xref: /freebsd/lib/libdevstat/devstat.c (revision db33c6f3ae9d1231087710068ee4ea5398aacca7)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1997, 1998 Kenneth D. Merry.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. The name of the author may not be used to endorse or promote products
16  *    derived from this software without specific prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  */
30 
31 #include <sys/types.h>
32 #include <sys/sysctl.h>
33 #include <sys/errno.h>
34 #include <sys/resource.h>
35 #include <sys/queue.h>
36 
37 #include <ctype.h>
38 #include <err.h>
39 #include <fcntl.h>
40 #include <limits.h>
41 #include <stdio.h>
42 #include <stdlib.h>
43 #include <string.h>
44 #include <stdarg.h>
45 #include <kvm.h>
46 #include <nlist.h>
47 
48 #include "devstat.h"
49 
50 int
51 compute_stats(struct devstat *current, struct devstat *previous,
52 	      long double etime, u_int64_t *total_bytes,
53 	      u_int64_t *total_transfers, u_int64_t *total_blocks,
54 	      long double *kb_per_transfer, long double *transfers_per_second,
55 	      long double *mb_per_second, long double *blocks_per_second,
56 	      long double *ms_per_transaction);
57 
58 typedef enum {
59 	DEVSTAT_ARG_NOTYPE,
60 	DEVSTAT_ARG_UINT64,
61 	DEVSTAT_ARG_LD,
62 	DEVSTAT_ARG_SKIP
63 } devstat_arg_type;
64 
65 char devstat_errbuf[DEVSTAT_ERRBUF_SIZE];
66 
67 /*
68  * Table to match descriptive strings with device types.  These are in
69  * order from most common to least common to speed search time.
70  */
71 struct devstat_match_table match_table[] = {
72 	{"da",		DEVSTAT_TYPE_DIRECT,	DEVSTAT_MATCH_TYPE},
73 	{"cd",		DEVSTAT_TYPE_CDROM,	DEVSTAT_MATCH_TYPE},
74 	{"scsi",	DEVSTAT_TYPE_IF_SCSI,	DEVSTAT_MATCH_IF},
75 	{"ide",		DEVSTAT_TYPE_IF_IDE,	DEVSTAT_MATCH_IF},
76 	{"other",	DEVSTAT_TYPE_IF_OTHER,	DEVSTAT_MATCH_IF},
77 	{"nvme",	DEVSTAT_TYPE_IF_NVME,	DEVSTAT_MATCH_IF},
78 	{"worm",	DEVSTAT_TYPE_WORM,	DEVSTAT_MATCH_TYPE},
79 	{"sa",		DEVSTAT_TYPE_SEQUENTIAL,DEVSTAT_MATCH_TYPE},
80 	{"pass",	DEVSTAT_TYPE_PASS,	DEVSTAT_MATCH_PASS},
81 	{"optical",	DEVSTAT_TYPE_OPTICAL,	DEVSTAT_MATCH_TYPE},
82 	{"array",	DEVSTAT_TYPE_STORARRAY,	DEVSTAT_MATCH_TYPE},
83 	{"changer",	DEVSTAT_TYPE_CHANGER,	DEVSTAT_MATCH_TYPE},
84 	{"scanner",	DEVSTAT_TYPE_SCANNER,	DEVSTAT_MATCH_TYPE},
85 	{"printer",	DEVSTAT_TYPE_PRINTER,	DEVSTAT_MATCH_TYPE},
86 	{"floppy",	DEVSTAT_TYPE_FLOPPY,	DEVSTAT_MATCH_TYPE},
87 	{"proc",	DEVSTAT_TYPE_PROCESSOR,	DEVSTAT_MATCH_TYPE},
88 	{"comm",	DEVSTAT_TYPE_COMM,	DEVSTAT_MATCH_TYPE},
89 	{"enclosure",	DEVSTAT_TYPE_ENCLOSURE,	DEVSTAT_MATCH_TYPE},
90 	{NULL,		0,			0}
91 };
92 
93 struct devstat_args {
94 	devstat_metric 		metric;
95 	devstat_arg_type	argtype;
96 } devstat_arg_list[] = {
97 	{ DSM_NONE, DEVSTAT_ARG_NOTYPE },
98 	{ DSM_TOTAL_BYTES, DEVSTAT_ARG_UINT64 },
99 	{ DSM_TOTAL_BYTES_READ, DEVSTAT_ARG_UINT64 },
100 	{ DSM_TOTAL_BYTES_WRITE, DEVSTAT_ARG_UINT64 },
101 	{ DSM_TOTAL_TRANSFERS, DEVSTAT_ARG_UINT64 },
102 	{ DSM_TOTAL_TRANSFERS_READ, DEVSTAT_ARG_UINT64 },
103 	{ DSM_TOTAL_TRANSFERS_WRITE, DEVSTAT_ARG_UINT64 },
104 	{ DSM_TOTAL_TRANSFERS_OTHER, DEVSTAT_ARG_UINT64 },
105 	{ DSM_TOTAL_BLOCKS, DEVSTAT_ARG_UINT64 },
106 	{ DSM_TOTAL_BLOCKS_READ, DEVSTAT_ARG_UINT64 },
107 	{ DSM_TOTAL_BLOCKS_WRITE, DEVSTAT_ARG_UINT64 },
108 	{ DSM_KB_PER_TRANSFER, DEVSTAT_ARG_LD },
109 	{ DSM_KB_PER_TRANSFER_READ, DEVSTAT_ARG_LD },
110 	{ DSM_KB_PER_TRANSFER_WRITE, DEVSTAT_ARG_LD },
111 	{ DSM_TRANSFERS_PER_SECOND, DEVSTAT_ARG_LD },
112 	{ DSM_TRANSFERS_PER_SECOND_READ, DEVSTAT_ARG_LD },
113 	{ DSM_TRANSFERS_PER_SECOND_WRITE, DEVSTAT_ARG_LD },
114 	{ DSM_TRANSFERS_PER_SECOND_OTHER, DEVSTAT_ARG_LD },
115 	{ DSM_MB_PER_SECOND, DEVSTAT_ARG_LD },
116 	{ DSM_MB_PER_SECOND_READ, DEVSTAT_ARG_LD },
117 	{ DSM_MB_PER_SECOND_WRITE, DEVSTAT_ARG_LD },
118 	{ DSM_BLOCKS_PER_SECOND, DEVSTAT_ARG_LD },
119 	{ DSM_BLOCKS_PER_SECOND_READ, DEVSTAT_ARG_LD },
120 	{ DSM_BLOCKS_PER_SECOND_WRITE, DEVSTAT_ARG_LD },
121 	{ DSM_MS_PER_TRANSACTION, DEVSTAT_ARG_LD },
122 	{ DSM_MS_PER_TRANSACTION_READ, DEVSTAT_ARG_LD },
123 	{ DSM_MS_PER_TRANSACTION_WRITE, DEVSTAT_ARG_LD },
124 	{ DSM_SKIP, DEVSTAT_ARG_SKIP },
125 	{ DSM_TOTAL_BYTES_FREE, DEVSTAT_ARG_UINT64 },
126 	{ DSM_TOTAL_TRANSFERS_FREE, DEVSTAT_ARG_UINT64 },
127 	{ DSM_TOTAL_BLOCKS_FREE, DEVSTAT_ARG_UINT64 },
128 	{ DSM_KB_PER_TRANSFER_FREE, DEVSTAT_ARG_LD },
129 	{ DSM_MB_PER_SECOND_FREE, DEVSTAT_ARG_LD },
130 	{ DSM_TRANSFERS_PER_SECOND_FREE, DEVSTAT_ARG_LD },
131 	{ DSM_BLOCKS_PER_SECOND_FREE, DEVSTAT_ARG_LD },
132 	{ DSM_MS_PER_TRANSACTION_OTHER, DEVSTAT_ARG_LD },
133 	{ DSM_MS_PER_TRANSACTION_FREE, DEVSTAT_ARG_LD },
134 	{ DSM_BUSY_PCT, DEVSTAT_ARG_LD },
135 	{ DSM_QUEUE_LENGTH, DEVSTAT_ARG_UINT64 },
136 	{ DSM_TOTAL_DURATION, DEVSTAT_ARG_LD },
137 	{ DSM_TOTAL_DURATION_READ, DEVSTAT_ARG_LD },
138 	{ DSM_TOTAL_DURATION_WRITE, DEVSTAT_ARG_LD },
139 	{ DSM_TOTAL_DURATION_FREE, DEVSTAT_ARG_LD },
140 	{ DSM_TOTAL_DURATION_OTHER, DEVSTAT_ARG_LD },
141 	{ DSM_TOTAL_BUSY_TIME, DEVSTAT_ARG_LD },
142 };
143 
144 static const char *namelist[] = {
145 #define X_NUMDEVS	0
146 	"_devstat_num_devs",
147 #define X_GENERATION	1
148 	"_devstat_generation",
149 #define X_VERSION	2
150 	"_devstat_version",
151 #define X_DEVICE_STATQ	3
152 	"_device_statq",
153 #define X_TIME_UPTIME	4
154 	"_time_uptime",
155 #define X_END		5
156 };
157 
158 /*
159  * Local function declarations.
