * table. This should help if someone tries to use 1114 * a super-long match expression. 1115 */ 1116 if (strncasecmp(tempstr2, match_table[j].match_str, 1117 strlen(match_table[j].match_str)) == 0) { 1118 /* 1119 * Make sure the user hasn't specified two 1120 * items of the same type, like "da" and 1121 * "cd". One device cannot be both. 1122 */ 1123 if (((*matches)[*num_matches].match_fields & 1124 match_table[j].match_field) != 0) { 1125 snprintf(devstat_errbuf, 1126 sizeof(devstat_errbuf), 1127 "%s: cannot have more than " 1128 "one match item in a single " 1129 "category", __func__); 1130 return(-1); 1131 } 1132 /* 1133 * If we've gotten this far, we have a 1134 * winner. Set the appropriate fields in 1135 * the match entry. 1136 */ 1137 (*matches)[*num_matches].match_fields |= 1138 match_table[j].match_field; 1139 (*matches)[*num_matches].device_type |= 1140 match_table[j].type; 1141 (*matches)[*num_matches].num_match_categories++; 1142 break; 1143 } 1144 } 1145 /* 1146 * We should have found a match in the above for loop. If 1147 * not, that means the user entered an invalid device type 1148 * or interface. 1149 */ 1150 if ((*matches)[*num_matches].num_match_categories != (i + 1)) { 1151 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 1152 "%s: unknown match item \"%s\"", __func__, 1153 tstr[i]); 1154 return(-1); 1155 } 1156 } 1157 1158 (*num_matches)++; 1159 1160 return(0); 1161 } 1162 1163 /* 1164 * Compute a number of device statistics. Only one field is mandatory, and 1165 * that is "current". Everything else is optional. The caller passes in 1166 * pointers to variables to hold the various statistics he desires. If he 1167 * doesn't want a particular staistic, he should pass in a NULL pointer. 1168 * Return values: 1169 * 0 -- success 1170 * -1 -- failure 1171 */ 1172 int 1173 compute_stats(struct devstat *current, struct devstat *previous, 1174 long double etime, u_int64_t *total_bytes, 1175 u_int64_t *total_transfers, u_int64_t *total_blocks, 1176 long double *kb_per_transfer, long double *transfers_per_second, 1177 long double *mb_per_second, long double *blocks_per_second, 1178 long double *ms_per_transaction) 1179 { 1180 return(devstat_compute_statistics(current, previous, etime, 1181 total_bytes ? DSM_TOTAL_BYTES : DSM_SKIP, 1182 total_bytes, 1183 total_transfers ? DSM_TOTAL_TRANSFERS : DSM_SKIP, 1184 total_transfers, 1185 total_blocks ? DSM_TOTAL_BLOCKS : DSM_SKIP, 1186 total_blocks, 1187 kb_per_transfer ? DSM_KB_PER_TRANSFER : DSM_SKIP, 1188 kb_per_transfer, 1189 transfers_per_second ? DSM_TRANSFERS_PER_SECOND : DSM_SKIP, 1190 transfers_per_second, 1191 mb_per_second ? DSM_MB_PER_SECOND : DSM_SKIP, 1192 mb_per_second, 1193 blocks_per_second ? DSM_BLOCKS_PER_SECOND : DSM_SKIP, 1194 blocks_per_second, 1195 ms_per_transaction ? DSM_MS_PER_TRANSACTION : DSM_SKIP, 1196 ms_per_transaction, 1197 DSM_NONE)); 1198 } 1199 1200 1201 /* This is 1/2^64 */ 1202 #define BINTIME_SCALE 5.42101086242752217003726400434970855712890625e-20 1203 1204 long double 1205 devstat_compute_etime(struct bintime *cur_time, struct bintime *prev_time) 1206 { 1207 long double etime; 1208 1209 etime = cur_time->sec; 1210 etime += cur_time->frac * BINTIME_SCALE; 1211 if (prev_time != NULL) { 1212 etime -= prev_time->sec; 1213 etime -= prev_time->frac * BINTIME_SCALE; 1214 } 1215 return(etime); 1216 } 1217 1218 #define DELTA(field, index) \ 1219 (current->field[(index)] - (previous ? previous->field[(index)] : 0)) 1220 1221 #define DELTA_T(field) \ 1222 devstat_compute_etime(¤t->field, \ 1223 (previous ? &previous->field : NULL)) 1224 1225 int 1226 devstat_compute_statistics(struct devstat *current, struct devstat *previous, 1227 long double etime, ...) 1228 { 1229 u_int64_t totalbytes, totalbytesread, totalbyteswrite, totalbytesfree; 1230 u_int64_t totaltransfers, totaltransfersread, totaltransferswrite; 1231 u_int64_t totaltransfersother, totalblocks, totalblocksread; 1232 u_int64_t totalblockswrite, totaltransfersfree, totalblocksfree; 1233 long double totalduration, totaldurationread, totaldurationwrite; 1234 long double totaldurationfree, totaldurationother; 1235 va_list ap; 1236 devstat_metric metric; 1237 u_int64_t *destu64; 1238 long double *destld; 1239 int retval; 1240 1241 retval = 0; 1242 1243 /* 1244 * current is the only mandatory field. 1245 */ 1246 if (current == NULL) { 1247 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 1248 "%s: current stats structure was NULL", __func__); 1249 return(-1); 1250 } 1251 1252 totalbytesread = DELTA(bytes, DEVSTAT_READ); 1253 totalbyteswrite = DELTA(bytes, DEVSTAT_WRITE); 1254 totalbytesfree = DELTA(bytes, DEVSTAT_FREE); 1255 totalbytes = totalbytesread + totalbyteswrite + totalbytesfree; 1256 1257 totaltransfersread = DELTA(operations, DEVSTAT_READ); 1258 totaltransferswrite = DELTA(operations, DEVSTAT_WRITE); 1259 totaltransfersother = DELTA(operations, DEVSTAT_NO_DATA); 1260 totaltransfersfree = DELTA(operations, DEVSTAT_FREE); 1261 totaltransfers = totaltransfersread + totaltransferswrite + 1262 totaltransfersother + totaltransfersfree; 1263 1264 totalblocks = totalbytes; 1265 totalblocksread = totalbytesread; 1266 totalblockswrite = totalbyteswrite; 1267 totalblocksfree = totalbytesfree; 1268 1269 if (current->block_size > 0) { 1270 totalblocks /= current->block_size; 1271 totalblocksread /= current->block_size; 1272 totalblockswrite /= current->block_size; 1273 totalblocksfree /= current->block_size; 1274 } else { 1275 totalblocks /= 512; 1276 totalblocksread /= 512; 1277 totalblockswrite /= 512; 1278 totalblocksfree /= 512; 1279 } 1280 1281 totaldurationread = DELTA_T(duration[DEVSTAT_READ]); 1282 totaldurationwrite = DELTA_T(duration[DEVSTAT_WRITE]); 1283 totaldurationfree = DELTA_T(duration[DEVSTAT_FREE]); 1284 totaldurationother = DELTA_T(duration[DEVSTAT_NO_DATA]); 1285 totalduration = totaldurationread + totaldurationwrite + 1286 totaldurationfree + totaldurationother; 1287 1288 va_start(ap, etime); 1289 1290 while ((metric = (devstat_metric)va_arg(ap, devstat_metric)) != 0) { 1291 1292 if (metric == DSM_NONE) 1293 break; 1294 1295 if (metric >= DSM_MAX) { 1296 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 1297 "%s: metric %d