1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1997, 1998 Kenneth D. Merry. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. The name of the author may not be used to endorse or promote products 16 * derived from this software without specific prior written permission. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 28 * SUCH DAMAGE. 29 */ 30 31 #include <sys/cdefs.h> 32 #include <sys/types.h> 33 #include <sys/sysctl.h> 34 #include <sys/errno.h> 35 #include <sys/resource.h> 36 #include <sys/queue.h> 37 38 #include <ctype.h> 39 #include <err.h> 40 #include <fcntl.h> 41 #include <limits.h> 42 #include <stdio.h> 43 #include <stdlib.h> 44 #include <string.h> 45 #include <stdarg.h> 46 #include <kvm.h> 47 #include <nlist.h> 48 49 #include "devstat.h" 50 51 int 52 compute_stats(struct devstat *current, struct devstat *previous, 53 long double etime, u_int64_t *total_bytes, 54 u_int64_t *total_transfers, u_int64_t *total_blocks, 55 long double *kb_per_transfer, long double *transfers_per_second, 56 long double *mb_per_second, long double *blocks_per_second, 57 long double *ms_per_transaction); 58 59 typedef enum { 60 DEVSTAT_ARG_NOTYPE, 61 DEVSTAT_ARG_UINT64, 62 DEVSTAT_ARG_LD, 63 DEVSTAT_ARG_SKIP 64 } devstat_arg_type; 65 66 char devstat_errbuf[DEVSTAT_ERRBUF_SIZE]; 67 68 /* 69 * Table to match descriptive strings with device types. These are in 70 * order from most common to least common to speed search time. 71 */ 72 struct devstat_match_table match_table[] = { 73 {"da", DEVSTAT_TYPE_DIRECT, DEVSTAT_MATCH_TYPE}, 74 {"cd", DEVSTAT_TYPE_CDROM, DEVSTAT_MATCH_TYPE}, 75 {"scsi", DEVSTAT_TYPE_IF_SCSI, DEVSTAT_MATCH_IF}, 76 {"ide", DEVSTAT_TYPE_IF_IDE, DEVSTAT_MATCH_IF}, 77 {"other", DEVSTAT_TYPE_IF_OTHER, DEVSTAT_MATCH_IF}, 78 {"worm", DEVSTAT_TYPE_WORM, DEVSTAT_MATCH_TYPE}, 79 {"sa", DEVSTAT_TYPE_SEQUENTIAL,DEVSTAT_MATCH_TYPE}, 80 {"pass", DEVSTAT_TYPE_PASS, DEVSTAT_MATCH_PASS}, 81 {"optical", DEVSTAT_TYPE_OPTICAL, DEVSTAT_MATCH_TYPE}, 82 {"array", DEVSTAT_TYPE_STORARRAY, DEVSTAT_MATCH_TYPE}, 83 {"changer", DEVSTAT_TYPE_CHANGER, DEVSTAT_MATCH_TYPE}, 84 {"scanner", DEVSTAT_TYPE_SCANNER, DEVSTAT_MATCH_TYPE}, 85 {"printer", DEVSTAT_TYPE_PRINTER, DEVSTAT_MATCH_TYPE}, 86 {"floppy", DEVSTAT_TYPE_FLOPPY, DEVSTAT_MATCH_TYPE}, 87 {"proc", DEVSTAT_TYPE_PROCESSOR, DEVSTAT_MATCH_TYPE}, 88 {"comm", DEVSTAT_TYPE_COMM, DEVSTAT_MATCH_TYPE}, 89 {"enclosure", DEVSTAT_TYPE_ENCLOSURE, DEVSTAT_MATCH_TYPE}, 90 {NULL, 0, 0} 91 }; 92 93 struct devstat_args { 94 devstat_metric metric; 95 devstat_arg_type argtype; 96 } devstat_arg_list[] = { 97 { DSM_NONE, DEVSTAT_ARG_NOTYPE }, 98 { DSM_TOTAL_BYTES, DEVSTAT_ARG_UINT64 }, 99 { DSM_TOTAL_BYTES_READ, DEVSTAT_ARG_UINT64 }, 100 { DSM_TOTAL_BYTES_WRITE, DEVSTAT_ARG_UINT64 }, 101 { DSM_TOTAL_TRANSFERS, DEVSTAT_ARG_UINT64 }, 102 { DSM_TOTAL_TRANSFERS_READ, DEVSTAT_ARG_UINT64 }, 103 { DSM_TOTAL_TRANSFERS_WRITE, DEVSTAT_ARG_UINT64 }, 104 { DSM_TOTAL_TRANSFERS_OTHER, DEVSTAT_ARG_UINT64 }, 105 { DSM_TOTAL_BLOCKS, DEVSTAT_ARG_UINT64 }, 106 { DSM_TOTAL_BLOCKS_READ, DEVSTAT_ARG_UINT64 }, 107 { DSM_TOTAL_BLOCKS_WRITE, DEVSTAT_ARG_UINT64 }, 108 { DSM_KB_PER_TRANSFER, DEVSTAT_ARG_LD }, 109 { DSM_KB_PER_TRANSFER_READ, DEVSTAT_ARG_LD }, 110 { DSM_KB_PER_TRANSFER_WRITE, DEVSTAT_ARG_LD }, 111 { DSM_TRANSFERS_PER_SECOND, DEVSTAT_ARG_LD }, 112 { DSM_TRANSFERS_PER_SECOND_READ, DEVSTAT_ARG_LD }, 113 { DSM_TRANSFERS_PER_SECOND_WRITE, DEVSTAT_ARG_LD }, 114 { DSM_TRANSFERS_PER_SECOND_OTHER, DEVSTAT_ARG_LD }, 115 { DSM_MB_PER_SECOND, DEVSTAT_ARG_LD }, 116 { DSM_MB_PER_SECOND_READ, DEVSTAT_ARG_LD }, 117 { DSM_MB_PER_SECOND_WRITE, DEVSTAT_ARG_LD }, 118 { DSM_BLOCKS_PER_SECOND, DEVSTAT_ARG_LD }, 119 { DSM_BLOCKS_PER_SECOND_READ, DEVSTAT_ARG_LD }, 120 { DSM_BLOCKS_PER_SECOND_WRITE, DEVSTAT_ARG_LD }, 121 { DSM_MS_PER_TRANSACTION, DEVSTAT_ARG_LD }, 122 { DSM_MS_PER_TRANSACTION_READ, DEVSTAT_ARG_LD }, 123 { DSM_MS_PER_TRANSACTION_WRITE, DEVSTAT_ARG_LD }, 124 { DSM_SKIP, DEVSTAT_ARG_SKIP }, 125 { DSM_TOTAL_BYTES_FREE, DEVSTAT_ARG_UINT64 }, 126 { DSM_TOTAL_TRANSFERS_FREE, DEVSTAT_ARG_UINT64 }, 127 { DSM_TOTAL_BLOCKS_FREE, DEVSTAT_ARG_UINT64 }, 128 { DSM_KB_PER_TRANSFER_FREE, DEVSTAT_ARG_LD }, 129 { DSM_MB_PER_SECOND_FREE, DEVSTAT_ARG_LD }, 130 { DSM_TRANSFERS_PER_SECOND_FREE, DEVSTAT_ARG_LD }, 131 { DSM_BLOCKS_PER_SECOND_FREE, DEVSTAT_ARG_LD }, 132 { DSM_MS_PER_TRANSACTION_OTHER, DEVSTAT_ARG_LD }, 133 { DSM_MS_PER_TRANSACTION_FREE, DEVSTAT_ARG_LD }, 134 { DSM_BUSY_PCT, DEVSTAT_ARG_LD }, 135 { DSM_QUEUE_LENGTH, DEVSTAT_ARG_UINT64 }, 136 { DSM_TOTAL_DURATION, DEVSTAT_ARG_LD }, 137 { DSM_TOTAL_DURATION_READ, DEVSTAT_ARG_LD }, 138 { DSM_TOTAL_DURATION_WRITE, DEVSTAT_ARG_LD }, 139 { DSM_TOTAL_DURATION_FREE, DEVSTAT_ARG_LD }, 140 { DSM_TOTAL_DURATION_OTHER, DEVSTAT_ARG_LD }, 141 { DSM_TOTAL_BUSY_TIME, DEVSTAT_ARG_LD }, 142 }; 143 144 static const char *namelist[] = { 145 #define X_NUMDEVS 0 146 "_devstat_num_devs", 147 #define X_GENERATION 1 148 "_devstat_generation", 149 #define X_VERSION 2 150 "_devstat_version", 151 #define X_DEVICE_STATQ 3 152 "_device_statq", 153 #define X_TIME_UPTIME 4 154 "_time_uptime", 155 #define X_END 5 156 }; 157 158 /* 159 * Local function declarations. 160 */ 161 static int compare_select(const void *arg1, const void *arg2); 162 static int readkmem(kvm_t *kd, unsigned long addr, void *buf, size_t nbytes); 163 static int readkmem_nl(kvm_t *kd, const char *name, void *buf, size_t nbytes); 164 static char *get_devstat_kvm(kvm_t *kd); 165 166 #define KREADNL(kd, var, val) \ 167 readkmem_nl(kd, namelist[var], &val, sizeof(val)) 168 169 int 170 devstat_getnumdevs(kvm_t *kd) 171 { 172 size_t numdevsize; 173 int numdevs; 174 175 numdevsize = sizeof(int); 176 177 /* 178 * Find out how many devices we have in the system. 