160  */
161 static int compare_select(const void *arg1, const void *arg2);
162 static int readkmem(kvm_t *kd, unsigned long addr, void *buf, size_t nbytes);
163 static int readkmem_nl(kvm_t *kd, const char *name, void *buf, size_t nbytes);
164 static char *get_devstat_kvm(kvm_t *kd);
165 
166 #define KREADNL(kd, var, val) \
167 	readkmem_nl(kd, namelist[var], &val, sizeof(val))
168 
169 int
170 devstat_getnumdevs(kvm_t *kd)
171 {
172 	size_t numdevsize;
173 	int numdevs;
174 
175 	numdevsize = sizeof(int);
176 
177 	/*
178 	 * Find out how many devices we have in the system.
179 	 */
180 	if (kd == NULL) {
181 		if (sysctlbyname("kern.devstat.numdevs", &numdevs,
182 				 &numdevsize, NULL, 0) == -1) {
183 			snprintf(devstat_errbuf, sizeof(devstat_errbuf),
184 				 "%s: error getting number of devices\n"
185 				 "%s: %s", __func__, __func__,
186 				 strerror(errno));
187 			return(-1);
188 		} else
189 			return(numdevs);
190 	} else {
191 
192 		if (KREADNL(kd, X_NUMDEVS, numdevs) == -1)
193 			return(-1);
194 		else
195 			return(numdevs);
196 	}
197 }
198 
199 /*
200  * This is an easy way to get the generation number, but the generation is
201  * supplied in a more atmoic manner by the kern.devstat.all sysctl.
202  * Because this generation sysctl is separate from the statistics sysctl,
203  * the device list and the generation could change between the time that
204  * this function is called and the device list is retrieved.
205  */
206 long
207 devstat_getgeneration(kvm_t *kd)
208 {
209 	size_t gensize;
210 	long generation;
211 
212 	gensize = sizeof(long);
213 
214 	/*
215 	 * Get the current generation number.
216 	 */
217 	if (kd == NULL) {
218 		if (sysctlbyname("kern.devstat.generation", &generation,
219 				 &gensize, NULL, 0) == -1) {
220 			snprintf(devstat_errbuf, sizeof(devstat_errbuf),
221 				 "%s: error getting devstat generation\n%s: %s",
222 				 __func__, __func__, strerror(errno));
223 			return(-1);
224 		} else
225 			return(generation);
226 	} else {
227 		if (KREADNL(kd, X_GENERATION, generation) == -1)
228 			return(-1);
229 		else
230 			return(generation);
231 	}
232 }
233 
234 /*
235  * Get the current devstat version.  The return value of this function
236  * should be compared with DEVSTAT_VERSION, which is defined in
237  * sys/devicestat.h.  This will enable userland programs to determine
238  * whether they are out of sync with the kernel.
239  */
240 int
241 devstat_getversion(kvm_t *kd)
242 {
243 	size_t versize;
244 	int version;
245 
246 	versize = sizeof(int);
247 
248 	/*
249 	 * Get the current devstat version.
250 	 */
251 	if (kd == NULL) {
252 		if (sysctlbyname("kern.devstat.version", &version, &versize,
253 				 NULL, 0) == -1) {
254 			snprintf(devstat_errbuf, sizeof(devstat_errbuf),
255 				 "%s: error getting devstat version\n%s: %s",
256 				 __func__, __func__, strerror(errno));
257 			return(-1);
258 		} else
259 			return(version);
260 	} else {
261 		if (KREADNL(kd, X_VERSION, version) == -1)
262 			return(-1);
263 		else
264 			return(version);
265 	}
266 }
267 
268 /*
269  * Check the devstat version we know about against the devstat version the
270  * kernel knows about.  If they don't match, print an error into the
271  * devstat error buffer, and return -1.  If they match, return 0.
272  */
273 int
274 devstat_checkversion(kvm_t *kd)
275 {
276 	int buflen, res, retval = 0, version;
277 
278 	version = devstat_getversion(kd);
279 
280 	if (version != DEVSTAT_VERSION) {
281 		/*
282 		 * If getversion() returns an error (i.e. -1), then it
283 		 * has printed an error message in the buffer.  Therefore,
284 		 * we need to add a \n to the end of that message before we
285 		 * print our own message in the buffer.
286 		 */
287 		if (version == -1)
288 			buflen = strlen(devstat_errbuf);
289 		else
290 			buflen = 0;
291 
292 		res = snprintf(devstat_errbuf + buflen,
293 			       DEVSTAT_ERRBUF_SIZE - buflen,
294 			       "%s%s: userland devstat version %d is not "
295 			       "the same as the kernel\n%s: devstat "
296 			       "version %d\n", version == -1 ? "\n" : "",
297 			       __func__, DEVSTAT_VERSION, __func__, version);
298 
299 		if (res < 0)
300 			devstat_errbuf[buflen] = '\0';
301 
302 		buflen = strlen(devstat_errbuf);
303 		if (version < DEVSTAT_VERSION)
304 			res = snprintf(devstat_errbuf + buflen,
305 				       DEVSTAT_ERRBUF_SIZE - buflen,
306 				       "%s: libdevstat newer than kernel\n",
307 				       __func__);
308 		else
309 			res = snprintf(devstat_errbuf + buflen,
310 				       DEVSTAT_ERRBUF_SIZE - buflen,
311 				       "%s: kernel newer than libdevstat\n",
312 				       __func__);
313 
314 		if (res < 0)
315 			devstat_errbuf[buflen] = '\0';
316 
317 		retval = -1;
318 	}
319 
320 	return(retval);
321 }
322 
323 /*
324  * Get the current list of devices and statistics, and the current
325  * generation number.
326  *
327  * Return values:
328  * -1  -- error
329  *  0  -- device list is unchanged
330  *  1  -- device list has changed
331  */
332 int
333 devstat_getdevs(kvm_t *kd, struct statinfo *stats)
334 {
335 	int error;
336 	size_t dssize;
337 	long oldgeneration;
338 	int retval = 0;
339 	struct devinfo *dinfo;
340 	struct timespec ts;
341 
342 	dinfo = stats->dinfo;
343 
344 	if (dinfo == NULL) {
345 		snprintf(devstat_errbuf, sizeof(devstat_errbuf),
346 			 "%s: stats->dinfo was NULL", __func__);
347 		return(-1);
348 	}
349 
350 	oldgeneration = dinfo->generation;
351 
352 	if (kd == NULL) {
353 		clock_gettime(CLOCK_MONOTONIC, &ts);
354 		stats->snap_time = ts.tv_sec + ts.tv_nsec * 1e-9;
355 
356 		/* If this is our first time through, mem_ptr will be null. */
357 		if (dinfo->mem_ptr == NULL) {
358 			/*
359 			 * Get the number of devices.  If it's negative, it's an
360 			 * error.  Don't bother setting the error string, since
361 			 * getnumdevs() has already done that for us.
362 			 */
363 			if ((dinfo->numdevs = devstat_getnumdevs(kd)) < 0)
364 				return(-1);
365 
366 			/*
367 			 * The kern.devstat.all sysctl returns the current
368 			 * generation number, as well as all the devices.
369 			 * So we need four bytes more.
370 			 */
371 			dssize = (dinfo->numdevs * sizeof(struct devstat)) +
372 				 sizeof(long);
373 			dinfo->mem_ptr = (u_int8_t *)malloc(dssize);
374 			if (dinfo->mem_ptr == NULL) {
375 				snprintf(devstat_errbuf, sizeof(devstat_errbuf),
376 					 "%s: Cannot allocate memory for mem_ptr element",
377 					 __func__);
378 				return(-1);
379 			}
380 		} else
381 			dssize = (dinfo->numdevs * sizeof(struct devstat)) +
382 				 sizeof(long);
383 
384 		/*
385 		 * Request all of the devices.  We only really allow for one
386 		 * ENOMEM failure.  It would, of course, be possible to just go
387 		 * in a loop and keep reallocing the device structure until we
388 		 * don't get ENOMEM back.  I'm not sure it's worth it, though.
