1 /* 2 * Copyright (c) 1997, 1998 Kenneth D. Merry. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. The name of the author may not be used to endorse or promote products 14 * derived from this software without specific prior written permission. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include <sys/types.h> 33 #include <sys/sysctl.h> 34 #include <sys/errno.h> 35 #include <sys/resource.h> 36 #include <sys/queue.h> 37 38 #include <ctype.h> 39 #include <err.h> 40 #include <fcntl.h> 41 #include <limits.h> 42 #include <stdio.h> 43 #include <stdlib.h> 44 #include <string.h> 45 #include <stdarg.h> 46 #include <kvm.h> 47 #include <nlist.h> 48 49 #include "devstat.h" 50 51 int 52 compute_stats(struct devstat *current, struct devstat *previous, 53 long double etime, u_int64_t *total_bytes, 54 u_int64_t *total_transfers, u_int64_t *total_blocks, 55 long double *kb_per_transfer, long double *transfers_per_second, 56 long double *mb_per_second, long double *blocks_per_second, 57 long double *ms_per_transaction); 58 59 typedef enum { 60 DEVSTAT_ARG_NOTYPE, 61 DEVSTAT_ARG_UINT64, 62 DEVSTAT_ARG_LD, 63 DEVSTAT_ARG_SKIP 64 } devstat_arg_type; 65 66 char devstat_errbuf[DEVSTAT_ERRBUF_SIZE]; 67 68 /* 69 * Table to match descriptive strings with device types. These are in 70 * order from most common to least common to speed search time. 71 */ 72 struct devstat_match_table match_table[] = { 73 {"da", DEVSTAT_TYPE_DIRECT, DEVSTAT_MATCH_TYPE}, 74 {"cd", DEVSTAT_TYPE_CDROM, DEVSTAT_MATCH_TYPE}, 75 {"scsi", DEVSTAT_TYPE_IF_SCSI, DEVSTAT_MATCH_IF}, 76 {"ide", DEVSTAT_TYPE_IF_IDE, DEVSTAT_MATCH_IF}, 77 {"other", DEVSTAT_TYPE_IF_OTHER, DEVSTAT_MATCH_IF}, 78 {"worm", DEVSTAT_TYPE_WORM, DEVSTAT_MATCH_TYPE}, 79 {"sa", DEVSTAT_TYPE_SEQUENTIAL,DEVSTAT_MATCH_TYPE}, 80 {"pass", DEVSTAT_TYPE_PASS, DEVSTAT_MATCH_PASS}, 81 {"optical", DEVSTAT_TYPE_OPTICAL, DEVSTAT_MATCH_TYPE}, 82 {"array", DEVSTAT_TYPE_STORARRAY, DEVSTAT_MATCH_TYPE}, 83 {"changer", DEVSTAT_TYPE_CHANGER, DEVSTAT_MATCH_TYPE}, 84 {"scanner", DEVSTAT_TYPE_SCANNER, DEVSTAT_MATCH_TYPE}, 85 {"printer", DEVSTAT_TYPE_PRINTER, DEVSTAT_MATCH_TYPE}, 86 {"floppy", DEVSTAT_TYPE_FLOPPY, DEVSTAT_MATCH_TYPE}, 87 {"proc", DEVSTAT_TYPE_PROCESSOR, DEVSTAT_MATCH_TYPE}, 88 {"comm", DEVSTAT_TYPE_COMM, DEVSTAT_MATCH_TYPE}, 89 {"enclosure", DEVSTAT_TYPE_ENCLOSURE, DEVSTAT_MATCH_TYPE}, 90 {NULL, 0, 0} 91 }; 92 93 struct devstat_args { 94 devstat_metric metric; 95 devstat_arg_type argtype; 96 } devstat_arg_list[] = { 97 { DSM_NONE, DEVSTAT_ARG_NOTYPE }, 98 { DSM_TOTAL_BYTES, DEVSTAT_ARG_UINT64 }, 99 { DSM_TOTAL_BYTES_READ, DEVSTAT_ARG_UINT64 }, 100 { DSM_TOTAL_BYTES_WRITE, DEVSTAT_ARG_UINT64 }, 101 { DSM_TOTAL_TRANSFERS, DEVSTAT_ARG_UINT64 }, 102 { DSM_TOTAL_TRANSFERS_READ, DEVSTAT_ARG_UINT64 }, 103 { DSM_TOTAL_TRANSFERS_WRITE, DEVSTAT_ARG_UINT64 }, 104 { DSM_TOTAL_TRANSFERS_OTHER, DEVSTAT_ARG_UINT64 }, 105 { DSM_TOTAL_BLOCKS, DEVSTAT_ARG_UINT64 }, 106 { DSM_TOTAL_BLOCKS_READ, DEVSTAT_ARG_UINT64 }, 107 { DSM_TOTAL_BLOCKS_WRITE, DEVSTAT_ARG_UINT64 }, 108 { DSM_KB_PER_TRANSFER, DEVSTAT_ARG_LD }, 109 { DSM_KB_PER_TRANSFER_READ, DEVSTAT_ARG_LD }, 110 { DSM_KB_PER_TRANSFER_WRITE, DEVSTAT_ARG_LD }, 111 { DSM_TRANSFERS_PER_SECOND, DEVSTAT_ARG_LD }, 112 { DSM_TRANSFERS_PER_SECOND_READ, DEVSTAT_ARG_LD }, 113 { DSM_TRANSFERS_PER_SECOND_WRITE, DEVSTAT_ARG_LD }, 114 { DSM_TRANSFERS_PER_SECOND_OTHER, DEVSTAT_ARG_LD }, 115 { DSM_MB_PER_SECOND, DEVSTAT_ARG_LD }, 116 { DSM_MB_PER_SECOND_READ, DEVSTAT_ARG_LD }, 117 { DSM_MB_PER_SECOND_WRITE, DEVSTAT_ARG_LD }, 118 { DSM_BLOCKS_PER_SECOND, DEVSTAT_ARG_LD }, 119 { DSM_BLOCKS_PER_SECOND_READ, DEVSTAT_ARG_LD }, 120 { DSM_BLOCKS_PER_SECOND_WRITE, DEVSTAT_ARG_LD }, 121 { DSM_MS_PER_TRANSACTION, DEVSTAT_ARG_LD }, 122 { DSM_MS_PER_TRANSACTION_READ, DEVSTAT_ARG_LD }, 123 { DSM_MS_PER_TRANSACTION_WRITE, DEVSTAT_ARG_LD }, 124 { DSM_SKIP, DEVSTAT_ARG_SKIP }, 125 { DSM_TOTAL_BYTES_FREE, DEVSTAT_ARG_UINT64 }, 126 { DSM_TOTAL_TRANSFERS_FREE, DEVSTAT_ARG_UINT64 }, 127 { DSM_TOTAL_BLOCKS_FREE, DEVSTAT_ARG_UINT64 }, 128 { DSM_KB_PER_TRANSFER_FREE, DEVSTAT_ARG_LD }, 129 { DSM_MB_PER_SECOND_FREE, DEVSTAT_ARG_LD }, 130 { DSM_TRANSFERS_PER_SECOND_FREE, DEVSTAT_ARG_LD }, 131 { DSM_BLOCKS_PER_SECOND_FREE, DEVSTAT_ARG_LD }, 132 { DSM_MS_PER_TRANSACTION_OTHER, DEVSTAT_ARG_LD }, 133 { DSM_MS_PER_TRANSACTION_FREE, DEVSTAT_ARG_LD }, 134 { DSM_BUSY_PCT, DEVSTAT_ARG_LD }, 135 { DSM_QUEUE_LENGTH, DEVSTAT_ARG_UINT64 }, 136 }; 137 138 static const char *namelist[] = { 139 #define X_NUMDEVS 0 140 "_devstat_num_devs", 141 #define X_GENERATION 1 142 "_devstat_generation", 143 #define X_VERSION 2 144 "_devstat_version", 145 #define X_DEVICE_STATQ 3 146 "_device_statq", 147 #define X_END 4 148 }; 149 150 /* 151 * Local function declarations. 152 */ 153 static int compare_select(const void *arg1, const void *arg2); 154 static int readkmem(kvm_t *kd, unsigned long addr, void *buf, size_t nbytes); 155 static int readkmem_nl(kvm_t *kd, const char *name, void *buf, size_t nbytes); 156 static char *get_devstat_kvm(kvm_t *kd); 157 158 #define KREADNL(kd, var, val) \ 159 readkmem_nl(kd, namelist[var], &val, sizeof(val)) 160 161 int 162 devstat_getnumdevs(kvm_t *kd) 163 { 164 size_t numdevsize; 165 int numdevs; 166 167 numdevsize = sizeof(int); 168 169 /* 170 * Find out how many devices we have in the system. 171 */ 172 if (kd == NULL) { 173 if (sysctlbyname("kern.devstat.numdevs", &numdevs, 174 &numdevsize, NULL, 0) == -1) { 175 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 176 "%s: error getting number of devices\n" 177 "%s: %s", __func__, __func__, 178 strerror(errno)); 179 return(-1); 180 } else 181 return(numdevs); 182 } else { 183 184 if (KREADNL(kd, X_NUMDEVS, numdevs) == -1) 185 return(-1); 186 else 187 return(numdevs); 188 } 189 } 190 191 /* 192 * This is an easy way to get the generation number, but the generation is 193 * supplied in a more atmoic manner by the kern.devstat.all sysctl. 194 * Because this generation sysctl is separate from the statistics sysctl, 195 * the device list and the generation could change between the time that 196 * this function is called and the device list is retreived. 197 */ 198 long 199 devstat_getgeneration(kvm_t *kd) 200 { 201 size_t gensize; 202 long generation; 203 204 gensize = sizeof(long); 205 206 /* 207 * Get the current generation number. 