is out of range", __func__, 1298 metric); 1299 retval = -1; 1300 goto bailout; 1301 } 1302 1303 switch (devstat_arg_list[metric].argtype) { 1304 case DEVSTAT_ARG_UINT64: 1305 destu64 = (u_int64_t *)va_arg(ap, u_int64_t *); 1306 break; 1307 case DEVSTAT_ARG_LD: 1308 destld = (long double *)va_arg(ap, long double *); 1309 break; 1310 case DEVSTAT_ARG_SKIP: 1311 destld = (long double *)va_arg(ap, long double *); 1312 break; 1313 default: 1314 retval = -1; 1315 goto bailout; 1316 break; /* NOTREACHED */ 1317 } 1318 1319 if (devstat_arg_list[metric].argtype == DEVSTAT_ARG_SKIP) 1320 continue; 1321 1322 switch (metric) { 1323 case DSM_TOTAL_BYTES: 1324 *destu64 = totalbytes; 1325 break; 1326 case DSM_TOTAL_BYTES_READ: 1327 *destu64 = totalbytesread; 1328 break; 1329 case DSM_TOTAL_BYTES_WRITE: 1330 *destu64 = totalbyteswrite; 1331 break; 1332 case DSM_TOTAL_BYTES_FREE: 1333 *destu64 = totalbytesfree; 1334 break; 1335 case DSM_TOTAL_TRANSFERS: 1336 *destu64 = totaltransfers; 1337 break; 1338 case DSM_TOTAL_TRANSFERS_READ: 1339 *destu64 = totaltransfersread; 1340 break; 1341 case DSM_TOTAL_TRANSFERS_WRITE: 1342 *destu64 = totaltransferswrite; 1343 break; 1344 case DSM_TOTAL_TRANSFERS_FREE: 1345 *destu64 = totaltransfersfree; 1346 break; 1347 case DSM_TOTAL_TRANSFERS_OTHER: 1348 *destu64 = totaltransfersother; 1349 break; 1350 case DSM_TOTAL_BLOCKS: 1351 *destu64 = totalblocks; 1352 break; 1353 case DSM_TOTAL_BLOCKS_READ: 1354 *destu64 = totalblocksread; 1355 break; 1356 case DSM_TOTAL_BLOCKS_WRITE: 1357 *destu64 = totalblockswrite; 1358 break; 1359 case DSM_TOTAL_BLOCKS_FREE: 1360 *destu64 = totalblocksfree; 1361 break; 1362 case DSM_KB_PER_TRANSFER: 1363 *destld = totalbytes; 1364 *destld /= 1024; 1365 if (totaltransfers > 0) 1366 *destld /= totaltransfers; 1367 else 1368 *destld = 0.0; 1369 break; 1370 case DSM_KB_PER_TRANSFER_READ: 1371 *destld = totalbytesread; 1372 *destld /= 1024; 1373 if (totaltransfersread > 0) 1374 *destld /= totaltransfersread; 1375 else 1376 *destld = 0.0; 1377 break; 1378 case DSM_KB_PER_TRANSFER_WRITE: 1379 *destld = totalbyteswrite; 1380 *destld /= 1024; 1381 if (totaltransferswrite > 0) 1382 *destld /= totaltransferswrite; 1383 else 1384 *destld = 0.0; 1385 break; 1386 case DSM_KB_PER_TRANSFER_FREE: 1387 *destld = totalbytesfree; 1388 *destld /= 1024; 1389 if (totaltransfersfree > 0) 1390 *destld /= totaltransfersfree; 1391 else 1392 *destld = 0.0; 1393 break; 1394 case DSM_TRANSFERS_PER_SECOND: 1395 if (etime > 0.0) { 1396 *destld = totaltransfers; 1397 *destld /= etime; 1398 } else 1399 *destld = 0.0; 1400 break; 1401 case DSM_TRANSFERS_PER_SECOND_READ: 1402 if (etime > 0.0) { 1403 *destld = totaltransfersread; 1404 *destld /= etime; 1405 } else 1406 *destld = 0.0; 1407 break; 1408 case DSM_TRANSFERS_PER_SECOND_WRITE: 1409 if (etime > 0.0) { 1410 *destld = totaltransferswrite; 1411 *destld /= etime; 1412 } else 1413 *destld = 0.0; 1414 break; 1415 case DSM_TRANSFERS_PER_SECOND_FREE: 1416 if (etime > 0.0) { 1417 *destld = totaltransfersfree; 1418 *destld /= etime; 1419 } else 1420 *destld = 0.0; 1421 break; 1422 case