389 		 * If devices are being added to the system that quickly, maybe
390 		 * the user can just wait until all devices are added.
391 		 */
392 		for (;;) {
393 			error = sysctlbyname("kern.devstat.all",
394 					     dinfo->mem_ptr,
395 					     &dssize, NULL, 0);
396 			if (error != -1 || errno != EBUSY)
397 				break;
398 		}
399 		if (error == -1) {
400 			/*
401 			 * If we get ENOMEM back, that means that there are
402 			 * more devices now, so we need to allocate more
403 			 * space for the device array.
404 			 */
405 			if (errno == ENOMEM) {
406 				/*
407 				 * No need to set the error string here,
408 				 * devstat_getnumdevs() will do that if it fails.
409 				 */
410 				if ((dinfo->numdevs = devstat_getnumdevs(kd)) < 0)
411 					return(-1);
412 
413 				dssize = (dinfo->numdevs *
414 					sizeof(struct devstat)) + sizeof(long);
415 				dinfo->mem_ptr = (u_int8_t *)
416 					realloc(dinfo->mem_ptr, dssize);
417 				if ((error = sysctlbyname("kern.devstat.all",
418 				    dinfo->mem_ptr, &dssize, NULL, 0)) == -1) {
419 					snprintf(devstat_errbuf,
420 						 sizeof(devstat_errbuf),
421 					    	 "%s: error getting device "
422 					    	 "stats\n%s: %s", __func__,
423 					    	 __func__, strerror(errno));
424 					return(-1);
425 				}
426 			} else {
427 				snprintf(devstat_errbuf, sizeof(devstat_errbuf),
428 					 "%s: error getting device stats\n"
429 					 "%s: %s", __func__, __func__,
430 					 strerror(errno));
431 				return(-1);
432 			}
433 		}
434 
435 	} else {
436 		if (KREADNL(kd, X_TIME_UPTIME, ts.tv_sec) == -1)
437 			return(-1);
438 		else
439 			stats->snap_time = ts.tv_sec;
440 
441 		/*
442 		 * This is of course non-atomic, but since we are working
443 		 * on a core dump, the generation is unlikely to change
444 		 */
445 		if ((dinfo->numdevs = devstat_getnumdevs(kd)) == -1)
446 			return(-1);
447 		if ((dinfo->mem_ptr = (u_int8_t *)get_devstat_kvm(kd)) == NULL)
448 			return(-1);
449 	}
450 	/*
451 	 * The sysctl spits out the generation as the first four bytes,
452 	 * then all of the device statistics structures.
453 	 */
454 	dinfo->generation = *(long *)dinfo->mem_ptr;
455 
456 	/*
457 	 * If the generation has changed, and if the current number of
458 	 * devices is not the same as the number of devices recorded in the
459 	 * devinfo structure, it is likely that the device list has shrunk.
460 	 * The reason that it is likely that the device list has shrunk in
461 	 * this case is that if the device list has grown, the sysctl above
462 	 * will return an ENOMEM error, and we will reset the number of
463 	 * devices and reallocate the device array.  If the second sysctl
464 	 * fails, we will return an error and therefore never get to this
465 	 * point.  If the device list has shrunk, the sysctl will not
466 	 * return an error since we have more space allocated than is
467 	 * necessary.  So, in the shrinkage case, we catch it here and
468 	 * reallocate the array so that we don't use any more space than is
469 	 * necessary.
470 	 */
471 	if (oldgeneration != dinfo->generation) {
472 		if (devstat_getnumdevs(kd) != dinfo->numdevs) {
473 			if ((dinfo->numdevs = devstat_getnumdevs(kd)) < 0)
474 				return(-1);
475 			dssize = (dinfo->numdevs * sizeof(struct devstat)) +
476 				sizeof(long);
477 			dinfo->mem_ptr = (u_int8_t *)realloc(dinfo->mem_ptr,
478 							     dssize);
479 		}
480 		retval = 1;
481 	}
482 
483 	dinfo->devices = (struct devstat *)(dinfo->mem_ptr + sizeof(long));
484 
485 	return(retval);
486 }
487 
488 /*
489  * selectdevs():
490  *
491  * Devices are selected/deselected based upon the following criteria:
492  * - devices specified by the user on the command line
493  * - devices matching any device type expressions given on the command line
494  * - devices with the highest I/O, if 'top' mode is enabled
495  * - the first n unselected devices in the device list, if maxshowdevs
496  *   devices haven't already been selected and if the user has not
497  *   specified any devices on the command line and if we're in "add" mode.
498  *
499  * Input parameters:
500  * - device selection list (dev_select)
501  * - current number of devices selected (num_selected)
502  * - total number of devices in the selection list (num_selections)
503  * - devstat generation as of the last time selectdevs() was called
504  *   (select_generation)
505  * - current devstat generation (current_generation)
506  * - current list of devices and statistics (devices)
507  * - number of devices in the current device list (numdevs)
508  * - compiled version of the command line device type arguments (matches)
509  *   - This is optional.  If the number of devices is 0, this will be ignored.
510  *   - The matching code pays attention to the current selection mode.  So
511  *     if you pass in a matching expression, it will be evaluated based
512  *     upon the selection mode that is passed in.  See below for details.
513  * - number of device type matching expressions (num_matches)
514  *   - Set to 0 to disable the matching code.
515  * - list of devices specified on the command line by the user (dev_selections)
516  * - number of devices selected on the command line by the user
517  *   (num_dev_selections)
518  * - Our selection mode.  There are four different selection modes:
519  *      - add mode.  (DS_SELECT_ADD) Any devices matching devices explicitly
520  *        selected by the user or devices matching a pattern given by the
521  *        user will be selected in addition to devices that are already
522  *        selected.  Additional devices will be selected, up to maxshowdevs
523  *        number of devices.
524  *      - only mode. (DS_SELECT_ONLY)  Only devices matching devices
525  *        explicitly given by the user or devices matching a pattern
526  *        given by the user will be selected.  No other devices will be
527  *        selected.
528  *      - addonly mode.  (DS_SELECT_ADDONLY)  This is similar to add and
529  *        only.  Basically, this will not de-select any devices that are
530  *        current selected, as only mode would, but it will also not
531  *        gratuitously select up to maxshowdevs devices as add mode would.
532  *      - remove mode.  (DS_SELECT_REMOVE)  Any devices matching devices
533  *        explicitly selected by the user or devices matching a pattern
534  *        given by the user will be de-selected.
535  * - maximum number of devices we can select (maxshowdevs)
536  * - flag indicating whether or not we're in 'top' mode (perf_select)
537  *
538  * Output data:
539  * - the device selection list may be modified and passed back out
540  * - the number of devices selected and the total number of items in the
541  *   device selection list may be changed
542  * - the selection generation may be changed to match the current generation
543  *
544  * Return values:
545  * -1  -- error
546  *  0  -- selected devices are unchanged
547  *  1  -- selected devices changed
548  */
549 int
550 devstat_selectdevs(struct device_selection **dev_select, int *num_selected,
551 		   int *num_selections, long *select_generation,
552 		   long current_generation, struct devstat *devices,
553 		   int numdevs, struct devstat_match *matches, int num_matches,
554 		   char **dev_selections, int num_dev_selections,
555 		   devstat_select_mode select_mode, int maxshowdevs,
556 		   int perf_select)
557 {
558 	int i, j, k;
559 	int init_selections = 0, init_selected_var = 0;
560 	struct device_selection *old_dev_select = NULL;
561 	int old_num_selections = 0, old_num_selected;
562 	int selection_number = 0;
563 	int changed = 0, found = 0;
564 
565 	if ((dev_select == NULL) || (devices == NULL) || (numdevs < 0))
566 		return(-1);
567 
568 	/*
569 	 * We always want to make sure that we have as many dev_select
570 	 * entries as there are devices.
571 	 */
572 	/*
573 	 * In this case, we haven't selected devices before.