208 */ 209 if (kd == NULL) { 210 if (sysctlbyname("kern.devstat.generation", &generation, 211 &gensize, NULL, 0) == -1) { 212 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 213 "%s: error getting devstat generation\n%s: %s", 214 __func__, __func__, strerror(errno)); 215 return(-1); 216 } else 217 return(generation); 218 } else { 219 if (KREADNL(kd, X_GENERATION, generation) == -1) 220 return(-1); 221 else 222 return(generation); 223 } 224 } 225 226 /* 227 * Get the current devstat version. The return value of this function 228 * should be compared with DEVSTAT_VERSION, which is defined in 229 * sys/devicestat.h. This will enable userland programs to determine 230 * whether they are out of sync with the kernel. 231 */ 232 int 233 devstat_getversion(kvm_t *kd) 234 { 235 size_t versize; 236 int version; 237 238 versize = sizeof(int); 239 240 /* 241 * Get the current devstat version. 242 */ 243 if (kd == NULL) { 244 if (sysctlbyname("kern.devstat.version", &version, &versize, 245 NULL, 0) == -1) { 246 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 247 "%s: error getting devstat version\n%s: %s", 248 __func__, __func__, strerror(errno)); 249 return(-1); 250 } else 251 return(version); 252 } else { 253 if (KREADNL(kd, X_VERSION, version) == -1) 254 return(-1); 255 else 256 return(version); 257 } 258 } 259 260 /* 261 * Check the devstat version we know about against the devstat version the 262 * kernel knows about. If they don't match, print an error into the 263 * devstat error buffer, and return -1. If they match, return 0. 264 */ 265 int 266 devstat_checkversion(kvm_t *kd) 267 { 268 int buflen, res, retval = 0, version; 269 270 version = devstat_getversion(kd); 271 272 if (version != DEVSTAT_VERSION) { 273 /* 274 * If getversion() returns an error (i.e. -1), then it 275 * has printed an error message in the buffer. Therefore, 276 * we need to add a \n to the end of that message before we 277 * print our own message in the buffer. 278 */ 279 if (version == -1) 280 buflen = strlen(devstat_errbuf); 281 else 282 buflen = 0; 283 284 res = snprintf(devstat_errbuf + buflen, 285 DEVSTAT_ERRBUF_SIZE - buflen, 286 "%s%s: userland devstat version %d is not " 287 "the same as the kernel\n%s: devstat " 288 "version %d\n", version == -1 ? "\n" : "", 289 __func__, DEVSTAT_VERSION, __func__, version); 290 291 if (res < 0) 292 devstat_errbuf[buflen] = '\0'; 293 294 buflen = strlen(devstat_errbuf); 295 if (version < DEVSTAT_VERSION) 296 res = snprintf(devstat_errbuf + buflen, 297 DEVSTAT_ERRBUF_SIZE - buflen, 298 "%s: libdevstat newer than kernel\n", 299 __func__); 300 else 301 res = snprintf(devstat_errbuf + buflen, 302 DEVSTAT_ERRBUF_SIZE - buflen, 303 "%s: kernel newer than libdevstat\n", 304 __func__); 305 306 if (res < 0) 307 devstat_errbuf[buflen] = '\0'; 308 309 retval = -1; 310 } 311 312 return(retval); 313 } 314 315 /* 316 * Get the current list of devices and statistics, and the current 317 * generation number. 318 * 319 * Return values: 320 * -1 -- error 321 * 0 -- device list is unchanged 322 * 1 -- device list has changed 323 */ 324 int 325 devstat_getdevs(kvm_t *kd, struct statinfo *stats) 326 { 327 int error; 328 size_t dssize; 329 int oldnumdevs; 330 long oldgeneration; 331 int retval = 0; 332 struct devinfo *dinfo; 333 struct timespec ts; 334 335 dinfo = stats->dinfo; 336 337 if (dinfo == NULL) { 338 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 339 "%s: stats->dinfo was NULL", __func__); 340 return(-1); 341 } 342 343 oldnumdevs = dinfo->numdevs; 344 oldgeneration = dinfo->generation; 345 346 clock_gettime(CLOCK_MONOTONIC, &ts); 347 stats->snap_time = ts.tv_sec + ts.tv_nsec * 1e-9; 348 349 if (kd == NULL) { 350 /* If this is our first time through, mem_ptr will be null. */ 351 if (dinfo->mem_ptr == NULL) { 352 /* 353 * Get the number of devices. If it's negative, it's an 354 * error. Don't bother setting the error string, since 355 * getnumdevs() has already done that for us. 356 */ 357 if ((dinfo->numdevs = devstat_getnumdevs(kd)) < 0) 358 return(-1); 359 360 /* 361 * The kern.devstat.all sysctl returns the current 362 * generation number, as well as all the devices. 363 * So we need four bytes more. 364 */ 365 dssize = (dinfo->numdevs * sizeof(struct devstat)) + 366 sizeof(long); 367 dinfo->mem_ptr = (u_int8_t *)malloc(dssize); 368 if (dinfo->mem_ptr == NULL) { 369 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 370 "%s: Cannot allocate memory for mem_ptr element", 371 __func__); 372 return(-1); 373 } 374 } else 375 dssize = (dinfo->numdevs * sizeof(struct devstat)) + 376 sizeof(long); 377 378 /* 379 * Request all of the devices. We only really allow for one 380 * ENOMEM failure. It would, of course, be possible to just go 381 * in a loop and keep reallocing the device structure until we 382 * don't get ENOMEM back. I'm not sure it's worth it, though. 383 * If devices are being added to the system that quickly, maybe 384 * the user can just wait until all devices are added. 385 */ 386 for (;;) { 387 error = sysctlbyname("kern.devstat.all", 388 dinfo->mem_ptr, 389 &dssize, NULL, 0); 390 if (error != -1 || errno != EBUSY) 391 break; 392 } 393 if (error == -1) { 394 /* 395 * If we get ENOMEM back, that means that there are 396 * more devices now, so we need to allocate more 397 * space for the device array. 398 */ 399 if (errno == ENOMEM) { 400 /* 401 * No need to set the error string here, 402 * devstat_getnumdevs() will do that if it fails. 403 */ 404 if ((dinfo->numdevs = devstat_getnumdevs(kd)) < 0) 405 return(-1); 406 407 dssize = (dinfo->numdevs * 408 sizeof(struct devstat)) + sizeof(long); 409 dinfo->mem_ptr = (u_int8_t *) 410 realloc(dinfo->mem_ptr, dssize); 411 if ((error = sysctlbyname("kern.devstat.all", 412 dinfo->mem_ptr, &dssize, NULL, 0)) == -1) { 413 snprintf(devstat_errbuf, 414 sizeof(devstat_errbuf), 415 "%s: error getting device " 416 "stats\n%s: %s", __func__, 417 __func__, strerror(errno)); 418 return(-1); 419 } 420 } else { 421 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 422 "%s: error getting device stats\n" 423 "%s: %s", __func__, __func__, 424 strerror(errno)); 425 return(-1); 426 } 427 } 428 429 } else { 430 /* 431 * This is of course non-atomic, but since we are working 432 * on a core dump, the generation is unlikely to change 433 */ 434 if ((dinfo->numdevs = devstat_getnumdevs(kd)) == -1) 435 return(-1); 436 if ((dinfo->mem_ptr = (u_int8_t *)get_devstat_kvm(kd)) == NULL) 437 return(-1); 438 } 439 /* 440 * The sysctl spits out the generation as the first four bytes, 441 * then all of the device statistics structures. 