179 */ 180 if (kd == NULL) { 181 if (sysctlbyname("kern.devstat.numdevs", &numdevs, 182 &numdevsize, NULL, 0) == -1) { 183 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 184 "%s: error getting number of devices\n" 185 "%s: %s", __func__, __func__, 186 strerror(errno)); 187 return(-1); 188 } else 189 return(numdevs); 190 } else { 191 192 if (KREADNL(kd, X_NUMDEVS, numdevs) == -1) 193 return(-1); 194 else 195 return(numdevs); 196 } 197 } 198 199 /* 200 * This is an easy way to get the generation number, but the generation is 201 * supplied in a more atmoic manner by the kern.devstat.all sysctl. 202 * Because this generation sysctl is separate from the statistics sysctl, 203 * the device list and the generation could change between the time that 204 * this function is called and the device list is retrieved. 205 */ 206 long 207 devstat_getgeneration(kvm_t *kd) 208 { 209 size_t gensize; 210 long generation; 211 212 gensize = sizeof(long); 213 214 /* 215 * Get the current generation number. 216 */ 217 if (kd == NULL) { 218 if (sysctlbyname("kern.devstat.generation", &generation, 219 &gensize, NULL, 0) == -1) { 220 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 221 "%s: error getting devstat generation\n%s: %s", 222 __func__, __func__, strerror(errno)); 223 return(-1); 224 } else 225 return(generation); 226 } else { 227 if (KREADNL(kd, X_GENERATION, generation) == -1) 228 return(-1); 229 else 230 return(generation); 231 } 232 } 233 234 /* 235 * Get the current devstat version. The return value of this function 236 * should be compared with DEVSTAT_VERSION, which is defined in 237 * sys/devicestat.h. This will enable userland programs to determine 238 * whether they are out of sync with the kernel. 239 */ 240 int 241 devstat_getversion(kvm_t *kd) 242 { 243 size_t versize; 244 int version; 245 246 versize = sizeof(int); 247 248 /* 249 * Get the current devstat version. 250 */ 251 if (kd == NULL) { 252 if (sysctlbyname("kern.devstat.version", &version, &versize, 253 NULL, 0) == -1) { 254 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 255 "%s: error getting devstat version\n%s: %s", 256 __func__, __func__, strerror(errno)); 257 return(-1); 258 } else 259 return(version); 260 } else { 261 if (KREADNL(kd, X_VERSION, version) == -1) 262 return(-1); 263 else 264 return(version); 265 } 266 } 267 268 /* 269 * Check the devstat version we know about against the devstat version the 270 * kernel knows about. If they don't match, print an error into the 271 * devstat error buffer, and return -1. If they match, return 0. 272 */ 273 int 274 devstat_checkversion(kvm_t *kd) 275 { 276 int buflen, res, retval = 0, version; 277 278 version = devstat_getversion(kd); 279 280 if (version != DEVSTAT_VERSION) { 281 /* 282 * If getversion() returns an error (i.e. -1), then it 283 * has printed an error message in the buffer. Therefore, 284 * we need to add a \n to the end of that message before we 285 * print our own message in the buffer. 286 */ 287 if (version == -1) 288 buflen = strlen(devstat_errbuf); 289 else 290 buflen = 0; 291 292 res = snprintf(devstat_errbuf + buflen, 293 DEVSTAT_ERRBUF_SIZE - buflen, 294 "%s%s: userland devstat version %d is not " 295 "the same as the kernel\n%s: devstat " 296 "version %d\n", version == -1 ? "\n" : "", 297 __func__, DEVSTAT_VERSION, __func__, version); 298 299 if (res < 0) 300 devstat_errbuf[buflen] = '\0'; 301 302 buflen = strlen(devstat_errbuf); 303 if (version < DEVSTAT_VERSION) 304 res = snprintf(devstat_errbuf + buflen, 305 DEVSTAT_ERRBUF_SIZE - buflen, 306 "%s: libdevstat newer than kernel\n", 307 __func__); 308 else 309 res = snprintf(devstat_errbuf + buflen, 310 DEVSTAT_ERRBUF_SIZE - buflen, 311 "%s: kernel newer than libdevstat\n", 312 __func__); 313 314 if (res < 0) 315 devstat_errbuf[buflen] = '\0'; 316 317 retval = -1; 318 } 319 320 return(retval); 321 } 322 323 /* 324 * Get the current list of devices and statistics, and the current 325 * generation number. 326 * 327 * Return values: 328 * -1 -- error 329 * 0 -- device list is unchanged 330 * 1 -- device list has changed 331 */ 332 int 333 devstat_getdevs(kvm_t *kd, struct statinfo *stats) 334 { 335 int error; 336 size_t dssize; 337 long oldgeneration; 338 int retval = 0; 339 struct devinfo *dinfo; 340 struct timespec ts; 341 342 dinfo = stats->dinfo; 343 344 if (dinfo == NULL) { 345 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 346 "%s: stats->dinfo was NULL", __func__); 347 return(-1); 348 } 349 350 oldgeneration = dinfo->generation; 351 352 if (kd == NULL) { 353 clock_gettime(CLOCK_MONOTONIC, &ts); 354 stats->snap_time = ts.tv_sec + ts.tv_nsec * 1e-9; 355 356 /* If this is our first time through, mem_ptr will be null. */ 357 if (dinfo->mem_ptr == NULL) { 358 /* 359 * Get the number of devices. If it's negative, it's an 360 * error. Don't bother setting the error string, since 361 * getnumdevs() has already done that for us. 362 */ 363 if ((dinfo->numdevs = devstat_getnumdevs(kd)) < 0) 364 return(-1); 365 366 /* 367 * The kern.devstat.all sysctl returns the current 368 * generation number, as well as all the devices. 