574 	 */
575 	if (*dev_select == NULL) {
576 		*dev_select = (struct device_selection *)malloc(numdevs *
577 			sizeof(struct device_selection));
578 		*select_generation = current_generation;
579 		init_selections = 1;
580 		changed = 1;
581 	/*
582 	 * In this case, we have selected devices before, but the device
583 	 * list has changed since we last selected devices, so we need to
584 	 * either enlarge or reduce the size of the device selection list.
585 	 * But delay the resizing until after copying the data to old_dev_select
586 	 * as to not lose any data in the case of reducing the size.
587 	 */
588 	} else if (*num_selections != numdevs) {
589 		*select_generation = current_generation;
590 		init_selections = 1;
591 	/*
592 	 * In this case, we've selected devices before, and the selection
593 	 * list is the same size as it was the last time, but the device
594 	 * list has changed.
595 	 */
596 	} else if (*select_generation < current_generation) {
597 		*select_generation = current_generation;
598 		init_selections = 1;
599 	}
600 
601 	if (*dev_select == NULL) {
602 		snprintf(devstat_errbuf, sizeof(devstat_errbuf),
603 			 "%s: Cannot (re)allocate memory for dev_select argument",
604 			 __func__);
605 		return(-1);
606 	}
607 
608 	/*
609 	 * If we're in "only" mode, we want to clear out the selected
610 	 * variable since we're going to select exactly what the user wants
611 	 * this time through.
612 	 */
613 	if (select_mode == DS_SELECT_ONLY)
614 		init_selected_var = 1;
615 
616 	/*
617 	 * In all cases, we want to back up the number of selected devices.
618 	 * It is a quick and accurate way to determine whether the selected
619 	 * devices have changed.
620 	 */
621 	old_num_selected = *num_selected;
622 
623 	/*
624 	 * We want to make a backup of the current selection list if
625 	 * the list of devices has changed, or if we're in performance
626 	 * selection mode.  In both cases, we don't want to make a backup
627 	 * if we already know for sure that the list will be different.
628 	 * This is certainly the case if this is our first time through the
629 	 * selection code.
630 	 */
631 	if (((init_selected_var != 0) || (init_selections != 0)
632 	 || (perf_select != 0)) && (changed == 0)){
633 		old_dev_select = (struct device_selection *)malloc(
634 		    *num_selections * sizeof(struct device_selection));
635 		if (old_dev_select == NULL) {
636 			snprintf(devstat_errbuf, sizeof(devstat_errbuf),
637 				 "%s: Cannot allocate memory for selection list backup",
638 				 __func__);
639 			return(-1);
640 		}
641 		old_num_selections = *num_selections;
642 		bcopy(*dev_select, old_dev_select,
643 		    sizeof(struct device_selection) * *num_selections);
644 	}
645 
646 	if (!changed && *num_selections != numdevs) {
647 		*dev_select = (struct device_selection *)reallocf(*dev_select,
648 			numdevs * sizeof(struct device_selection));
649 	}
650 
651 	if (init_selections != 0) {
652 		bzero(*dev_select, sizeof(struct device_selection) * numdevs);
653 
654 		for (i = 0; i < numdevs; i++) {
655 			(*dev_select)[i].device_number =
656 				devices[i].device_number;
657 			strncpy((*dev_select)[i].device_name,
658 				devices[i].device_name,
659 				DEVSTAT_NAME_LEN);
660 			(*dev_select)[i].device_name[DEVSTAT_NAME_LEN - 1]='\0';
661 			(*dev_select)[i].unit_number = devices[i].unit_number;
662 			(*dev_select)[i].position = i;
663 		}
664 		*num_selections = numdevs;
665 	} else if (init_selected_var != 0) {
666 		for (i = 0; i < numdevs; i++)
667 			(*dev_select)[i].selected = 0;
668 	}
669 
670 	/* we haven't gotten around to selecting anything yet.. */
671 	if ((select_mode == DS_SELECT_ONLY) || (init_selections != 0)
672 	 || (init_selected_var != 0))
673 		*num_selected = 0;
674 
675 	/*
676 	 * Look through any devices the user specified on the command line
677 	 * and see if they match known devices.  If so, select them.
678 	 */
679 	for (i = 0; (i < *num_selections) && (num_dev_selections > 0); i++) {
680 		char tmpstr[80];
681 
682 		snprintf(tmpstr, sizeof(tmpstr), "%s%d",
683 			 (*dev_select)[i].device_name,
684 			 (*dev_select)[i].unit_number);
685 		for (j = 0; j < num_dev_selections; j++) {
686 			if (strcmp(tmpstr, dev_selections[j]) == 0) {
687 				/*
688 				 * Here we do different things based on the
689 				 * mode we're in.  If we're in add or
690 				 * addonly mode, we only select this device
691 				 * if it hasn't already been selected.
692 				 * Otherwise, we would be unnecessarily
693 				 * changing the selection order and
694 				 * incrementing the selection count.  If
695 				 * we're in only mode, we unconditionally
696 				 * select this device, since in only mode
697 				 * any previous selections are erased and
698 				 * manually specified devices are the first
699 				 * ones to be selected.  If we're in remove
700 				 * mode, we de-select the specified device and
701 				 * decrement the selection count.
702 				 */
703 				switch(select_mode) {
704 				case DS_SELECT_ADD:
705 				case DS_SELECT_ADDONLY:
706 					if ((*dev_select)[i].selected)
707 						break;
708 					/* FALLTHROUGH */
709 				case DS_SELECT_ONLY:
710 					(*dev_select)[i].selected =
711 						++selection_number;
712 					(*num_selected)++;
713 					break;
714 				case DS_SELECT_REMOVE:
715 					(*dev_select)[i].selected = 0;
716 					(*num_selected)--;
717 					/*
718 					 * This isn't passed back out, we
719 					 * just use it to keep track of
720 					 * how many devices we've removed.
721 					 */
722 					num_dev_selections--;
723 					break;
724 				}
725 				break;
726 			}
727 		}
728 	}
729 
730 	/*
731 	 * Go through the user's device type expressions and select devices
732 	 * accordingly.  We only do this if the number of devices already
733 	 * selected is less than the maximum number we can show.
734 	 */
735 	for (i = 0; (i < num_matches) && (*num_selected < maxshowdevs); i++) {
736 		/* We should probably indicate some error here */
737 		if ((matches[i].match_fields == DEVSTAT_MATCH_NONE)
738 		 || (matches[i].num_match_categories <= 0))
739 			continue;
740 
741 		for (j = 0; j < numdevs; j++) {
742 			int num_match_categories;
743 
744 			num_match_categories = matches[i].num_match_categories;
745 
746 			/*
747 			 * Determine whether or not the current device
748 			 * matches the given matching expression.  This if
749 			 * statement consists of three components:
750 			 *   - the device type check
751 			 *   - the device interface check
752 			 *   - the passthrough check
753 			 * If a the matching test is successful, it
754 			 * decrements the number of matching categories,
755 			 * and if we've reached the last element that
756 			 * needed to be matched, the if statement succeeds.
757 			 *
758 			 */
759 			if ((((matches[i].match_fields & DEVSTAT_MATCH_TYPE)!=0)
760 			  && ((devices[j].device_type & DEVSTAT_TYPE_MASK) ==
761 			        (matches[i].device_type & DEVSTAT_TYPE_MASK))
762 			  &&(((matches[i].match_fields & DEVSTAT_MATCH_PASS)!=0)
763 			   || (((matches[i].match_fields &
764 				DEVSTAT_MATCH_PASS) == 0)
765 			    && ((devices[j].device_type &
766 			        DEVSTAT_TYPE_PASS) == 0)))
767 			  && (--num_match_categories == 0))
768 			 || (((matches[i].match_fields & DEVSTAT_MATCH_IF) != 0)
769 			  && ((devices[j].device_type & DEVSTAT_TYPE_IF_MASK) ==
770 			        (matches[i].device_type & DEVSTAT_TYPE_IF_MASK))
771 			  &&(((matches[i].match_fields & DEVSTAT_MATCH_PASS)!=0)
772 			   || (((matches[i].match_fields &
773 				DEVSTAT_MATCH_PASS) == 0)
774 			    && ((devices[j].device_type &
775 				DEVSTAT_TYPE_PASS) == 0)))
776 			  && (--num_match_categories == 0))
777 			 || (((matches[i].match_fields & DEVSTAT_MATCH_PASS)!=0)
778 			  && ((devices[j].device_type & DEVSTAT_TYPE_PASS) != 0)
779 			  && (--num_match_categories == 0))) {
780 
781 				/*
782 				 * This is probably a non-optimal solution
783 				 * to the problem that the devices in the
784 				 * device list will not be in the same
785 				 * order as the devices in the selection
786 				 * array.