442 */ 443 dinfo->generation = *(long *)dinfo->mem_ptr; 444 445 /* 446 * If the generation has changed, and if the current number of 447 * devices is not the same as the number of devices recorded in the 448 * devinfo structure, it is likely that the device list has shrunk. 449 * The reason that it is likely that the device list has shrunk in 450 * this case is that if the device list has grown, the sysctl above 451 * will return an ENOMEM error, and we will reset the number of 452 * devices and reallocate the device array. If the second sysctl 453 * fails, we will return an error and therefore never get to this 454 * point. If the device list has shrunk, the sysctl will not 455 * return an error since we have more space allocated than is 456 * necessary. So, in the shrinkage case, we catch it here and 457 * reallocate the array so that we don't use any more space than is 458 * necessary. 459 */ 460 if (oldgeneration != dinfo->generation) { 461 if (devstat_getnumdevs(kd) != dinfo->numdevs) { 462 if ((dinfo->numdevs = devstat_getnumdevs(kd)) < 0) 463 return(-1); 464 dssize = (dinfo->numdevs * sizeof(struct devstat)) + 465 sizeof(long); 466 dinfo->mem_ptr = (u_int8_t *)realloc(dinfo->mem_ptr, 467 dssize); 468 } 469 retval = 1; 470 } 471 472 dinfo->devices = (struct devstat *)(dinfo->mem_ptr + sizeof(long)); 473 474 return(retval); 475 } 476 477 /* 478 * selectdevs(): 479 * 480 * Devices are selected/deselected based upon the following criteria: 481 * - devices specified by the user on the command line 482 * - devices matching any device type expressions given on the command line 483 * - devices with the highest I/O, if 'top' mode is enabled 484 * - the first n unselected devices in the device list, if maxshowdevs 485 * devices haven't already been selected and if the user has not 486 * specified any devices on the command line and if we're in "add" mode. 487 * 488 * Input parameters: 489 * - device selection list (dev_select) 490 * - current number of devices selected (num_selected) 491 * - total number of devices in the selection list (num_selections) 492 * - devstat generation as of the last time selectdevs() was called 493 * (select_generation) 494 * - current devstat generation (current_generation) 495 * - current list of devices and statistics (devices) 496 * - number of devices in the current device list (numdevs) 497 * - compiled version of the command line device type arguments (matches) 498 * - This is optional. If the number of devices is 0, this will be ignored. 499 * - The matching code pays attention to the current selection mode. So 500 * if you pass in a matching expression, it will be evaluated based 501 * upon the selection mode that is passed in. See below for details. 502 * - number of device type matching expressions (num_matches) 503 * - Set to 0 to disable the matching code. 504 * - list of devices specified on the command line by the user (dev_selections) 505 * - number of devices selected on the command line by the user 506 * (num_dev_selections) 507 * - Our selection mode. There are four different selection modes: 508 * - add mode. (DS_SELECT_ADD) Any devices matching devices explicitly 509 * selected by the user or devices matching a pattern given by the 510 * user will be selected in addition to devices that are already 511 * selected. Additional devices will be selected, up to maxshowdevs 512 * number of devices. 513 * - only mode. (DS_SELECT_ONLY) Only devices matching devices 514 * explicitly given by the user or devices matching a pattern 515 * given by the user will be selected. No other devices will be 516 * selected. 517 * - addonly mode. (DS_SELECT_ADDONLY) This is similar to add and 518 * only. Basically, this will not de-select any devices that are 519 * current selected, as only mode would, but it will also not 520 * gratuitously select up to maxshowdevs devices as add mode would. 521 * - remove mode. (DS_SELECT_REMOVE) Any devices matching devices 522 * explicitly selected by the user or devices matching a pattern 523 * given by the user will be de-selected. 524 * - maximum number of devices we can select (maxshowdevs) 525 * - flag indicating whether or not we're in 'top' mode (perf_select) 526 * 527 * Output data: 528 * - the device selection list may be modified and passed back out 529 * - the number of devices selected and the total number of items in the 530 * device selection list may be changed 531 * - the selection generation may be changed to match the current generation 532 * 533 * Return values: 534 * -1 -- error 535 * 0 -- selected devices are unchanged 536 * 1 -- selected devices changed 537 */ 538 int 539 devstat_selectdevs(struct device_selection **dev_select, int *num_selected, 540 int *num_selections, long *select_generation, 541 long current_generation, struct devstat *devices, 542 int numdevs, struct devstat_match *matches, int num_matches, 543 char **dev_selections, int num_dev_selections, 544 devstat_select_mode select_mode, int maxshowdevs, 545 int perf_select) 546 { 547 int i, j, k; 548 int init_selections = 0, init_selected_var = 0; 549 struct device_selection *old_dev_select = NULL; 550 int old_num_selections = 0, old_num_selected; 551 int selection_number = 0; 552 int changed = 0, found = 0; 553 554 if ((dev_select == NULL) || (devices == NULL) || (numdevs < 0)) 555 return(-1); 556 557 /* 558 * We always want to make sure that we have as many dev_select 559 * entries as there are devices. 560 */ 561 /* 562 * In this case, we haven't selected devices before. 563 */ 564 if (*dev_select == NULL) { 565 *dev_select = (struct device_selection *)malloc(numdevs * 566 sizeof(struct device_selection)); 567 *select_generation = current_generation; 568 init_selections = 1; 569 changed = 1; 570 /* 571 * In this case, we have selected devices before, but the device 572 * list has changed since we last selected devices, so we need to 573 * either enlarge or reduce the size of the device selection list. 574 */ 575 } else if (*num_selections != numdevs) { 576 *dev_select = (struct device_selection *)reallocf(*dev_select, 577 numdevs * sizeof(struct device_selection)); 578 *select_generation = current_generation; 579 init_selections = 1; 580 /* 581 * In this case, we've selected devices before, and the selection 582 * list is the same size as it was the last time, but the device 583 * list has changed. 