369 * So we need four bytes more. 370 */ 371 dssize = (dinfo->numdevs * sizeof(struct devstat)) + 372 sizeof(long); 373 dinfo->mem_ptr = (u_int8_t *)malloc(dssize); 374 if (dinfo->mem_ptr == NULL) { 375 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 376 "%s: Cannot allocate memory for mem_ptr element", 377 __func__); 378 return(-1); 379 } 380 } else 381 dssize = (dinfo->numdevs * sizeof(struct devstat)) + 382 sizeof(long); 383 384 /* 385 * Request all of the devices. We only really allow for one 386 * ENOMEM failure. It would, of course, be possible to just go 387 * in a loop and keep reallocing the device structure until we 388 * don't get ENOMEM back. I'm not sure it's worth it, though. 389 * If devices are being added to the system that quickly, maybe 390 * the user can just wait until all devices are added. 391 */ 392 for (;;) { 393 error = sysctlbyname("kern.devstat.all", 394 dinfo->mem_ptr, 395 &dssize, NULL, 0); 396 if (error != -1 || errno != EBUSY) 397 break; 398 } 399 if (error == -1) { 400 /* 401 * If we get ENOMEM back, that means that there are 402 * more devices now, so we need to allocate more 403 * space for the device array. 404 */ 405 if (errno == ENOMEM) { 406 /* 407 * No need to set the error string here, 408 * devstat_getnumdevs() will do that if it fails. 409 */ 410 if ((dinfo->numdevs = devstat_getnumdevs(kd)) < 0) 411 return(-1); 412 413 dssize = (dinfo->numdevs * 414 sizeof(struct devstat)) + sizeof(long); 415 dinfo->mem_ptr = (u_int8_t *) 416 realloc(dinfo->mem_ptr, dssize); 417 if ((error = sysctlbyname("kern.devstat.all", 418 dinfo->mem_ptr, &dssize, NULL, 0)) == -1) { 419 snprintf(devstat_errbuf, 420 sizeof(devstat_errbuf), 421 "%s: error getting device " 422 "stats\n%s: %s", __func__, 423 __func__, strerror(errno)); 424 return(-1); 425 } 426 } else { 427 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 428 "%s: error getting device stats\n" 429 "%s: %s", __func__, __func__, 430 strerror(errno)); 431 return(-1); 432 } 433 } 434 435 } else { 436 if (KREADNL(kd, X_TIME_UPTIME, ts.tv_sec) == -1) 437 return(-1); 438 else 439 stats->snap_time = ts.tv_sec; 440 441 /* 442 * This is of course non-atomic, but since we are working 443 * on a core dump, the generation is unlikely to change 444 */ 445 if ((dinfo->numdevs = devstat_getnumdevs(kd)) == -1) 446 return(-1); 447 if ((dinfo->mem_ptr = (u_int8_t *)get_devstat_kvm(kd)) == NULL) 448 return(-1); 449 } 450 /* 451 * The sysctl spits out the generation as the first four bytes, 452 * then all of the device statistics structures. 453 */ 454 dinfo->generation = *(long *)dinfo->mem_ptr; 455 456 /* 457 * If the generation has changed, and if the current number of 458 * devices is not the same as the number of devices recorded in the 459 * devinfo structure, it is likely that the device list has shrunk. 460 * The reason that it is likely that the device list has shrunk in 461 * this case is that if the device list has grown, the sysctl above 462 * will return an ENOMEM error, and we will reset the number of 463 * devices and reallocate the device array. If the second sysctl 464 * fails, we will return an error and therefore never get to this 465 * point. If the device list has shrunk, the sysctl will not 466 * return an error since we have more space allocated than is 467 * necessary. So, in the shrinkage case, we catch it here and 468 * reallocate the array so that we don't use any more space than is 469 * necessary. 470 */ 471 if (oldgeneration != dinfo->generation) { 472 if (devstat_getnumdevs(kd) != dinfo->numdevs) { 473 if ((dinfo->numdevs = devstat_getnumdevs(kd)) < 0) 474 return(-1); 475 dssize = (dinfo->numdevs * sizeof(struct devstat)) + 476 sizeof(long); 477 dinfo->mem_ptr = (u_int8_t *)realloc(dinfo->mem_ptr, 478 dssize); 479 } 480 retval = 1; 481 } 482 483 dinfo->devices = (struct devstat *)(dinfo->mem_ptr + sizeof(long)); 484 485 return(retval); 486 } 487 488 /* 489 * selectdevs(): 490 * 491 * Devices are selected/deselected based upon the following criteria: 492 * - devices specified by the user on the command line 493 * - devices matching any device type expressions given on the command line 494 * - devices with the highest I/O, if 'top' mode is enabled 495 * - the first n unselected devices in the device list, if maxshowdevs 496 * devices haven't already been selected and if the user has not 497 * specified any devices on the command line and if we're in "add" mode. 498 * 499 * Input parameters: 500 * - device selection list (dev_select) 501 * - current number of devices selected (num_selected) 502 * - total number of devices in the selection list (num_selections) 503 * - devstat generation as of the last time selectdevs() was called 504 * (select_generation) 505 * - current devstat generation (current_generation) 506 * - current list of devices and statistics (devices) 507 * - number of devices in the current device list (numdevs) 508 * - compiled version of the command line device type arguments (matches) 509 * - This is optional. If the number of devices is 0, this will be ignored. 510 * - The matching code pays attention to the current selection mode. So 511 * if you pass in a matching expression, it will be evaluated based 512 * upon the selection mode that is passed in. See below for details. 