787 				 */
788 				for (k = 0; k < numdevs; k++) {
789 					if ((*dev_select)[k].position == j) {
790 						found = 1;
791 						break;
792 					}
793 				}
794 
795 				/*
796 				 * There shouldn't be a case where a device
797 				 * in the device list is not in the
798 				 * selection list...but it could happen.
799 				 */
800 				if (found != 1) {
801 					fprintf(stderr, "selectdevs: couldn't"
802 						" find %s%d in selection "
803 						"list\n",
804 						devices[j].device_name,
805 						devices[j].unit_number);
806 					break;
807 				}
808 
809 				/*
810 				 * We do different things based upon the
811 				 * mode we're in.  If we're in add or only
812 				 * mode, we go ahead and select this device
813 				 * if it hasn't already been selected.  If
814 				 * it has already been selected, we leave
815 				 * it alone so we don't mess up the
816 				 * selection ordering.  Manually specified
817 				 * devices have already been selected, and
818 				 * they have higher priority than pattern
819 				 * matched devices.  If we're in remove
820 				 * mode, we de-select the given device and
821 				 * decrement the selected count.
822 				 */
823 				switch(select_mode) {
824 				case DS_SELECT_ADD:
825 				case DS_SELECT_ADDONLY:
826 				case DS_SELECT_ONLY:
827 					if ((*dev_select)[k].selected != 0)
828 						break;
829 					(*dev_select)[k].selected =
830 						++selection_number;
831 					(*num_selected)++;
832 					break;
833 				case DS_SELECT_REMOVE:
834 					(*dev_select)[k].selected = 0;
835 					(*num_selected)--;
836 					break;
837 				}
838 			}
839 		}
840 	}
841 
842 	/*
843 	 * Here we implement "top" mode.  Devices are sorted in the
844 	 * selection array based on two criteria:  whether or not they are
845 	 * selected (not selection number, just the fact that they are
846 	 * selected!) and the number of bytes in the "bytes" field of the
847 	 * selection structure.  The bytes field generally must be kept up
848 	 * by the user.  In the future, it may be maintained by library
849 	 * functions, but for now the user has to do the work.
850 	 *
851 	 * At first glance, it may seem wrong that we don't go through and
852 	 * select every device in the case where the user hasn't specified
853 	 * any devices or patterns.  In fact, though, it won't make any
854 	 * difference in the device sorting.  In that particular case (i.e.
855 	 * when we're in "add" or "only" mode, and the user hasn't
856 	 * specified anything) the first time through no devices will be
857 	 * selected, so the only criterion used to sort them will be their
858 	 * performance.  The second time through, and every time thereafter,
859 	 * all devices will be selected, so again selection won't matter.
860 	 */
861 	if (perf_select != 0) {
862 
863 		/* Sort the device array by throughput  */
864 		qsort(*dev_select, *num_selections,
865 		      sizeof(struct device_selection),
866 		      compare_select);
867 
868 		if (*num_selected == 0) {
869 			/*
870 			 * Here we select every device in the array, if it
871 			 * isn't already selected.  Because the 'selected'
872 			 * variable in the selection array entries contains
873 			 * the selection order, the devstats routine can show
874 			 * the devices that were selected first.
875 			 */
876 			for (i = 0; i < *num_selections; i++) {
877 				if ((*dev_select)[i].selected == 0) {
878 					(*dev_select)[i].selected =
879 						++selection_number;
880 					(*num_selected)++;
881 				}
882 			}
883 		} else {
884 			selection_number = 0;
885 			for (i = 0; i < *num_selections; i++) {
886 				if ((*dev_select)[i].selected != 0) {
887 					(*dev_select)[i].selected =
888 						++selection_number;
889 				}
890 			}
891 		}
892 	}
893 
894 	/*
895 	 * If we're in the "add" selection mode and if we haven't already
896 	 * selected maxshowdevs number of devices, go through the array and
897 	 * select any unselected devices.  If we're in "only" mode, we
898 	 * obviously don't want to select anything other than what the user
899 	 * specifies.  If we're in "remove" mode, it probably isn't a good
900 	 * idea to go through and select any more devices, since we might
901 	 * end up selecting something that the user wants removed.  Through
902 	 * more complicated logic, we could actually figure this out, but
903 	 * that would probably require combining this loop with the various
904 	 * selections loops above.
905 	 */
906 	if ((select_mode == DS_SELECT_ADD) && (*num_selected < maxshowdevs)) {
907 		for (i = 0; i < *num_selections; i++)
908 			if ((*dev_select)[i].selected == 0) {
909 				(*dev_select)[i].selected = ++selection_number;
910 				(*num_selected)++;
911 			}
912 	}
913 
914 	/*
915 	 * Look at the number of devices that have been selected.  If it
916 	 * has changed, set the changed variable.  Otherwise, if we've
917 	 * made a backup of the selection list, compare it to the current
918 	 * selection list to see if the selected devices have changed.
919 	 */
920 	if ((changed == 0) && (old_num_selected != *num_selected))
921 		changed = 1;
922 	else if ((changed == 0) && (old_dev_select != NULL)) {
923 		/*
924 		 * Now we go through the selection list and we look at
925 		 * it three different ways.
926 		 */
927 		for (i = 0; (i < *num_selections) && (changed == 0) &&
928 		     (i < old_num_selections); i++) {
929 			/*
930 			 * If the device at index i in both the new and old
931 			 * selection arrays has the same device number and
932 			 * selection status, it hasn't changed.  We
933 			 * continue on to the next index.
934 			 */
935 			if (((*dev_select)[i].device_number ==
936 			     old_dev_select[i].device_number)
937 			 && ((*dev_select)[i].selected ==
938 			     old_dev_select[i].selected))
939 				continue;
940 
941 			/*
942 			 * Now, if we're still going through the if
943 			 * statement, the above test wasn't true.  So we
944 			 * check here to see if the device at index i in
945 			 * the current array is the same as the device at
946 			 * index i in the old array.  If it is, that means
947 			 * that its selection number has changed.  Set
948 			 * changed to 1 and exit the loop.
949 			 */
950 			else if ((*dev_select)[i].device_number ==
951 			          old_dev_select[i].device_number) {
952 				changed = 1;
953 				break;
954 			}
955 			/*
956 			 * If we get here, then the device at index i in
957 			 * the current array isn't the same device as the
958 			 * device at index i in the old array.
959 			 */
960 			else {
961 				found = 0;
962 
963 				/*
964 				 * Search through the old selection array
965 				 * looking for a device with the same
966 				 * device number as the device at index i
967 				 * in the current array.  If the selection
968 				 * status is the same, then we mark it as
969 				 * found.  If the selection status isn't
970 				 * the same, we break out of the loop.
971 				 * Since found isn't set, changed will be
972 				 * set to 1 below.
973 				 */
974 				for (j = 0; j < old_num_selections; j++) {
975 					if (((*dev_select)[i].device_number ==
976 					      old_dev_select[j].device_number)
977 					 && ((*dev_select)[i].selected ==
978 					      old_dev_select[j].selected)){
979 						found = 1;
980 						break;
981 					}
982 					else if ((*dev_select)[i].device_number
983 					    == old_dev_select[j].device_number)
984 						break;
985 				}
986 				if (found == 0)
987 					changed = 1;
988 			}
989 		}
990 	}
991 	if (old_dev_select != NULL)
992 		free(old_dev_select);
993 
994 	return(changed);
995 }
996 
997 /*
998  * Comparison routine for qsort() above.  Note that the comparison here is
999  * backwards -- generally, it should return a value to indicate whether
1000  * arg1 is <, =, or > arg2.  Instead, it returns the opposite.  The reason
1001  * it returns the opposite is so that the selection array will be sorted in
1002  * order of decreasing performance.  We sort on two parameters.  The first
1003  * sort key is whether or not one or the other of the devices in question
1004  * has been selected.  If one of them has, and the other one has not, the
1005  * selected device is automatically more important than the unselected
1006  * device.  If neither device is selected, we judge the devices based upon
1007  * performance.