584 */ 585 } else if (*select_generation < current_generation) { 586 *select_generation = current_generation; 587 init_selections = 1; 588 } 589 590 if (*dev_select == NULL) { 591 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 592 "%s: Cannot (re)allocate memory for dev_select argument", 593 __func__); 594 return(-1); 595 } 596 597 /* 598 * If we're in "only" mode, we want to clear out the selected 599 * variable since we're going to select exactly what the user wants 600 * this time through. 601 */ 602 if (select_mode == DS_SELECT_ONLY) 603 init_selected_var = 1; 604 605 /* 606 * In all cases, we want to back up the number of selected devices. 607 * It is a quick and accurate way to determine whether the selected 608 * devices have changed. 609 */ 610 old_num_selected = *num_selected; 611 612 /* 613 * We want to make a backup of the current selection list if 614 * the list of devices has changed, or if we're in performance 615 * selection mode. In both cases, we don't want to make a backup 616 * if we already know for sure that the list will be different. 617 * This is certainly the case if this is our first time through the 618 * selection code. 619 */ 620 if (((init_selected_var != 0) || (init_selections != 0) 621 || (perf_select != 0)) && (changed == 0)){ 622 old_dev_select = (struct device_selection *)malloc( 623 *num_selections * sizeof(struct device_selection)); 624 if (old_dev_select == NULL) { 625 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 626 "%s: Cannot allocate memory for selection list backup", 627 __func__); 628 return(-1); 629 } 630 old_num_selections = *num_selections; 631 bcopy(*dev_select, old_dev_select, 632 sizeof(struct device_selection) * *num_selections); 633 } 634 635 if (init_selections != 0) { 636 bzero(*dev_select, sizeof(struct device_selection) * numdevs); 637 638 for (i = 0; i < numdevs; i++) { 639 (*dev_select)[i].device_number = 640 devices[i].device_number; 641 strncpy((*dev_select)[i].device_name, 642 devices[i].device_name, 643 DEVSTAT_NAME_LEN); 644 (*dev_select)[i].device_name[DEVSTAT_NAME_LEN - 1]='\0'; 645 (*dev_select)[i].unit_number = devices[i].unit_number; 646 (*dev_select)[i].position = i; 647 } 648 *num_selections = numdevs; 649 } else if (init_selected_var != 0) { 650 for (i = 0; i < numdevs; i++) 651 (*dev_select)[i].selected = 0; 652 } 653 654 /* we haven't gotten around to selecting anything yet.. */ 655 if ((select_mode == DS_SELECT_ONLY) || (init_selections != 0) 656 || (init_selected_var != 0)) 657 *num_selected = 0; 658 659 /* 660 * Look through any devices the user specified on the command line 661 * and see if they match known devices. If so, select them. 662 */ 663 for (i = 0; (i < *num_selections) && (num_dev_selections > 0); i++) { 664 char tmpstr[80]; 665 666 snprintf(tmpstr, sizeof(tmpstr), "%s%d", 667 (*dev_select)[i].device_name, 668 (*dev_select)[i].unit_number); 669 for (j = 0; j < num_dev_selections; j++) { 670 if (strcmp(tmpstr, dev_selections[j]) == 0) { 671 /* 672 * Here we do different things based on the 673 * mode we're in. If we're in add or 674 * addonly mode, we only select this device 675 * if it hasn't already been selected. 676 * Otherwise, we would be unnecessarily 677 * changing the selection order and 678 * incrementing the selection count. If 679 * we're in only mode, we unconditionally 680 * select this device, since in only mode 681 * any previous selections are erased and 682 * manually specified devices are the first 683 * ones to be selected. If we're in remove 684 * mode, we de-select the specified device and 685 * decrement the selection count. 686 */ 687 switch(select_mode) { 688 case DS_SELECT_ADD: 689 case DS_SELECT_ADDONLY: 690 if ((*dev_select)[i].selected) 691 break; 692 /* FALLTHROUGH */ 693 case DS_SELECT_ONLY: 694 (*dev_select)[i].selected = 695 ++selection_number; 696 (*num_selected)++; 697 break; 698 case DS_SELECT_REMOVE: 699 (*dev_select)[i].selected = 0; 700 (*num_selected)--; 701 /* 702 * This isn't passed back out, we 703 * just use it to keep track of 704 * how many devices we've removed. 705 */ 706 num_dev_selections--; 707 break; 708 } 709 break; 710 } 711 } 712 } 713 714 /* 715 * Go through the user's device type expressions and select devices 716 * accordingly. We only do this if the number of devices already 717 * selected is less than the maximum number we can show. 718 */ 719 for (i = 0; (i < num_matches) && (*num_selected < maxshowdevs); i++) { 720 /* We should probably indicate some error here */ 721 if ((matches[i].match_fields == DEVSTAT_MATCH_NONE) 722 || (matches[i].num_match_categories <= 0)) 723 continue; 724 725 for (j = 0; j < numdevs; j++) { 726 int num_match_categories; 727 728 num_match_categories = matches[i].num_match_categories; 729 730 /* 731 * Determine whether or not the current device 732 * matches the given matching expression. This if 733 * statement consists of three components: 734 * - the device type check 735 * - the device interface check 736 * - the passthrough check 737 * If a the matching test is successful, it 738 * decrements the number of matching categories, 739 * and if we've reached the last element that 740 * needed to be matched, the if statement succeeds. 741 * 742 */ 743 if ((((matches[i].match_fields & DEVSTAT_MATCH_TYPE)!=0) 744 && ((devices[j].device_type & DEVSTAT_TYPE_MASK) == 745 (matches[i].device_type & DEVSTAT_TYPE_MASK)) 746 &&(((matches[i].match_fields & DEVSTAT_MATCH_PASS)!=0) 747 || (((matches[i].match_fields & 748 DEVSTAT_MATCH_PASS) == 0) 749 && ((devices[j].device_type & 750 DEVSTAT_TYPE_PASS) == 0))) 751 && (--num_match_categories == 0)) 752 || (((matches[i].match_fields & DEVSTAT_MATCH_IF) != 0) 753 && ((devices[j].device_type & DEVSTAT_TYPE_IF_MASK) == 754 (matches[i].device_type & DEVSTAT_TYPE_IF_MASK)) 755 &&(((matches[i].match_fields & DEVSTAT_MATCH_PASS)!=0) 756 || (((matches[i].match_fields & 757 DEVSTAT_MATCH_PASS) == 0) 758 && ((devices[j].device_type & 759 DEVSTAT_TYPE_PASS) == 0))) 760 && (--num_match_categories == 0)) 761 || (((matches[i].match_fields & DEVSTAT_MATCH_PASS)!=0) 762 && ((devices[j].device_type & DEVSTAT_TYPE_PASS) != 0) 763 && (--num_match_categories == 0))) { 764 765 /* 766 * This is probably a non-optimal solution 767 * to the problem that the devices in the 768 * device list will not be in the same 769 * order as the devices in the selection 770 * array. 771 */ 772 for (k = 0; k < numdevs; k++) { 773 if ((*dev_select)[k].position == j) { 774 found = 1; 775 break; 776 } 777 } 778 779 /* 780 * There shouldn't be a case where a device 781 * in the device list is not in the 782 * selection list...but it could happen. 