513 * - number of device type matching expressions (num_matches) 514 * - Set to 0 to disable the matching code. 515 * - list of devices specified on the command line by the user (dev_selections) 516 * - number of devices selected on the command line by the user 517 * (num_dev_selections) 518 * - Our selection mode. There are four different selection modes: 519 * - add mode. (DS_SELECT_ADD) Any devices matching devices explicitly 520 * selected by the user or devices matching a pattern given by the 521 * user will be selected in addition to devices that are already 522 * selected. Additional devices will be selected, up to maxshowdevs 523 * number of devices. 524 * - only mode. (DS_SELECT_ONLY) Only devices matching devices 525 * explicitly given by the user or devices matching a pattern 526 * given by the user will be selected. No other devices will be 527 * selected. 528 * - addonly mode. (DS_SELECT_ADDONLY) This is similar to add and 529 * only. Basically, this will not de-select any devices that are 530 * current selected, as only mode would, but it will also not 531 * gratuitously select up to maxshowdevs devices as add mode would. 532 * - remove mode. (DS_SELECT_REMOVE) Any devices matching devices 533 * explicitly selected by the user or devices matching a pattern 534 * given by the user will be de-selected. 535 * - maximum number of devices we can select (maxshowdevs) 536 * - flag indicating whether or not we're in 'top' mode (perf_select) 537 * 538 * Output data: 539 * - the device selection list may be modified and passed back out 540 * - the number of devices selected and the total number of items in the 541 * device selection list may be changed 542 * - the selection generation may be changed to match the current generation 543 * 544 * Return values: 545 * -1 -- error 546 * 0 -- selected devices are unchanged 547 * 1 -- selected devices changed 548 */ 549 int 550 devstat_selectdevs(struct device_selection **dev_select, int *num_selected, 551 int *num_selections, long *select_generation, 552 long current_generation, struct devstat *devices, 553 int numdevs, struct devstat_match *matches, int num_matches, 554 char **dev_selections, int num_dev_selections, 555 devstat_select_mode select_mode, int maxshowdevs, 556 int perf_select) 557 { 558 int i, j, k; 559 int init_selections = 0, init_selected_var = 0; 560 struct device_selection *old_dev_select = NULL; 561 int old_num_selections = 0, old_num_selected; 562 int selection_number = 0; 563 int changed = 0, found = 0; 564 565 if ((dev_select == NULL) || (devices == NULL) || (numdevs < 0)) 566 return(-1); 567 568 /* 569 * We always want to make sure that we have as many dev_select 570 * entries as there are devices. 571 */ 572 /* 573 * In this case, we haven't selected devices before. 574 */ 575 if (*dev_select == NULL) { 576 *dev_select = (struct device_selection *)malloc(numdevs * 577 sizeof(struct device_selection)); 578 *select_generation = current_generation; 579 init_selections = 1; 580 changed = 1; 581 /* 582 * In this case, we have selected devices before, but the device 583 * list has changed since we last selected devices, so we need to 584 * either enlarge or reduce the size of the device selection list. 585 * But delay the resizing until after copying the data to old_dev_select 586 * as to not lose any data in the case of reducing the size. 587 */ 588 } else if (*num_selections != numdevs) { 589 *select_generation = current_generation; 590 init_selections = 1; 591 /* 592 * In this case, we've selected devices before, and the selection 593 * list is the same size as it was the last time, but the device 594 * list has changed. 595 */ 596 } else if (*select_generation < current_generation) { 597 *select_generation = current_generation; 598 init_selections = 1; 599 } 600 601 if (*dev_select == NULL) { 602 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 603 "%s: Cannot (re)allocate memory for dev_select argument", 604 __func__); 605 return(-1); 606 } 607 608 /* 609 * If we're in "only" mode, we want to clear out the selected 610 * variable since we're going to select exactly what the user wants 611 * this time through. 612 */ 613 if (select_mode == DS_SELECT_ONLY) 614 init_selected_var = 1; 615 616 /* 617 * In all cases, we want to back up the number of selected devices. 618 * It is a quick and accurate way to determine whether the selected 619 * devices have changed. 620 */ 621 old_num_selected = *num_selected; 622 623 /* 624 * We want to make a backup of the current selection list if 625 * the list of devices has changed, or if we're in performance 626 * selection mode. In both cases, we don't want to make a backup 627 * if we already know for sure that the list will be different. 628 * This is certainly the case if this is our first time through the 629 * selection code. 630 */ 631 if (((init_selected_var != 0) || (init_selections != 0) 632 || (perf_select != 0)) && (changed == 0)){ 633 old_dev_select = (struct device_selection *)malloc( 634 *num_selections * sizeof(struct device_selection)); 635 if (old_dev_select == NULL) { 636 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 637 "%s: Cannot allocate memory for selection list backup", 638 __func__); 639 return(-1); 640 } 641 old_num_selections = *num_selections; 642 bcopy(*dev_select, old_dev_select, 643 sizeof(struct device_selection) * *num_selections); 644 } 645 646 if (!changed && *num_selections != numdevs) { 647 *dev_select = (struct device_selection *)reallocf(*dev_select, 648 numdevs * sizeof(struct device_selection)); 649 } 650 651 if (init_selections != 0) { 652 bzero(*dev_select, sizeof(struct device_selection) * numdevs); 653 654 for (i = 0; i < numdevs; i++) { 655 (*dev_select)[i].device_number = 656 devices[i].device_number; 657 strncpy((*dev_select)[i].device_name, 658 devices[i].device_name, 659 DEVSTAT_NAME_LEN); 660 (*dev_select)[i].device_name[DEVSTAT_NAME_LEN - 1]='\0'; 661 (*dev_select)[i].unit_number = devices[i].unit_number; 662 (*dev_select)[i].position = i; 663 } 664 *num_selections = numdevs; 665 } else if (init_selected_var != 0) { 666 for (i = 0; i < numdevs; i++) 667 (*dev_select)[i].selected = 0; 668 } 669 670 /* we haven't gotten around to selecting anything yet.. */ 671 if ((select_mode == DS_SELECT_ONLY) || (init_selections != 0) 672 || (init_selected_var != 0)) 673 *num_selected = 0; 674 675 /* 676 * Look through any devices the user specified on the command line 677 * and see if they match known devices. If so, select them. 678 */ 679 for (i = 0; (i < *num_selections) && (num_dev_selections > 0); i++) { 680 char tmpstr[80]; 681 682 snprintf(tmpstr, sizeof(tmpstr), "%s%d", 683 (*dev_select)[i].device_name, 684 (*dev_select)[i].unit_number); 685 for (j = 0; j < num_dev_selections; j++) { 686 if (strcmp(tmpstr, dev_selections[j]) == 0) { 687 /* 688 * Here we do different things based on the 689 * mode we're in. If we're in add or 690 * addonly mode, we only select this device 691 * if it hasn't already been selected. 692 * Otherwise, we would be unnecessarily 693 * changing the selection order and 694 * incrementing the selection count. If 695 * we're in only mode, we unconditionally 696 * select this device, since in only mode 697 * any previous selections are erased and 698 * manually specified devices are the first 699 * ones to be selected. If we're in remove 700 * mode, we de-select the specified device and 701 * decrement the selection count. 702 */ 703 switch(select_mode) { 704 case DS_SELECT_ADD: 705 case DS_SELECT_ADDONLY: 706 if ((*dev_select)[i].selected) 707 break; 708 /* FALLTHROUGH */ 709 case DS_SELECT_ONLY: 710 (*dev_select)[i].selected = 711 ++selection_number; 712 (*num_selected)++; 713 break; 714 case DS_SELECT_REMOVE: 715 (*dev_select)[i].selected = 0; 716 (*num_selected)--; 717 /* 718 * This isn't passed back out, we 719 * just use it to keep track of 720 * how many devices we've removed. 721 */ 722 num_dev_selections--; 723 break; 724 } 725 break; 726 } 727 } 728 } 729 730 /* 731 * Go through the user's device type expressions and select devices 732 * accordingly. We only do this if the number of devices already 733 * selected is less than the maximum number we can show. 734 */ 735 for (i = 0; (i < num_matches) && (*num_selected < maxshowdevs); i++) { 736 /* We should probably indicate some error here */ 737 if ((matches[i].match_fields == DEVSTAT_MATCH_NONE) 738 || (matches[i].num_match_categories <= 0)) 739 continue; 740 741 for (j = 0; j < numdevs; j++) { 742 int num_match_categories; 743 744 num_match_categories = matches[i].num_match_categories; 745 746 /* 747 * Determine whether or not the current device 748 * matches the given matching expression. This if 749 * statement consists of three components: 750 * - the device type check 751 * - the device interface check 752 * - the passthrough check 753 * If a the matching test is successful, it 754 * decrements the number of matching categories, 755 * and if we've reached the last element that 756 * needed to be matched, the if statement succeeds. 757 * 758 */ 759 if ((((matches[i].match_fields & DEVSTAT_MATCH_TYPE)!=0) 760 && ((devices[j].device_type & DEVSTAT_TYPE_MASK) == 761 (matches[i].device_type & DEVSTAT_TYPE_MASK)) 762 &&(((matches[i].match_fields & DEVSTAT_MATCH_PASS)!=0) 763 || (((matches[i].match_fields & 764 DEVSTAT_MATCH_PASS) == 0) 765 && ((devices[j].device_type & 766 DEVSTAT_TYPE_PASS) == 0))) 767 && (--num_match_categories == 0)) 768 || (((matches[i].match_fields & DEVSTAT_MATCH_IF) != 0) 769 && ((devices[j].device_type & DEVSTAT_TYPE_IF_MASK) == 770 (matches[i].device_type & DEVSTAT_TYPE_IF_MASK)) 771 &&(((matches[i].match_fields & DEVSTAT_MATCH_PASS)!=0) 772 || (((matches[i].match_fields & 773 DEVSTAT_MATCH_PASS) == 0) 774 && ((devices[j].device_type & 775 DEVSTAT_TYPE_PASS) == 0))) 776 && (--num_match_categories == 0)) 777 || (((matches[i].match_fields & DEVSTAT_MATCH_PASS)!=0) 778 && ((devices[j].device_type & DEVSTAT_TYPE_PASS) != 0) 779 && (--num_match_categories == 0))) { 780 781 /* 782 * This is probably a non-optimal solution 783 * to the problem that the devices in the 784 * device list will not be in the same 785 * order as the devices in the selection 786 * array. 787 */ 788 for (k = 0; k < numdevs; k++) { 789 if ((*dev_select)[k].position == j) { 790 found = 1; 791 break; 792 } 793 } 794 795 /* 796 * There shouldn't be a case where a device 797 * in the device list is not in the 798 * selection list...but it could happen. 799 */ 800 if (found != 1) { 801 fprintf(stderr, "selectdevs: couldn't" 802 " find %s%d in selection " 803 "list\n", 804 devices[j].device_name, 805 devices[j].unit_number); 806 break; 807 } 808 809 /* 810 * We do different things based upon the 811 * mode we're in. If we're in add or only 812 * mode, we go ahead and select this device 813 * if it hasn't already been selected. If 814 * it has already been selected, we leave 815 * it alone so we don't mess up the 816 * selection ordering. Manually specified 817 * devices have already been selected, and 818 * they have higher priority than pattern 819 * matched devices. If we're in remove 820 * mode, we de-select the given device and 821 * decrement the selected count. 