1008  */
1009 static int
1010 compare_select(const void *arg1, const void *arg2)
1011 {
1012 	if ((((const struct device_selection *)arg1)->selected)
1013 	 && (((const struct device_selection *)arg2)->selected == 0))
1014 		return(-1);
1015 	else if ((((const struct device_selection *)arg1)->selected == 0)
1016 	      && (((const struct device_selection *)arg2)->selected))
1017 		return(1);
1018 	else if (((const struct device_selection *)arg2)->bytes <
1019 	         ((const struct device_selection *)arg1)->bytes)
1020 		return(-1);
1021 	else if (((const struct device_selection *)arg2)->bytes >
1022 		 ((const struct device_selection *)arg1)->bytes)
1023 		return(1);
1024 	else
1025 		return(0);
1026 }
1027 
1028 /*
1029  * Take a string with the general format "arg1,arg2,arg3", and build a
1030  * device matching expression from it.
1031  */
1032 int
1033 devstat_buildmatch(char *match_str, struct devstat_match **matches,
1034 		   int *num_matches)
1035 {
1036 	char *tstr[5];
1037 	char **tempstr;
1038 	int num_args;
1039 	int i, j;
1040 
1041 	/* We can't do much without a string to parse */
1042 	if (match_str == NULL) {
1043 		snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1044 			 "%s: no match expression", __func__);
1045 		return(-1);
1046 	}
1047 
1048 	/*
1049 	 * Break the (comma delimited) input string out into separate strings.
1050 	 */
1051 	for (tempstr = tstr, num_args  = 0;
1052 	     (*tempstr = strsep(&match_str, ",")) != NULL && (num_args < 5);)
1053 		if (**tempstr != '\0') {
1054 			num_args++;
1055 			if (++tempstr >= &tstr[5])
1056 				break;
1057 		}
1058 
1059 	/* The user gave us too many type arguments */
1060 	if (num_args > 3) {
1061 		snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1062 			 "%s: too many type arguments", __func__);
1063 		return(-1);
1064 	}
1065 
1066 	if (*num_matches == 0)
1067 		*matches = NULL;
1068 
1069 	*matches = (struct devstat_match *)reallocf(*matches,
1070 		  sizeof(struct devstat_match) * (*num_matches + 1));
1071 
1072 	if (*matches == NULL) {
1073 		snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1074 			 "%s: Cannot allocate memory for matches list", __func__);
1075 		return(-1);
1076 	}
1077 
1078 	/* Make sure the current entry is clear */
1079 	bzero(&matches[0][*num_matches], sizeof(struct devstat_match));
1080 
1081 	/*
1082 	 * Step through the arguments the user gave us and build a device
1083 	 * matching expression from them.
1084 	 */
1085 	for (i = 0; i < num_args; i++) {
1086 		char *tempstr2, *tempstr3;
1087 
1088 		/*
1089 		 * Get rid of leading white space.
1090 		 */
1091 		tempstr2 = tstr[i];
1092 		while (isspace(*tempstr2) && (*tempstr2 != '\0'))
1093 			tempstr2++;
1094 
1095 		/*
1096 		 * Get rid of trailing white space.
1097 		 */
1098 		tempstr3 = &tempstr2[strlen(tempstr2) - 1];
1099 
1100 		while ((*tempstr3 != '\0') && (tempstr3 > tempstr2)
1101 		    && (isspace(*tempstr3))) {
1102 			*tempstr3 = '\0';
1103 			tempstr3--;
1104 		}
1105 
1106 		/*
1107 		 * Go through the match table comparing the user's
1108 		 * arguments to known device types, interfaces, etc.
1109 		 */
1110 		for (j = 0; match_table[j].match_str != NULL; j++) {
1111 			/*
1112 			 * We do case-insensitive matching, in case someone
1113 			 * wants to enter "SCSI" instead of "scsi" or
1114 			 * something like that.  Only compare as many
1115 			 * characters as are in the string in the match
1116 			 * table.  This should help if someone tries to use
1117 			 * a super-long match expression.
1118 			 */
1119 			if (strncasecmp(tempstr2, match_table[j].match_str,
1120 			    strlen(match_table[j].match_str)) == 0) {
1121 				/*
1122 				 * Make sure the user hasn't specified two
1123 				 * items of the same type, like "da" and
1124 				 * "cd".  One device cannot be both.
1125 				 */
1126 				if (((*matches)[*num_matches].match_fields &
1127 				    match_table[j].match_field) != 0) {
1128 					snprintf(devstat_errbuf,
1129 						 sizeof(devstat_errbuf),
1130 						 "%s: cannot have more than "
1131 						 "one match item in a single "
1132 						 "category", __func__);
1133 					return(-1);
1134 				}
1135 				/*
1136 				 * If we've gotten this far, we have a
1137 				 * winner.  Set the appropriate fields in
1138 				 * the match entry.
1139 				 */
1140 				(*matches)[*num_matches].match_fields |=
1141 					match_table[j].match_field;
1142 				(*matches)[*num_matches].device_type |=
1143 					match_table[j].type;
1144 				(*matches)[*num_matches].num_match_categories++;
1145 				break;
1146 			}
1147 		}
1148 		/*
1149 		 * We should have found a match in the above for loop.  If
1150 		 * not, that means the user entered an invalid device type
1151 		 * or interface.
1152 		 */
1153 		if ((*matches)[*num_matches].num_match_categories != (i + 1)) {
1154 			snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1155 				 "%s: unknown match item \"%s\"", __func__,
1156 				 tstr[i]);
1157 			return(-1);
1158 		}
1159 	}
1160 
1161 	(*num_matches)++;
1162 
1163 	return(0);
1164 }
1165 
1166 /*
1167  * Compute a number of device statistics.  Only one field is mandatory, and
1168  * that is "current".  Everything else is optional.  The caller passes in
1169  * pointers to variables to hold the various statistics he desires.  If he
1170  * doesn't want a particular staistic, he should pass in a NULL pointer.
1171  * Return values:
1172  * 0   -- success
1173  * -1  -- failure
1174  */
1175 int
1176 compute_stats(struct devstat *current, struct devstat *previous,
1177 	      long double etime, u_int64_t *total_bytes,
1178 	      u_int64_t *total_transfers, u_int64_t *total_blocks,
1179 	      long double *kb_per_transfer, long double *transfers_per_second,
1180 	      long double *mb_per_second, long double *blocks_per_second,
1181 	      long double *ms_per_transaction)
1182 {
1183 	return(devstat_compute_statistics(current, previous, etime,
1184 	       total_bytes ? DSM_TOTAL_BYTES : DSM_SKIP,
1185 	       total_bytes,
1186 	       total_transfers ? DSM_TOTAL_TRANSFERS : DSM_SKIP,
1187 	       total_transfers,
1188 	       total_blocks ? DSM_TOTAL_BLOCKS : DSM_SKIP,
1189 	       total_blocks,
1190 	       kb_per_transfer ? DSM_KB_PER_TRANSFER : DSM_SKIP,
1191 	       kb_per_transfer,
1192 	       transfers_per_second ? DSM_TRANSFERS_PER_SECOND : DSM_SKIP,
1193 	       transfers_per_second,
1194 	       mb_per_second ? DSM_MB_PER_SECOND : DSM_SKIP,
1195 	       mb_per_second,
1196 	       blocks_per_second ? DSM_BLOCKS_PER_SECOND : DSM_SKIP,
1197 	       blocks_per_second,
1198 	       ms_per_transaction ? DSM_MS_PER_TRANSACTION : DSM_SKIP,
1199 	       ms_per_transaction,
1200 	       DSM_NONE));
1201 }
1202 
1203 
1204 /* This is 1/2^64 */
1205 #define BINTIME_SCALE 5.42101086242752217003726400434970855712890625e-20
1206 
1207 long double
1208 devstat_compute_etime(struct bintime *cur_time, struct bintime *prev_time)
1209 {
1210 	long double etime;
1211 
1212 	etime = cur_time->sec;
1213 	etime += cur_time->frac * BINTIME_SCALE;
1214 	if (prev_time != NULL) {
1215 		etime -= prev_time->sec;
1216 		etime -= prev_time->frac * BINTIME_SCALE;
1217 	}
1218 	return(etime);
1219 }
1220 
1221 #define DELTA(field, index)				\
1222 	(current->field[(index)] - (previous ? previous->field[(index)] : 0))
1223 
1224 #define DELTA_T(field)					\
1225 	devstat_compute_etime(&current->field,  	\
1226 	(previous ? &previous->field : NULL))
1227 
1228 int
1229 devstat_compute_statistics(struct devstat *current, struct devstat *previous,
1230 			   long double etime, ...)