783 */ 784 if (found != 1) { 785 fprintf(stderr, "selectdevs: couldn't" 786 " find %s%d in selection " 787 "list\n", 788 devices[j].device_name, 789 devices[j].unit_number); 790 break; 791 } 792 793 /* 794 * We do different things based upon the 795 * mode we're in. If we're in add or only 796 * mode, we go ahead and select this device 797 * if it hasn't already been selected. If 798 * it has already been selected, we leave 799 * it alone so we don't mess up the 800 * selection ordering. Manually specified 801 * devices have already been selected, and 802 * they have higher priority than pattern 803 * matched devices. If we're in remove 804 * mode, we de-select the given device and 805 * decrement the selected count. 806 */ 807 switch(select_mode) { 808 case DS_SELECT_ADD: 809 case DS_SELECT_ADDONLY: 810 case DS_SELECT_ONLY: 811 if ((*dev_select)[k].selected != 0) 812 break; 813 (*dev_select)[k].selected = 814 ++selection_number; 815 (*num_selected)++; 816 break; 817 case DS_SELECT_REMOVE: 818 (*dev_select)[k].selected = 0; 819 (*num_selected)--; 820 break; 821 } 822 } 823 } 824 } 825 826 /* 827 * Here we implement "top" mode. Devices are sorted in the 828 * selection array based on two criteria: whether or not they are 829 * selected (not selection number, just the fact that they are 830 * selected!) and the number of bytes in the "bytes" field of the 831 * selection structure. The bytes field generally must be kept up 832 * by the user. In the future, it may be maintained by library 833 * functions, but for now the user has to do the work. 834 * 835 * At first glance, it may seem wrong that we don't go through and 836 * select every device in the case where the user hasn't specified 837 * any devices or patterns. In fact, though, it won't make any 838 * difference in the device sorting. In that particular case (i.e. 839 * when we're in "add" or "only" mode, and the user hasn't 840 * specified anything) the first time through no devices will be 841 * selected, so the only criterion used to sort them will be their 842 * performance. The second time through, and every time thereafter, 843 * all devices will be selected, so again selection won't matter. 844 */ 845 if (perf_select != 0) { 846 847 /* Sort the device array by throughput */ 848 qsort(*dev_select, *num_selections, 849 sizeof(struct device_selection), 850 compare_select); 851 852 if (*num_selected == 0) { 853 /* 854 * Here we select every device in the array, if it 855 * isn't already selected. Because the 'selected' 856 * variable in the selection array entries contains 857 * the selection order, the devstats routine can show 858 * the devices that were selected first. 859 */ 860 for (i = 0; i < *num_selections; i++) { 861 if ((*dev_select)[i].selected == 0) { 862 (*dev_select)[i].selected = 863 ++selection_number; 864 (*num_selected)++; 865 } 866 } 867 } else { 868 selection_number = 0; 869 for (i = 0; i < *num_selections; i++) { 870 if ((*dev_select)[i].selected != 0) { 871 (*dev_select)[i].selected = 872 ++selection_number; 873 } 874 } 875 } 876 } 877 878 /* 879 * If we're in the "add" selection mode and if we haven't already 880 * selected maxshowdevs number of devices, go through the array and 881 * select any unselected devices. If we're in "only" mode, we 882 * obviously don't want to select anything other than what the user 883 * specifies. If we're in "remove" mode, it probably isn't a good 884 * idea to go through and select any more devices, since we might 885 * end up selecting something that the user wants removed. Through 886 * more complicated logic, we could actually figure this out, but 887 * that would probably require combining this loop with the various 888 * selections loops above. 889 */ 890 if ((select_mode == DS_SELECT_ADD) && (*num_selected < maxshowdevs)) { 891 for (i = 0; i < *num_selections; i++) 892 if ((*dev_select)[i].selected == 0) { 893 (*dev_select)[i].selected = ++selection_number; 894 (*num_selected)++; 895 } 896 } 897 898 /* 899 * Look at the number of devices that have been selected. If it 900 * has changed, set the changed variable. Otherwise, if we've 901 * made a backup of the selection list, compare it to the current 902 * selection list to see if the selected devices have changed. 903 */ 904 if ((changed == 0) && (old_num_selected != *num_selected)) 905 changed = 1; 906 else if ((changed == 0) && (old_dev_select != NULL)) { 907 /* 908 * Now we go through the selection list and we look at 909 * it three different ways. 910 */ 911 for (i = 0; (i < *num_selections) && (changed == 0) && 912 (i < old_num_selections); i++) { 913 /* 914 * If the device at index i in both the new and old 915 * selection arrays has the same device number and 916 * selection status, it hasn't changed. We 917 * continue on to the next index. 918 */ 919 if (((*dev_select)[i].device_number == 920 old_dev_select[i].device_number) 921 && ((*dev_select)[i].selected == 922 old_dev_select[i].selected)) 923 continue; 924 925 /* 926 * Now, if we're still going through the if 927 * statement, the above test wasn't true. So we 928 * check here to see if the device at index i in 929 * the current array is the same as the device at 930 * index i in the old array. If it is, that means 931 * that its selection number has changed. Set 932 * changed to 1 and exit the loop. 933 */ 934 else if ((*dev_select)[i].device_number == 935 old_dev_select[i].device_number) { 936 changed = 1; 937 break; 938 } 939 /* 940 * If we get here, then the device at index i in 941 * the current array isn't the same device as the 942 * device at index i in the old array. 943 */ 944 else { 945 found = 0; 946 947 /* 948 * Search through the old selection array 949 * looking for a device with the same 950 * device number as the device at index i 951 * in the current array. If the selection 952 * status is the same, then we mark it as 953 * found. If the selection status isn't 954 * the same, we break out of the loop. 955 * Since found isn't set, changed will be 956 * set to 1 below. 