822 */ 823 switch(select_mode) { 824 case DS_SELECT_ADD: 825 case DS_SELECT_ADDONLY: 826 case DS_SELECT_ONLY: 827 if ((*dev_select)[k].selected != 0) 828 break; 829 (*dev_select)[k].selected = 830 ++selection_number; 831 (*num_selected)++; 832 break; 833 case DS_SELECT_REMOVE: 834 (*dev_select)[k].selected = 0; 835 (*num_selected)--; 836 break; 837 } 838 } 839 } 840 } 841 842 /* 843 * Here we implement "top" mode. Devices are sorted in the 844 * selection array based on two criteria: whether or not they are 845 * selected (not selection number, just the fact that they are 846 * selected!) and the number of bytes in the "bytes" field of the 847 * selection structure. The bytes field generally must be kept up 848 * by the user. In the future, it may be maintained by library 849 * functions, but for now the user has to do the work. 850 * 851 * At first glance, it may seem wrong that we don't go through and 852 * select every device in the case where the user hasn't specified 853 * any devices or patterns. In fact, though, it won't make any 854 * difference in the device sorting. In that particular case (i.e. 855 * when we're in "add" or "only" mode, and the user hasn't 856 * specified anything) the first time through no devices will be 857 * selected, so the only criterion used to sort them will be their 858 * performance. The second time through, and every time thereafter, 859 * all devices will be selected, so again selection won't matter. 860 */ 861 if (perf_select != 0) { 862 863 /* Sort the device array by throughput */ 864 qsort(*dev_select, *num_selections, 865 sizeof(struct device_selection), 866 compare_select); 867 868 if (*num_selected == 0) { 869 /* 870 * Here we select every device in the array, if it 871 * isn't already selected. Because the 'selected' 872 * variable in the selection array entries contains 873 * the selection order, the devstats routine can show 874 * the devices that were selected first. 875 */ 876 for (i = 0; i < *num_selections; i++) { 877 if ((*dev_select)[i].selected == 0) { 878 (*dev_select)[i].selected = 879 ++selection_number; 880 (*num_selected)++; 881 } 882 } 883 } else { 884 selection_number = 0; 885 for (i = 0; i < *num_selections; i++) { 886 if ((*dev_select)[i].selected != 0) { 887 (*dev_select)[i].selected = 888 ++selection_number; 889 } 890 } 891 } 892 } 893 894 /* 895 * If we're in the "add" selection mode and if we haven't already 896 * selected maxshowdevs number of devices, go through the array and 897 * select any unselected devices. If we're in "only" mode, we 898 * obviously don't want to select anything other than what the user 899 * specifies. If we're in "remove" mode, it probably isn't a good 900 * idea to go through and select any more devices, since we might 901 * end up selecting something that the user wants removed. Through 902 * more complicated logic, we could actually figure this out, but 903 * that would probably require combining this loop with the various 904 * selections loops above. 905 */ 906 if ((select_mode == DS_SELECT_ADD) && (*num_selected < maxshowdevs)) { 907 for (i = 0; i < *num_selections; i++) 908 if ((*dev_select)[i].selected == 0) { 909 (*dev_select)[i].selected = ++selection_number; 910 (*num_selected)++; 911 } 912 } 913 914 /* 915 * Look at the number of devices that have been selected. If it 916 * has changed, set the changed variable. Otherwise, if we've 917 * made a backup of the selection list, compare it to the current 918 * selection list to see if the selected devices have changed. 919 */ 920 if ((changed == 0) && (old_num_selected != *num_selected)) 921 changed = 1; 922 else if ((changed == 0) && (old_dev_select != NULL)) { 923 /* 924 * Now we go through the selection list and we look at 925 * it three different ways. 926 */ 927 for (i = 0; (i < *num_selections) && (changed == 0) && 928 (i < old_num_selections); i++) { 929 /* 930 * If the device at index i in both the new and old 931 * selection arrays has the same device number and 932 * selection status, it hasn't changed. We 933 * continue on to the next index. 934 */ 935 if (((*dev_select)[i].device_number == 936 old_dev_select[i].device_number) 937 && ((*dev_select)[i].selected == 938 old_dev_select[i].selected)) 939 continue; 940 941 /* 942 * Now, if we're still going through the if 943 * statement, the above test wasn't true. So we 944 * check here to see if the device at index i in 945 * the current array is the same as the device at 946 * index i in the old array. If it is, that means 947 * that its selection number has changed. Set 948 * changed to 1 and exit the loop. 949 */ 950 else if ((*dev_select)[i].device_number == 951 old_dev_select[i].device_number) { 952 changed = 1; 953 break; 954 } 955 /* 956 * If we get here, then the device at index i in 957 * the current array isn't the same device as the 958 * device at index i in the old array. 959 */ 960 else { 961 found = 0; 962 963 /* 964 * Search through the old selection array 965 * looking for a device with the same 966 * device number as the device at index i 967 * in the current array. If the selection 968 * status is the same, then we mark it as 969 * found. If the selection status isn't 970 * the same, we break out of the loop. 971 * Since found isn't set, changed will be 972 * set to 1 below. 