1231 {
1232 	u_int64_t totalbytes, totalbytesread, totalbyteswrite, totalbytesfree;
1233 	u_int64_t totaltransfers, totaltransfersread, totaltransferswrite;
1234 	u_int64_t totaltransfersother, totalblocks, totalblocksread;
1235 	u_int64_t totalblockswrite, totaltransfersfree, totalblocksfree;
1236 	long double totalduration, totaldurationread, totaldurationwrite;
1237 	long double totaldurationfree, totaldurationother;
1238 	va_list ap;
1239 	devstat_metric metric;
1240 	u_int64_t *destu64;
1241 	long double *destld;
1242 	int retval;
1243 
1244 	retval = 0;
1245 
1246 	/*
1247 	 * current is the only mandatory field.
1248 	 */
1249 	if (current == NULL) {
1250 		snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1251 			 "%s: current stats structure was NULL", __func__);
1252 		return(-1);
1253 	}
1254 
1255 	totalbytesread = DELTA(bytes, DEVSTAT_READ);
1256 	totalbyteswrite = DELTA(bytes, DEVSTAT_WRITE);
1257 	totalbytesfree = DELTA(bytes, DEVSTAT_FREE);
1258 	totalbytes = totalbytesread + totalbyteswrite + totalbytesfree;
1259 
1260 	totaltransfersread = DELTA(operations, DEVSTAT_READ);
1261 	totaltransferswrite = DELTA(operations, DEVSTAT_WRITE);
1262 	totaltransfersother = DELTA(operations, DEVSTAT_NO_DATA);
1263 	totaltransfersfree = DELTA(operations, DEVSTAT_FREE);
1264 	totaltransfers = totaltransfersread + totaltransferswrite +
1265 			 totaltransfersother + totaltransfersfree;
1266 
1267 	totalblocks = totalbytes;
1268 	totalblocksread = totalbytesread;
1269 	totalblockswrite = totalbyteswrite;
1270 	totalblocksfree = totalbytesfree;
1271 
1272 	if (current->block_size > 0) {
1273 		totalblocks /= current->block_size;
1274 		totalblocksread /= current->block_size;
1275 		totalblockswrite /= current->block_size;
1276 		totalblocksfree /= current->block_size;
1277 	} else {
1278 		totalblocks /= 512;
1279 		totalblocksread /= 512;
1280 		totalblockswrite /= 512;
1281 		totalblocksfree /= 512;
1282 	}
1283 
1284 	totaldurationread = DELTA_T(duration[DEVSTAT_READ]);
1285 	totaldurationwrite = DELTA_T(duration[DEVSTAT_WRITE]);
1286 	totaldurationfree = DELTA_T(duration[DEVSTAT_FREE]);
1287 	totaldurationother = DELTA_T(duration[DEVSTAT_NO_DATA]);
1288 	totalduration = totaldurationread + totaldurationwrite +
1289 	    totaldurationfree + totaldurationother;
1290 
1291 	va_start(ap, etime);
1292 
1293 	while ((metric = (devstat_metric)va_arg(ap, devstat_metric)) != 0) {
1294 
1295 		if (metric == DSM_NONE)
1296 			break;
1297 
1298 		if (metric >= DSM_MAX) {
1299 			snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1300 				 "%s: metric %d is out of range", __func__,
1301 				 metric);
1302 			retval = -1;
1303 			goto bailout;
1304 		}
1305 
1306 		switch (devstat_arg_list[metric].argtype) {
1307 		case DEVSTAT_ARG_UINT64:
1308 			destu64 = (u_int64_t *)va_arg(ap, u_int64_t *);
1309 			break;
1310 		case DEVSTAT_ARG_LD:
1311 			destld = (long double *)va_arg(ap, long double *);
1312 			break;
1313 		case DEVSTAT_ARG_SKIP:
1314 			destld = (long double *)va_arg(ap, long double *);
1315 			break;
1316 		default:
1317 			retval = -1;
1318 			goto bailout;
1319 			break; /* NOTREACHED */
1320 		}
1321 
1322 		if (devstat_arg_list[metric].argtype == DEVSTAT_ARG_SKIP)
1323 			continue;
1324 
1325 		switch (metric) {
1326 		case DSM_TOTAL_BYTES:
1327 			*destu64 = totalbytes;
1328 			break;
1329 		case DSM_TOTAL_BYTES_READ:
1330 			*destu64 = totalbytesread;
1331 			break;
1332 		case DSM_TOTAL_BYTES_WRITE:
1333 			*destu64 = totalbyteswrite;
1334 			break;
1335 		case DSM_TOTAL_BYTES_FREE:
1336 			*destu64 = totalbytesfree;
1337 			break;
1338 		case DSM_TOTAL_TRANSFERS:
1339 			*destu64 = totaltransfers;
1340 			break;
1341 		case DSM_TOTAL_TRANSFERS_READ:
1342 			*destu64 = totaltransfersread;
1343 			break;
1344 		case DSM_TOTAL_TRANSFERS_WRITE:
1345 			*destu64 = totaltransferswrite;
1346 			break;
1347 		case DSM_TOTAL_TRANSFERS_FREE:
1348 			*destu64 = totaltransfersfree;
1349 			break;
1350 		case DSM_TOTAL_TRANSFERS_OTHER:
1351 			*destu64 = totaltransfersother;
1352 			break;
1353 		case DSM_TOTAL_BLOCKS:
1354 			*destu64 = totalblocks;
1355 			break;
1356 		case DSM_TOTAL_BLOCKS_READ:
1357 			*destu64 = totalblocksread;
1358 			break;
1359 		case DSM_TOTAL_BLOCKS_WRITE:
1360 			*destu64 = totalblockswrite;
1361 			break;
1362 		case DSM_TOTAL_BLOCKS_FREE:
1363 			*destu64 = totalblocksfree;
1364 			break;
1365 		case DSM_KB_PER_TRANSFER:
1366 			*destld = totalbytes;
1367 			*destld /= 1024;
1368 			if (totaltransfers > 0)
1369 				*destld /= totaltransfers;
1370 			else
1371 				*destld = 0.0;
1372 			break;
1373 		case DSM_KB_PER_TRANSFER_READ:
1374 			*destld = totalbytesread;
1375 			*destld /= 1024;
1376 			if (totaltransfersread > 0)
1377 				*destld /= totaltransfersread;
1378 			else
1379 				*destld = 0.0;
1380 			break;
1381 		case DSM_KB_PER_TRANSFER_WRITE:
1382 			*destld = totalbyteswrite;
1383 			*destld /= 1024;
1384 			if (totaltransferswrite > 0)
1385 				*destld /= totaltransferswrite;
1386 			else
1387 				*destld = 0.0;
1388 			break;
1389 		case DSM_KB_PER_TRANSFER_FREE:
1390 			*destld = totalbytesfree;
1391 			*destld /= 1024;
1392 			if (totaltransfersfree > 0)
1393 				*destld /= totaltransfersfree;
1394 			else
1395 				*destld = 0.0;
1396 			break;
1397 		case DSM_TRANSFERS_PER_SECOND:
1398 			if (etime > 0.0) {
1399 				*destld = totaltransfers;
1400 				*destld /= etime;
1401 			} else
1402 				*destld = 0.0;
1403 			break;
1404 		case DSM_TRANSFERS_PER_SECOND_READ:
1405 			if (etime > 0.0) {
1406 				*destld = totaltransfersread;
1407 				*destld /= etime;
1408 			} else
1409 				*destld = 0.0;
1410 			break;
1411 		case DSM_TRANSFERS_PER_SECOND_WRITE:
1412 			if (etime > 0.0) {
1413 				*destld = totaltransferswrite;
1414 				*destld /= etime;
1415 			} else
1416 				*destld = 0.0;
1417 			break;
1418 		case DSM_TRANSFERS_PER_SECOND_FREE:
1419 			if (etime > 0.0) {
1420 				*destld = totaltransfersfree;
1421 				*destld /= etime;
1422 			} else
1423 				*destld = 0.0;
1424 			break;
1425 		case DSM_TRANSFERS_PER_SECOND_OTHER:
1426 			if (etime > 0.0) {
1427 				*destld = totaltransfersother;
1428 				*destld /= etime;
1429 			} else
1430 				*destld = 0.0;
1431 			break;
1432 		case DSM_MB_PER_SECOND:
1433 			*destld = totalbytes;
1434 			*destld /= 1024 * 1024;
1435 			if (etime > 0.0)
1436 				*destld /= etime;
1437 			else
1438 				*destld = 0.0;
1439 			break;
1440 		case DSM_MB_PER_SECOND_READ:
1441 			*destld = totalbytesread;
1442 			*destld /= 1024 * 1024;
1443 			if (etime > 0.0)
1444 				*destld /= etime;
1445 			else
1446 				*destld = 0.0;
1447 			break;
1448 		case DSM_MB_PER_SECOND_WRITE:
1449 			*destld = totalbyteswrite;
1450 			*destld /= 1024 * 1024;
1451 			if (etime > 0.0)
1452 				*destld /= etime;
1453 			else
1454 				*destld = 0.0;
1455 			break;
1456 		case DSM_MB_PER_SECOND_FREE:
1457 			*destld = totalbytesfree;
1458 			*destld /= 1024 * 1024;
1459 			if (etime > 0.0)
1460 				*destld /= etime;
1461 			else
1462 				*destld = 0.0;
1463 			break;
1464 		case DSM_BLOCKS_PER_SECOND:
1465 			*destld = totalblocks;
1466 			if (etime > 0.0)
1467 				*destld /= etime;
1468 			else
1469 				*destld = 0.0;
1470 			break;
1471 		case DSM_BLOCKS_PER_SECOND_READ:
1472 			*destld = totalblocksread;
1473 			if (etime > 0.0)
1474 				*destld /= etime;
1475 			else
1476 				*destld = 0.0;
1477 			break;
1478 		case DSM_BLOCKS_PER_SECOND_WRITE:
1479 			*destld = totalblockswrite;
1480 			if (etime > 0.0)
1481 				*destld /= etime;
1482 			else
1483 				*destld = 0.0;
1484 			break;
1485 		case DSM_BLOCKS_PER_SECOND_FREE:
1486 			*destld = totalblocksfree;
1487 			if (etime > 0.0)
1488 				*destld /= etime;
1489 			else
1490 				*destld = 0.0;
1491 			break;
1492 		/*
1493 		 * Some devstat callers update the duration and some don't.