957 */ 958 for (j = 0; j < old_num_selections; j++) { 959 if (((*dev_select)[i].device_number == 960 old_dev_select[j].device_number) 961 && ((*dev_select)[i].selected == 962 old_dev_select[j].selected)){ 963 found = 1; 964 break; 965 } 966 else if ((*dev_select)[i].device_number 967 == old_dev_select[j].device_number) 968 break; 969 } 970 if (found == 0) 971 changed = 1; 972 } 973 } 974 } 975 if (old_dev_select != NULL) 976 free(old_dev_select); 977 978 return(changed); 979 } 980 981 /* 982 * Comparison routine for qsort() above. Note that the comparison here is 983 * backwards -- generally, it should return a value to indicate whether 984 * arg1 is <, =, or > arg2. Instead, it returns the opposite. The reason 985 * it returns the opposite is so that the selection array will be sorted in 986 * order of decreasing performance. We sort on two parameters. The first 987 * sort key is whether or not one or the other of the devices in question 988 * has been selected. If one of them has, and the other one has not, the 989 * selected device is automatically more important than the unselected 990 * device. If neither device is selected, we judge the devices based upon 991 * performance. 992 */ 993 static int 994 compare_select(const void *arg1, const void *arg2) 995 { 996 if ((((const struct device_selection *)arg1)->selected) 997 && (((const struct device_selection *)arg2)->selected == 0)) 998 return(-1); 999 else if ((((const struct device_selection *)arg1)->selected == 0) 1000 && (((const struct device_selection *)arg2)->selected)) 1001 return(1); 1002 else if (((const struct device_selection *)arg2)->bytes < 1003 ((const struct device_selection *)arg1)->bytes) 1004 return(-1); 1005 else if (((const struct device_selection *)arg2)->bytes > 1006 ((const struct device_selection *)arg1)->bytes) 1007 return(1); 1008 else 1009 return(0); 1010 } 1011 1012 /* 1013 * Take a string with the general format "arg1,arg2,arg3", and build a 1014 * device matching expression from it. 1015 */ 1016 int 1017 devstat_buildmatch(char *match_str, struct devstat_match **matches, 1018 int *num_matches) 1019 { 1020 char *tstr[5]; 1021 char **tempstr; 1022 int num_args; 1023 int i, j; 1024 1025 /* We can't do much without a string to parse */ 1026 if (match_str == NULL) { 1027 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 1028 "%s: no match expression", __func__); 1029 return(-1); 1030 } 1031 1032 /* 1033 * Break the (comma delimited) input string out into separate strings. 1034 */ 1035 for (tempstr = tstr, num_args = 0; 1036 (*tempstr = strsep(&match_str, ",")) != NULL && (num_args < 5);) 1037 if (**tempstr != '\0') { 1038 num_args++; 1039 if (++tempstr >= &tstr[5]) 1040 break; 1041 } 1042 1043 /* The user gave us too many type arguments */ 1044 if (num_args > 3) { 1045 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 1046 "%s: too many type arguments", __func__); 1047 return(-1); 1048 } 1049 1050 if (*num_matches == 0) 1051 *matches = NULL; 1052 1053 *matches = (struct devstat_match *)reallocf(*matches, 1054 sizeof(struct devstat_match) * (*num_matches + 1)); 1055 1056 if (*matches == NULL) { 1057 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 1058 "%s: Cannot allocate memory for matches list", __func__); 1059 return(-1); 1060 } 1061 1062 /* Make sure the current entry is clear */ 1063 bzero(&matches[0][*num_matches], sizeof(struct devstat_match)); 1064 1065 /* 1066 * Step through the arguments the user gave us and build a device 1067 * matching expression from them. 1068 */ 1069 for (i = 0; i < num_args; i++) { 1070 char *tempstr2, *tempstr3; 1071 1072 /* 1073 * Get rid of leading white space. 1074 */ 1075 tempstr2 = tstr[i]; 1076 while (isspace(*tempstr2) && (*tempstr2 != '\0')) 1077 tempstr2++; 1078 1079 /* 1080 * Get rid of trailing white space. 1081 */ 1082 tempstr3 = &tempstr2[strlen(tempstr2) - 1]; 1083 1084 while ((*tempstr3 != '\0') && (tempstr3 > tempstr2) 1085 && (isspace(*tempstr3))) { 1086 *tempstr3 = '\0'; 1087 tempstr3--; 1088 } 1089 1090 /* 1091 * Go through the match table comparing the user's 1092 * arguments to known device types, interfaces, etc. 1093 */ 1094 for (j = 0; match_table[j].match_str != NULL; j++) { 1095 /* 1096 * We do case-insensitive matching, in case someone 1097 * wants to enter "SCSI" instead of "scsi" or 1098 * something like that. Only compare as many 1099 * characters as are in the string in the match 1100 * table. This should help if someone tries to use 1101 * a super-long match expression. 1102 */ 1103 if (strncasecmp(tempstr2, match_table[j].match_str, 1104 strlen(match_table[j].match_str)) == 0) { 1105 /* 1106 * Make sure the user hasn't specified two 1107 * items of the same type, like "da" and 1108 * "cd". One device cannot be both. 1109 */ 1110 if (((*matches)[*num_matches].match_fields & 1111 match_table[j].match_field) != 0) { 1112 snprintf(devstat_errbuf, 1113 sizeof(devstat_errbuf), 1114 "%s: cannot have more than " 1115 "one match item in a single " 1116 "category", __func__); 1117 return(-1); 1118 } 1119 /* 1120 * If we've gotten this far, we have a 1121 * winner. Set the appropriate fields in 1122 * the match entry. 1123 */ 1124 (*matches)[*num_matches].match_fields |= 1125 match_table[j].match_field; 1126 (*matches)[*num_matches].device_type |= 1127 match_table[j].type; 1128 (*matches)[*num_matches].num_match_categories++; 1129 break; 1130 } 1131 } 1132 /* 1133 * We should have found a match in the above for loop. If 1134 * not, that means the user entered an invalid device type 1135 * or interface. 1136 */ 1137 if ((*matches)[*num_matches].num_match_categories != (i + 1)) { 1138 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 1139 "%s: unknown match item \"%s\"", __func__, 1140 tstr[i]); 1141 return(-1); 1142 } 1143 } 1144 1145 (*num_matches)++; 1146 1147 return(0); 1148 } 1149 1150 /* 1151 * Compute a number of device statistics. Only one field is mandatory, and 1152 * that is "current". Everything else is optional. The caller passes in 1153 * pointers to variables to hold the various statistics he desires. If he 1154 * doesn't want a particular staistic, he should pass in a NULL pointer. 