973 */ 974 for (j = 0; j < old_num_selections; j++) { 975 if (((*dev_select)[i].device_number == 976 old_dev_select[j].device_number) 977 && ((*dev_select)[i].selected == 978 old_dev_select[j].selected)){ 979 found = 1; 980 break; 981 } 982 else if ((*dev_select)[i].device_number 983 == old_dev_select[j].device_number) 984 break; 985 } 986 if (found == 0) 987 changed = 1; 988 } 989 } 990 } 991 if (old_dev_select != NULL) 992 free(old_dev_select); 993 994 return(changed); 995 } 996 997 /* 998 * Comparison routine for qsort() above. Note that the comparison here is 999 * backwards -- generally, it should return a value to indicate whether 1000 * arg1 is <, =, or > arg2. Instead, it returns the opposite. The reason 1001 * it returns the opposite is so that the selection array will be sorted in 1002 * order of decreasing performance. We sort on two parameters. The first 1003 * sort key is whether or not one or the other of the devices in question 1004 * has been selected. If one of them has, and the other one has not, the 1005 * selected device is automatically more important than the unselected 1006 * device. If neither device is selected, we judge the devices based upon 1007 * performance. 1008 */ 1009 static int 1010 compare_select(const void *arg1, const void *arg2) 1011 { 1012 if ((((const struct device_selection *)arg1)->selected) 1013 && (((const struct device_selection *)arg2)->selected == 0)) 1014 return(-1); 1015 else if ((((const struct device_selection *)arg1)->selected == 0) 1016 && (((const struct device_selection *)arg2)->selected)) 1017 return(1); 1018 else if (((const struct device_selection *)arg2)->bytes < 1019 ((const struct device_selection *)arg1)->bytes) 1020 return(-1); 1021 else if (((const struct device_selection *)arg2)->bytes > 1022 ((const struct device_selection *)arg1)->bytes) 1023 return(1); 1024 else 1025 return(0); 1026 } 1027 1028 /* 1029 * Take a string with the general format "arg1,arg2,arg3", and build a 1030 * device matching expression from it. 1031 */ 1032 int 1033 devstat_buildmatch(char *match_str, struct devstat_match **matches, 1034 int *num_matches) 1035 { 1036 char *tstr[5]; 1037 char **tempstr; 1038 int num_args; 1039 int i, j; 1040 1041 /* We can't do much without a string to parse */ 1042 if (match_str == NULL) { 1043 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 1044 "%s: no match expression", __func__); 1045 return(-1); 1046 } 1047 1048 /* 1049 * Break the (comma delimited) input string out into separate strings. 1050 */ 1051 for (tempstr = tstr, num_args = 0; 1052 (*tempstr = strsep(&match_str, ",")) != NULL && (num_args < 5);) 1053 if (**tempstr != '\0') { 1054 num_args++; 1055 if (++tempstr >= &tstr[5]) 1056 break; 1057 } 1058 1059 /* The user gave us too many type arguments */ 1060 if (num_args > 3) { 1061 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 1062 "%s: too many type arguments", __func__); 1063 return(-1); 1064 } 1065 1066 if (*num_matches == 0) 1067 *matches = NULL; 1068 1069 *matches = (struct devstat_match *)reallocf(*matches, 1070 sizeof(struct devstat_match) * (*num_matches + 1)); 1071 1072 if (*matches == NULL) { 1073 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 1074 "%s: Cannot allocate memory for matches list", __func__); 1075 return(-1); 1076 } 1077 1078 /* Make sure the current entry is clear */ 1079 bzero(&matches[0][*num_matches], sizeof(struct devstat_match)); 1080 1081 /* 1082 * Step through the arguments the user gave us and build a device 1083 * matching expression from them. 1084 */ 1085 for (i = 0; i < num_args; i++) { 1086 char *tempstr2, *tempstr3; 1087 1088 /* 1089 * Get rid of leading white space. 1090 */ 1091 tempstr2 = tstr[i]; 1092 while (isspace(*tempstr2) && (*tempstr2 != '\0')) 1093 tempstr2++; 1094 1095 /* 1096 * Get rid of trailing white space. 1097 */ 1098 tempstr3 = &tempstr2[strlen(tempstr2) - 1]; 1099 1100 while ((*tempstr3 != '\0') && (tempstr3 > tempstr2) 1101 && (isspace(*tempstr3))) { 1102 *tempstr3 = '\0'; 1103 tempstr3--; 1104 } 1105 1106 /* 1107 * Go through the match table comparing the user's 1108 * arguments to known device types, interfaces, etc. 1109 */ 1110 for (j = 0; match_table[j].match_str != NULL; j++) { 1111 /* 1112 * We do case-insensitive matching, in case someone 1113 * wants to enter "SCSI" instead of "scsi" or 1114 * something like that. Only compare as many 1115 * characters as are in the string in the match 1116 * table. This should help if someone tries to use 1117 * a super-long match expression. 1118 */ 1119 if (strncasecmp(tempstr2, match_table[j].match_str, 1120 strlen(match_table[j].match_str)) == 0) { 1121 /* 1122 * Make sure the user hasn't specified two 1123 * items of the same type, like "da" and 1124 * "cd". One device cannot be both. 1125 */ 1126 if (((*matches)[*num_matches].match_fields & 1127 match_table[j].match_field) != 0) { 1128 snprintf(devstat_errbuf, 1129 sizeof(devstat_errbuf), 1130 "%s: cannot have more than " 1131 "one match item in a single " 1132 "category", __func__); 1133 return(-1); 1134 } 1135 /* 1136 * If we've gotten this far, we have a 1137 * winner. Set the appropriate fields in 1138 * the match entry. 1139 */ 1140 (*matches)[*num_matches].match_fields |= 1141 match_table[j].match_field; 1142 (*matches)[*num_matches].device_type |= 1143 match_table[j].type; 1144 (*matches)[*num_matches].num_match_categories++; 1145 break; 1146 } 1147 } 1148 /* 1149 * We should have found a match in the above for loop. If 1150 * not, that means the user entered an invalid device type 1151 * or interface. 