1494 		 * So this will only be accurate if they provide the
1495 		 * duration.
1496 		 */
1497 		case DSM_MS_PER_TRANSACTION:
1498 			if (totaltransfers > 0) {
1499 				*destld = totalduration;
1500 				*destld /= totaltransfers;
1501 				*destld *= 1000;
1502 			} else
1503 				*destld = 0.0;
1504 			break;
1505 		case DSM_MS_PER_TRANSACTION_READ:
1506 			if (totaltransfersread > 0) {
1507 				*destld = totaldurationread;
1508 				*destld /= totaltransfersread;
1509 				*destld *= 1000;
1510 			} else
1511 				*destld = 0.0;
1512 			break;
1513 		case DSM_MS_PER_TRANSACTION_WRITE:
1514 			if (totaltransferswrite > 0) {
1515 				*destld = totaldurationwrite;
1516 				*destld /= totaltransferswrite;
1517 				*destld *= 1000;
1518 			} else
1519 				*destld = 0.0;
1520 			break;
1521 		case DSM_MS_PER_TRANSACTION_FREE:
1522 			if (totaltransfersfree > 0) {
1523 				*destld = totaldurationfree;
1524 				*destld /= totaltransfersfree;
1525 				*destld *= 1000;
1526 			} else
1527 				*destld = 0.0;
1528 			break;
1529 		case DSM_MS_PER_TRANSACTION_OTHER:
1530 			if (totaltransfersother > 0) {
1531 				*destld = totaldurationother;
1532 				*destld /= totaltransfersother;
1533 				*destld *= 1000;
1534 			} else
1535 				*destld = 0.0;
1536 			break;
1537 		case DSM_BUSY_PCT:
1538 			*destld = DELTA_T(busy_time);
1539 			if (*destld < 0)
1540 				*destld = 0;
1541 			*destld /= etime;
1542 			*destld *= 100;
1543 			if (*destld < 0)
1544 				*destld = 0;
1545 			break;
1546 		case DSM_QUEUE_LENGTH:
1547 			*destu64 = current->start_count - current->end_count;
1548 			break;
1549 		case DSM_TOTAL_DURATION:
1550 			*destld = totalduration;
1551 			break;
1552 		case DSM_TOTAL_DURATION_READ:
1553 			*destld = totaldurationread;
1554 			break;
1555 		case DSM_TOTAL_DURATION_WRITE:
1556 			*destld = totaldurationwrite;
1557 			break;
1558 		case DSM_TOTAL_DURATION_FREE:
1559 			*destld = totaldurationfree;
1560 			break;
1561 		case DSM_TOTAL_DURATION_OTHER:
1562 			*destld = totaldurationother;
1563 			break;
1564 		case DSM_TOTAL_BUSY_TIME:
1565 			*destld = DELTA_T(busy_time);
1566 			break;
1567 /*
1568  * XXX: comment out the default block to see if any case's are missing.
1569  */
1570 #if 1
1571 		default:
1572 			/*
1573 			 * This shouldn't happen, since we should have
1574 			 * caught any out of range metrics at the top of
1575 			 * the loop.
1576 			 */
1577 			snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1578 				 "%s: unknown metric %d", __func__, metric);
1579 			retval = -1;
1580 			goto bailout;
1581 			break; /* NOTREACHED */
1582 #endif
1583 		}
1584 	}
1585 
1586 bailout:
1587 
1588 	va_end(ap);
1589 	return(retval);
1590 }
1591 
1592 static int
1593 readkmem(kvm_t *kd, unsigned long addr, void *buf, size_t nbytes)
1594 {
1595 
1596 	if (kvm_read(kd, addr, buf, nbytes) == -1) {
1597 		snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1598 			 "%s: error reading value (kvm_read): %s", __func__,
1599 			 kvm_geterr(kd));
1600 		return(-1);
1601 	}
1602 	return(0);
1603 }
1604 
1605 static int
1606 readkmem_nl(kvm_t *kd, const char *name, void *buf, size_t nbytes)
1607 {
1608 	struct nlist nl[2];
1609 
1610 	nl[0].n_name = (char *)name;
1611 	nl[1].n_name = NULL;
1612 
1613 	if (kvm_nlist(kd, nl) == -1) {
1614 		snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1615 			 "%s: error getting name list (kvm_nlist): %s",
1616 			 __func__, kvm_geterr(kd));
1617 		return(-1);
1618 	}
1619 	return(readkmem(kd, nl[0].n_value, buf, nbytes));
1620 }
1621 
1622 /*
1623  * This duplicates the functionality of the kernel sysctl handler for poking
1624  * through crash dumps.
1625  */
1626 static char *
1627 get_devstat_kvm(kvm_t *kd)
1628 {
1629 	int i, wp;
1630 	long gen;
1631 	struct devstat *nds;
1632 	struct devstat ds;
1633 	struct devstatlist dhead;
1634 	int num_devs;
1635 	char *rv = NULL;
1636 
1637 	if ((num_devs = devstat_getnumdevs(kd)) <= 0)
1638 		return(NULL);
1639 	if (KREADNL(kd, X_DEVICE_STATQ, dhead) == -1)
1640 		return(NULL);
1641 
1642 	nds = STAILQ_FIRST(&dhead);
1643 
1644 	if ((rv = malloc(sizeof(gen))) == NULL) {
1645 		snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1646 			 "%s: out of memory (initial malloc failed)",
1647 			 __func__);
1648 		return(NULL);
1649 	}
1650 	gen = devstat_getgeneration(kd);
1651 	memcpy(rv, &gen, sizeof(gen));
1652 	wp = sizeof(gen);
1653 	/*
1654 	 * Now push out all the devices.
1655 	 */
1656 	for (i = 0; (nds != NULL) && (i < num_devs);
1657 	     nds = STAILQ_NEXT(nds, dev_links), i++) {
1658 		if (readkmem(kd, (long)nds, &ds, sizeof(ds)) == -1) {
1659 			free(rv);
1660 			return(NULL);
1661 		}
1662 		nds = &ds;
1663 		rv = (char *)reallocf(rv, sizeof(gen) +
1664 				      sizeof(ds) * (i + 1));
1665 		if (rv == NULL) {
1666 			snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1667 				 "%s: out of memory (malloc failed)",
1668 				 __func__);
1669 			return(NULL);
1670 		}
1671 		memcpy(rv + wp, &ds, sizeof(ds));
1672 		wp += sizeof(ds);
1673 	}
1674 	return(rv);
1675 }
1676