1155 * Return values: 1156 * 0 -- success 1157 * -1 -- failure 1158 */ 1159 int 1160 compute_stats(struct devstat *current, struct devstat *previous, 1161 long double etime, u_int64_t *total_bytes, 1162 u_int64_t *total_transfers, u_int64_t *total_blocks, 1163 long double *kb_per_transfer, long double *transfers_per_second, 1164 long double *mb_per_second, long double *blocks_per_second, 1165 long double *ms_per_transaction) 1166 { 1167 return(devstat_compute_statistics(current, previous, etime, 1168 total_bytes ? DSM_TOTAL_BYTES : DSM_SKIP, 1169 total_bytes, 1170 total_transfers ? DSM_TOTAL_TRANSFERS : DSM_SKIP, 1171 total_transfers, 1172 total_blocks ? DSM_TOTAL_BLOCKS : DSM_SKIP, 1173 total_blocks, 1174 kb_per_transfer ? DSM_KB_PER_TRANSFER : DSM_SKIP, 1175 kb_per_transfer, 1176 transfers_per_second ? DSM_TRANSFERS_PER_SECOND : DSM_SKIP, 1177 transfers_per_second, 1178 mb_per_second ? DSM_MB_PER_SECOND : DSM_SKIP, 1179 mb_per_second, 1180 blocks_per_second ? DSM_BLOCKS_PER_SECOND : DSM_SKIP, 1181 blocks_per_second, 1182 ms_per_transaction ? DSM_MS_PER_TRANSACTION : DSM_SKIP, 1183 ms_per_transaction, 1184 DSM_NONE)); 1185 } 1186 1187 1188 /* This is 1/2^64 */ 1189 #define BINTIME_SCALE 5.42101086242752217003726400434970855712890625e-20 1190 1191 long double 1192 devstat_compute_etime(struct bintime *cur_time, struct bintime *prev_time) 1193 { 1194 long double etime; 1195 1196 etime = cur_time->sec; 1197 etime += cur_time->frac * BINTIME_SCALE; 1198 if (prev_time != NULL) { 1199 etime -= prev_time->sec; 1200 etime -= prev_time->frac * BINTIME_SCALE; 1201 } 1202 return(etime); 1203 } 1204 1205 #define DELTA(field, index) \ 1206 (current->field[(index)] - (previous ? previous->field[(index)] : 0)) 1207 1208 #define DELTA_T(field) \ 1209 devstat_compute_etime(¤t->field, \ 1210 (previous ? &previous->field : NULL)) 1211 1212 int 1213 devstat_compute_statistics(struct devstat *current, struct devstat *previous, 1214 long double etime, ...) 1215 { 1216 u_int64_t totalbytes, totalbytesread, totalbyteswrite, totalbytesfree; 1217 u_int64_t totaltransfers, totaltransfersread, totaltransferswrite; 1218 u_int64_t totaltransfersother, totalblocks, totalblocksread; 1219 u_int64_t totalblockswrite, totaltransfersfree, totalblocksfree; 1220 va_list ap; 1221 devstat_metric metric; 1222 u_int64_t *destu64; 1223 long double *destld; 1224 int retval, i; 1225 1226 retval = 0; 1227 1228 /* 1229 * current is the only mandatory field. 1230 */ 1231 if (current == NULL) { 1232 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 1233 "%s: current stats structure was NULL", __func__); 1234 return(-1); 1235 } 1236 1237 totalbytesread = DELTA(bytes, DEVSTAT_READ); 1238 totalbyteswrite = DELTA(bytes, DEVSTAT_WRITE); 1239 totalbytesfree = DELTA(bytes, DEVSTAT_FREE); 1240 totalbytes = totalbytesread + totalbyteswrite + totalbytesfree; 1241 1242 totaltransfersread = DELTA(operations, DEVSTAT_READ); 1243 totaltransferswrite = DELTA(operations, DEVSTAT_WRITE); 1244 totaltransfersother = DELTA(operations, DEVSTAT_NO_DATA); 1245 totaltransfersfree = DELTA(operations, DEVSTAT_FREE); 1246 totaltransfers = totaltransfersread + totaltransferswrite + 1247 totaltransfersother + totaltransfersfree; 1248 1249 totalblocks = totalbytes; 1250 totalblocksread = totalbytesread; 1251 totalblockswrite = totalbyteswrite; 1252 totalblocksfree = totalbytesfree; 1253 1254 if (current->block_size > 0) { 1255 totalblocks /= current->block_size; 1256 totalblocksread /= current->block_size; 1257 totalblockswrite /= current->block_size; 1258 totalblocksfree /= current->block_size; 1259 } else { 1260 totalblocks /= 512; 1261 totalblocksread /= 512; 1262 totalblockswrite /= 512; 1263 totalblocksfree /= 512; 1264 } 1265 1266 va_start(ap, etime); 1267 1268 while ((metric = (devstat_metric)va_arg(ap, devstat_metric)) != 0) { 1269 1270 if (metric == DSM_NONE) 1271 break; 1272 1273 if (metric >= DSM_MAX) { 1274 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 1275 "%s: metric %d is out of range", __func__, 1276 metric); 1277 retval = -1; 1278 goto bailout; 1279 } 1280 1281 switch (devstat_arg_list[metric].argtype) { 1282 case DEVSTAT_ARG_UINT64: 1283 destu64 = (u_int64_t *)va_arg(ap, u_int64_t *); 1284 break; 1285 case DEVSTAT_ARG_LD: 1286 destld = (long double *)va_arg(ap, long double *); 1287 break; 1288 case DEVSTAT_ARG_SKIP: 1289 destld = (long double *)va_arg(ap, long double *); 1290 break; 1291 default: 1292 retval = -1; 1293 goto bailout; 1294 break; /* NOTREACHED */ 1295 } 1296 1297 if (devstat_arg_list[metric].argtype == DEVSTAT_ARG_SKIP) 1298 continue; 1299 1300 switch (metric) { 1301 case DSM_TOTAL_BYTES: 1302 *destu64 = totalbytes; 1303 break; 1304 case DSM_TOTAL_BYTES_READ: 1305 *destu64 = totalbytesread; 1306 break; 1307 case DSM_TOTAL_BYTES_WRITE: 1308 *destu64 = totalbyteswrite; 1309 break; 1310 case DSM_TOTAL_BYTES_FREE: 1311 *destu64 = totalbytesfree; 1312 break; 1313 case DSM_TOTAL_TRANSFERS: 1314 *destu64 = totaltransfers; 1315 break; 1316 case DSM_TOTAL_TRANSFERS_READ: 1317 *destu64 = totaltransfersread; 1318 break; 1319 case DSM_TOTAL_TRANSFERS_WRITE: 1320 *destu64 = totaltransferswrite; 1321 break; 1322 case DSM_TOTAL_TRANSFERS_FREE: 1323 *destu64 = totaltransfersfree; 1324 break; 1325 case DSM_TOTAL_TRANSFERS_OTHER: 1326 *destu64 = totaltransfersother; 1327 break; 1328 case DSM_TOTAL_BLOCKS: 1329 *destu64 = totalblocks; 1330 break; 1331 case DSM_TOTAL_BLOCKS_READ: 1332 *destu64 = totalblocksread; 1333 break; 1334 case DSM_TOTAL_BLOCKS_WRITE: 1335 *destu64 = totalblockswrite; 1336 break; 1337 case DSM_TOTAL_BLOCKS_FREE: 1338 *destu64 = totalblocksfree; 1339 break; 1340 case DSM_KB_PER_TRANSFER: 1341 *destld = totalbytes; 1342 *destld /= 1024; 1343 if (totaltransfers > 0) 1344 *destld /= totaltransfers; 1345 else 1346 *destld = 0.0; 1347 break; 1348 case DSM_KB_PER_TRANSFER_READ: 1349 *destld = totalbytesread; 1350 *destld /= 1024; 1351 if (totaltransfersread > 0) 1352 *destld /= totaltransfersread; 1353 else 1354 *destld = 0.0; 1355 break; 1356 case DSM_KB_PER_TRANSFER_WRITE: 1357 *destld = totalbyteswrite; 1358 *destld /= 1024; 1359 if (totaltransferswrite > 0) 1360 *destld /= totaltransferswrite; 1361 else 1362 *destld = 0.0; 1363 break; 1364 case DSM_KB_PER_TRANSFER_FREE: 1365 *destld = totalbytesfree; 1366 *destld /= 1024; 1367 if (totaltransfersfree > 0) 1368 *destld /= totaltransfersfree; 1369 else 1370 *destld = 0.0; 1371 break; 1372 case DSM_TRANSFERS_PER_SECOND: 1373 if (etime > 0.0) { 1374 *destld = totaltransfers; 1375 *destld /= etime; 1376 } else 1377 *destld = 0.0; 1378 break; 1379 case DSM_TRANSFERS_PER_SECOND_READ: 1380 if (etime > 0.0) { 1381 *destld = totaltransfersread; 1382 *destld /= etime; 1383 } else 1384 *destld = 0.0; 1385 break; 1386 case DSM_TRANSFERS_PER_SECOND_WRITE: 1387 if (etime > 0.0) { 1388 *destld = totaltransferswrite; 1389 *destld /= etime; 1390 } else 1391 *destld = 0.0; 1392 break; 1393 case DSM_TRANSFERS_PER_SECOND_FREE: 1394 if (etime > 0.0) { 1395 *destld = totaltransfersfree; 1396 *destld /= etime; 1397 } else 1398 *destld = 0.0; 1399 break; 1400 case DSM_TRANSFERS_PER_SECOND_OTHER: 1401 if (etime > 0.0) { 1402 *destld = totaltransfersother; 1403 *destld /= etime; 1404 } else 1405 *destld = 0.0; 1406 break; 1407 case DSM_MB_PER_SECOND: 1408 *destld = totalbytes; 1409 *destld /= 1024 * 1024; 1410 if (etime > 0.0) 1411 *destld /= etime; 