DSM_TRANSFERS_PER_SECOND_OTHER: 1423 if (etime > 0.0) { 1424 *destld = totaltransfersother; 1425 *destld /= etime; 1426 } else 1427 *destld = 0.0; 1428 break; 1429 case DSM_MB_PER_SECOND: 1430 *destld = totalbytes; 1431 *destld /= 1024 * 1024; 1432 if (etime > 0.0) 1433 *destld /= etime; 1434 else 1435 *destld = 0.0; 1436 break; 1437 case DSM_MB_PER_SECOND_READ: 1438 *destld = totalbytesread; 1439 *destld /= 1024 * 1024; 1440 if (etime > 0.0) 1441 *destld /= etime; 1442 else 1443 *destld = 0.0; 1444 break; 1445 case DSM_MB_PER_SECOND_WRITE: 1446 *destld = totalbyteswrite; 1447 *destld /= 1024 * 1024; 1448 if (etime > 0.0) 1449 *destld /= etime; 1450 else 1451 *destld = 0.0; 1452 break; 1453 case DSM_MB_PER_SECOND_FREE: 1454 *destld = totalbytesfree; 1455 *destld /= 1024 * 1024; 1456 if (etime > 0.0) 1457 *destld /= etime; 1458 else 1459 *destld = 0.0; 1460 break; 1461 case DSM_BLOCKS_PER_SECOND: 1462 *destld = totalblocks; 1463 if (etime > 0.0) 1464 *destld /= etime; 1465 else 1466 *destld = 0.0; 1467 break; 1468 case DSM_BLOCKS_PER_SECOND_READ: 1469 *destld = totalblocksread; 1470 if (etime > 0.0) 1471 *destld /= etime; 1472 else 1473 *destld = 0.0; 1474 break; 1475 case DSM_BLOCKS_PER_SECOND_WRITE: 1476 *destld = totalblockswrite; 1477 if (etime > 0.0) 1478 *destld /= etime; 1479 else 1480 *destld = 0.0; 1481 break; 1482 case DSM_BLOCKS_PER_SECOND_FREE: 1483 *destld = totalblocksfree; 1484 if (etime > 0.0) 1485 *destld /= etime; 1486 else 1487 *destld = 0.0; 1488 break; 1489 /* 1490 * Some devstat callers update the duration and some don't. 1491 * So this will only be accurate if they provide the 1492 * duration. 1493 */ 1494 case DSM_MS_PER_TRANSACTION: 1495 if (totaltransfers > 0) { 1496 *destld = totalduration; 1497 *destld /= totaltransfers; 1498 *destld *= 1000; 1499 } else 1500 *destld = 0.0; 1501 break; 1502 case DSM_MS_PER_TRANSACTION_READ: 1503 if (totaltransfersread > 0) { 1504 *destld = totaldurationread; 1505 *destld /= totaltransfersread; 1506 *destld *= 1000; 1507 } else 1508 *destld = 0.0; 1509 break; 1510 case DSM_MS_PER_TRANSACTION_WRITE: 1511 if (totaltransferswrite > 0) { 1512 *destld = totaldurationwrite; 1513 *destld /= totaltransferswrite; 1514 *destld *= 1000; 1515 } else 1516 *destld = 0.0; 1517 break; 1518 case DSM_MS_PER_TRANSACTION_FREE: 1519 if (totaltransfersfree > 0) { 1520 *destld = totaldurationfree; 1521 *destld /= totaltransfersfree; 1522 *destld *= 1000; 1523 } else 1524 *destld = 0.0; 1525 break; 1526 case DSM_MS_PER_TRANSACTION_OTHER: 1527 if (totaltransfersother > 0) { 1528 *destld = totaldurationother; 1529 *destld /= totaltransfersother; 1530 *destld *= 1000; 1531 } else 1532 *destld = 0.0; 1533 break; 1534 case DSM_BUSY_PCT: 1535 *destld = DELTA_T(busy_time); 1536 if (*destld < 0) 1537 *destld = 0; 1538 *destld /= etime; 1539 *destld *= 100; 1540 if (*destld < 0) 1541 *destld = 0; 1542 break; 1543 case DSM_QUEUE_LENGTH: 1544 *destu64 = current->start_count - current->end_count; 1545 break; 1546 case DSM_TOTAL_DURATION: 1547 *destld = totalduration; 1548 break; 1549 case DSM_TOTAL_DURATION_READ: 1550 *destld = totaldurationread; 1551 break; 1552 case DSM_TOTAL_DURATION_WRITE: 1553 *destld = totaldurationwrite; 1554 break; 1555 case DSM_TOTAL_DURATION_FREE: 1556 *destld = totaldurationfree; 1557 break; 1558 case DSM_TOTAL_DURATION_OTHER: 1559 *destld = totaldurationother; 1560 break; 1561 case DSM_TOTAL_BUSY_TIME: 1562 *destld = DELTA_T(busy_time); 1563 break; 1564 /* 1565 * XXX: comment out the default block to see if any case's are missing. 