1412 else 1413 *destld = 0.0; 1414 break; 1415 case DSM_MB_PER_SECOND_READ: 1416 *destld = totalbytesread; 1417 *destld /= 1024 * 1024; 1418 if (etime > 0.0) 1419 *destld /= etime; 1420 else 1421 *destld = 0.0; 1422 break; 1423 case DSM_MB_PER_SECOND_WRITE: 1424 *destld = totalbyteswrite; 1425 *destld /= 1024 * 1024; 1426 if (etime > 0.0) 1427 *destld /= etime; 1428 else 1429 *destld = 0.0; 1430 break; 1431 case DSM_MB_PER_SECOND_FREE: 1432 *destld = totalbytesfree; 1433 *destld /= 1024 * 1024; 1434 if (etime > 0.0) 1435 *destld /= etime; 1436 else 1437 *destld = 0.0; 1438 break; 1439 case DSM_BLOCKS_PER_SECOND: 1440 *destld = totalblocks; 1441 if (etime > 0.0) 1442 *destld /= etime; 1443 else 1444 *destld = 0.0; 1445 break; 1446 case DSM_BLOCKS_PER_SECOND_READ: 1447 *destld = totalblocksread; 1448 if (etime > 0.0) 1449 *destld /= etime; 1450 else 1451 *destld = 0.0; 1452 break; 1453 case DSM_BLOCKS_PER_SECOND_WRITE: 1454 *destld = totalblockswrite; 1455 if (etime > 0.0) 1456 *destld /= etime; 1457 else 1458 *destld = 0.0; 1459 break; 1460 case DSM_BLOCKS_PER_SECOND_FREE: 1461 *destld = totalblocksfree; 1462 if (etime > 0.0) 1463 *destld /= etime; 1464 else 1465 *destld = 0.0; 1466 break; 1467 /* 1468 * This calculation is somewhat bogus. It simply divides 1469 * the elapsed time by the total number of transactions 1470 * completed. While that does give the caller a good 1471 * picture of the average rate of transaction completion, 1472 * it doesn't necessarily give the caller a good view of 1473 * how long transactions took to complete on average. 1474 * Those two numbers will be different for a device that 1475 * can handle more than one transaction at a time. e.g. 1476 * SCSI disks doing tagged queueing. 1477 * 1478 * The only way to accurately determine the real average 1479 * time per transaction would be to compute and store the 1480 * time on a per-transaction basis. That currently isn't 1481 * done in the kernel, and would only be desireable if it 1482 * could be implemented in a somewhat non-intrusive and high 1483 * performance way. 1484 */ 1485 case DSM_MS_PER_TRANSACTION: 1486 if (totaltransfers > 0) { 1487 *destld = 0; 1488 for (i = 0; i < DEVSTAT_N_TRANS_FLAGS; i++) 1489 *destld += DELTA_T(duration[i]); 1490 *destld /= totaltransfers; 1491 *destld *= 1000; 1492 } else 1493 *destld = 0.0; 1494 break; 1495 /* 1496 * As above, these next two really only give the average 1497 * rate of completion for read and write transactions, not 1498 * the average time the transaction took to complete. 1499 */ 1500 case DSM_MS_PER_TRANSACTION_READ: 1501 if (totaltransfersread > 0) { 1502 *destld = DELTA_T(duration[DEVSTAT_READ]); 1503 *destld /= totaltransfersread; 1504 *destld *= 1000; 1505 } else 1506 *destld = 0.0; 1507 break; 1508 case DSM_MS_PER_TRANSACTION_WRITE: 1509 if (totaltransferswrite > 0) { 1510 *destld = DELTA_T(duration[DEVSTAT_WRITE]); 1511 *destld /= totaltransferswrite; 1512 *destld *= 1000; 1513 } else 1514 *destld = 0.0; 1515 break; 1516 case DSM_MS_PER_TRANSACTION_FREE: 1517 if (totaltransfersfree > 0) { 1518 *destld = DELTA_T(duration[DEVSTAT_FREE]); 1519 *destld /= totaltransfersfree; 1520 *destld *= 1000; 1521 } else 1522 *destld = 0.0; 1523 break; 1524 case DSM_MS_PER_TRANSACTION_OTHER: 1525 if (totaltransfersother > 0) { 1526 *destld = DELTA_T(duration[DEVSTAT_NO_DATA]); 1527 *destld /= totaltransfersother; 1528 *destld *= 1000; 1529 } else 1530 *destld = 0.0; 1531 break; 1532 case DSM_BUSY_PCT: 1533 *destld = DELTA_T(busy_time); 1534 if (*destld < 0) 1535 *destld = 0; 1536 *destld /= etime; 1537 *destld *= 100; 1538 if (*destld < 0) 1539 *destld = 0; 1540 break; 1541 case DSM_QUEUE_LENGTH: 1542 *destu64 = current->start_count - current->end_count; 1543 break; 1544 /* 1545 * XXX: comment out the default block to see if any case's are missing. 1546 */ 1547 #if 1 1548 default: 1549 /* 1550 * This shouldn't happen, since we should have 1551 * caught any out of range metrics at the top of 1552 * the loop. 1553 */ 1554 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 1555 "%s: unknown metric %d", __func__, metric); 1556 retval = -1; 1557 goto bailout; 1558 break; /* NOTREACHED */ 1559 #endif 1560 } 1561 } 1562 1563 bailout: 1564 1565 va_end(ap); 1566 return(retval); 1567 } 1568 1569 static int 1570 readkmem(kvm_t *kd, unsigned long addr, void *buf, size_t nbytes) 1571 { 1572 1573 if (kvm_read(kd, addr, buf, nbytes) == -1) { 1574 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 1575 "%s: error reading value (kvm_read): %s", __func__, 1576 kvm_geterr(kd)); 1577 return(-1); 1578 } 1579 return(0); 1580 } 1581 1582 static int 1583 readkmem_nl(kvm_t *kd, const char *name, void *buf, size_t nbytes) 1584 { 1585 struct nlist nl[2]; 1586 1587 nl[0].n_name = (char *)name; 1588 nl[1].n_name = NULL; 1589 1590 if (kvm_nlist(kd, nl) == -1) { 1591 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 1592 "%s: error getting name list (kvm_nlist): %s", 1593 __func__, kvm_geterr(kd)); 1594 return(-1); 1595 } 1596 return(readkmem(kd, nl[0].n_value, buf, nbytes)); 1597 } 1598 1599 /* 1600 * This duplicates the functionality of the kernel sysctl handler for poking 1601 * through crash dumps. 1602 */ 1603 static char * 1604 get_devstat_kvm(kvm_t *kd) 1605 { 1606 int i, wp; 1607 long gen; 1608 struct devstat *nds; 1609 struct devstat ds; 1610 struct devstatlist dhead; 1611 int num_devs; 1612 char *rv = NULL; 1613 1614 if ((num_devs = devstat_getnumdevs(kd)) <= 0) 1615 return(NULL); 1616 if (KREADNL(kd, X_DEVICE_STATQ, dhead) == -1) 1617 return(NULL); 1618 1619 nds = STAILQ_FIRST(&dhead); 1620 1621 if ((rv = malloc(sizeof(gen))) == NULL) { 1622 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 1623 "%s: out of memory (initial malloc failed)", 1624 __func__); 1625 return(NULL); 1626 } 1627 gen = devstat_getgeneration(kd); 1628 memcpy(rv, &gen, sizeof(gen)); 1629 wp = sizeof(gen); 1630 /* 1631 * Now push out all the devices. 1632 */ 1633 for (i = 0; (nds != NULL) && (i < num_devs); 1634 nds = STAILQ_NEXT(nds, dev_links), i++) { 1635 if (readkmem(kd, (long)nds, &ds, sizeof(ds)) == -1) { 1636 free(rv); 1637 return(NULL); 1638 } 1639 nds = &ds; 1640 rv = (char *)reallocf(rv, sizeof(gen) + 1641 sizeof(ds) * (i + 1)); 1642 if (rv == NULL) { 1643 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 1644 "%s: out of memory (malloc failed)", 1645 __func__); 1646 return(NULL); 1647 } 1648 memcpy(rv + wp, &ds, sizeof(ds)); 1649 wp += sizeof(ds); 1650 } 1651 return(rv); 1652 } 1653