1566 */ 1567 #if 1 1568 default: 1569 /* 1570 * This shouldn't happen, since we should have 1571 * caught any out of range metrics at the top of 1572 * the loop. 1573 */ 1574 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 1575 "%s: unknown metric %d", __func__, metric); 1576 retval = -1; 1577 goto bailout; 1578 break; /* NOTREACHED */ 1579 #endif 1580 } 1581 } 1582 1583 bailout: 1584 1585 va_end(ap); 1586 return(retval); 1587 } 1588 1589 static int 1590 readkmem(kvm_t *kd, unsigned long addr, void *buf, size_t nbytes) 1591 { 1592 1593 if (kvm_read(kd, addr, buf, nbytes) == -1) { 1594 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 1595 "%s: error reading value (kvm_read): %s", __func__, 1596 kvm_geterr(kd)); 1597 return(-1); 1598 } 1599 return(0); 1600 } 1601 1602 static int 1603 readkmem_nl(kvm_t *kd, const char *name, void *buf, size_t nbytes) 1604 { 1605 struct nlist nl[2]; 1606 1607 nl[0].n_name = (char *)name; 1608 nl[1].n_name = NULL; 1609 1610 if (kvm_nlist(kd, nl) == -1) { 1611 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 1612 "%s: error getting name list (kvm_nlist): %s", 1613 __func__, kvm_geterr(kd)); 1614 return(-1); 1615 } 1616 return(readkmem(kd, nl[0].n_value, buf, nbytes)); 1617 } 1618 1619 /* 1620 * This duplicates the functionality of the kernel sysctl handler for poking 1621 * through crash dumps. 1622 */ 1623 static char * 1624 get_devstat_kvm(kvm_t *kd) 1625 { 1626 int i, wp; 1627 long gen; 1628 struct devstat *nds; 1629 struct devstat ds; 1630 struct devstatlist dhead; 1631 int num_devs; 1632 char *rv = NULL; 1633 1634 if ((num_devs = devstat_getnumdevs(kd)) <= 0) 1635 return(NULL); 1636 if (KREADNL(kd, X_DEVICE_STATQ, dhead) == -1) 1637 return(NULL); 1638 1639 nds = STAILQ_FIRST(&dhead); 1640 1641 if ((rv = malloc(sizeof(gen))) == NULL) { 1642 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 1643 "%s: out of memory (initial malloc failed)", 1644 __func__); 1645 return(NULL); 1646 } 1647 gen = devstat_getgeneration(kd); 1648 memcpy(rv, &gen, sizeof(gen)); 1649 wp = sizeof(gen); 1650 /* 1651 * Now push out all the devices. 1652 */ 1653 for (i = 0; (nds != NULL) && (i < num_devs); 1654 nds = STAILQ_NEXT(nds, dev_links), i++) { 1655 if (readkmem(kd, (long)nds, &ds, sizeof(ds)) == -1) { 1656 free(rv); 1657 return(NULL); 1658 } 1659 nds = &ds; 1660 rv = (char *)reallocf(rv, sizeof(gen) + 1661 sizeof(ds) * (i + 1)); 1662 if (rv == NULL) { 1663 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 1664 "%s: out of memory (malloc failed)", 1665 __func__); 1666 return(NULL); 1667 } 1668 memcpy(rv + wp, &ds, sizeof(ds)); 1669 wp += sizeof(ds); 1670 } 1671 return(rv); 1672 } 1673