1152 */ 1153 if ((*matches)[*num_matches].num_match_categories != (i + 1)) { 1154 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 1155 "%s: unknown match item \"%s\"", __func__, 1156 tstr[i]); 1157 return(-1); 1158 } 1159 } 1160 1161 (*num_matches)++; 1162 1163 return(0); 1164 } 1165 1166 /* 1167 * Compute a number of device statistics. Only one field is mandatory, and 1168 * that is "current". Everything else is optional. The caller passes in 1169 * pointers to variables to hold the various statistics he desires. If he 1170 * doesn't want a particular staistic, he should pass in a NULL pointer. 1171 * Return values: 1172 * 0 -- success 1173 * -1 -- failure 1174 */ 1175 int 1176 compute_stats(struct devstat *current, struct devstat *previous, 1177 long double etime, u_int64_t *total_bytes, 1178 u_int64_t *total_transfers, u_int64_t *total_blocks, 1179 long double *kb_per_transfer, long double *transfers_per_second, 1180 long double *mb_per_second, long double *blocks_per_second, 1181 long double *ms_per_transaction) 1182 { 1183 return(devstat_compute_statistics(current, previous, etime, 1184 total_bytes ? DSM_TOTAL_BYTES : DSM_SKIP, 1185 total_bytes, 1186 total_transfers ? DSM_TOTAL_TRANSFERS : DSM_SKIP, 1187 total_transfers, 1188 total_blocks ? DSM_TOTAL_BLOCKS : DSM_SKIP, 1189 total_blocks, 1190 kb_per_transfer ? DSM_KB_PER_TRANSFER : DSM_SKIP, 1191 kb_per_transfer, 1192 transfers_per_second ? DSM_TRANSFERS_PER_SECOND : DSM_SKIP, 1193 transfers_per_second, 1194 mb_per_second ? DSM_MB_PER_SECOND : DSM_SKIP, 1195 mb_per_second, 1196 blocks_per_second ? DSM_BLOCKS_PER_SECOND : DSM_SKIP, 1197 blocks_per_second, 1198 ms_per_transaction ? DSM_MS_PER_TRANSACTION : DSM_SKIP, 1199 ms_per_transaction, 1200 DSM_NONE)); 1201 } 1202 1203 1204 /* This is 1/2^64 */ 1205 #define BINTIME_SCALE 5.42101086242752217003726400434970855712890625e-20 1206 1207 long double 1208 devstat_compute_etime(struct bintime *cur_time, struct bintime *prev_time) 1209 { 1210 long double etime; 1211 1212 etime = cur_time->sec; 1213 etime += cur_time->frac * BINTIME_SCALE; 1214 if (prev_time != NULL) { 1215 etime -= prev_time->sec; 1216 etime -= prev_time->frac * BINTIME_SCALE; 1217 } 1218 return(etime); 1219 } 1220 1221 #define DELTA(field, index) \ 1222 (current->field[(index)] - (previous ? previous->field[(index)] : 0)) 1223 1224 #define DELTA_T(field) \ 1225 devstat_compute_etime(¤t->field, \ 1226 (previous ? &previous->field : NULL)) 1227 1228 int 1229 devstat_compute_statistics(struct devstat *current, struct devstat *previous, 1230 long double etime, ...) 1231 { 1232 u_int64_t totalbytes, totalbytesread, totalbyteswrite, totalbytesfree; 1233 u_int64_t totaltransfers, totaltransfersread, totaltransferswrite; 1234 u_int64_t totaltransfersother, totalblocks, totalblocksread; 1235 u_int64_t totalblockswrite, totaltransfersfree, totalblocksfree; 1236 long double totalduration, totaldurationread, totaldurationwrite; 1237 long double totaldurationfree, totaldurationother; 1238 va_list ap; 1239 devstat_metric metric; 1240 u_int64_t *destu64; 1241 long double *destld; 1242 int retval; 1243 1244 retval = 0; 1245 1246 /* 1247 * current is the only mandatory field. 1248 */ 1249 if (current == NULL) { 1250 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 1251 "%s: current stats structure was NULL", __func__); 1252 return(-1); 1253 } 1254 1255 totalbytesread = DELTA(bytes, DEVSTAT_READ); 1256 totalbyteswrite = DELTA(bytes, DEVSTAT_WRITE); 1257 totalbytesfree = DELTA(bytes, DEVSTAT_FREE); 1258 totalbytes = totalbytesread + totalbyteswrite + totalbytesfree; 1259 1260 totaltransfersread = DELTA(operations, DEVSTAT_READ); 1261 totaltransferswrite = DELTA(operations, DEVSTAT_WRITE); 1262 totaltransfersother = DELTA(operations, DEVSTAT_NO_DATA); 1263 totaltransfersfree = DELTA(operations, DEVSTAT_FREE); 1264 totaltransfers = totaltransfersread + totaltransferswrite + 1265 totaltransfersother + totaltransfersfree; 1266 1267 totalblocks = totalbytes; 1268 totalblocksread = totalbytesread; 1269 totalblockswrite = totalbyteswrite; 1270 totalblocksfree = totalbytesfree; 1271 1272 if (current->block_size > 0) { 1273 totalblocks /= current->block_size; 1274 totalblocksread /= current->block_size; 1275 totalblockswrite /= current->block_size; 1276 totalblocksfree /= current->block_size; 1277 } else { 1278 totalblocks /= 512; 1279 totalblocksread /= 512; 1280 totalblockswrite /= 512; 1281 totalblocksfree /= 512; 1282 } 1283 1284 totaldurationread = DELTA_T(duration[DEVSTAT_READ]); 1285 totaldurationwrite = DELTA_T(duration[DEVSTAT_WRITE]); 1286 totaldurationfree = DELTA_T(duration[DEVSTAT_FREE]); 1287 totaldurationother = DELTA_T(duration[DEVSTAT_NO_DATA]); 1288 totalduration = totaldurationread + totaldurationwrite + 1289 totaldurationfree + totaldurationother; 1290 1291 va_start(ap, etime); 1292 1293 while ((metric = (devstat_metric)va_arg(ap, devstat_metric)) != 0) { 1294 1295 if (metric == DSM_NONE) 1296 break; 1297 1298 if (metric >= DSM_MAX) { 1299 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 1300 "%s: metric %d is out of range", __func__, 1301 metric); 1302 retval = -1; 1303 goto bailout; 1304 } 1305 1306 switch (devstat_arg_list[metric].argtype) { 1307 case DEVSTAT_ARG_UINT64: 1308 destu64 = (u_int64_t *)va_arg(ap, u_int64_t *); 1309 break; 1310 case DEVSTAT_ARG_LD: 1311 destld = (long double *)va_arg(ap, long double *); 1312 break; 1313 case DEVSTAT_ARG_SKIP: 1314 destld = (long double *)va_arg(ap, long double *); 1315 break; 1316 default: 1317 retval = -1; 1318 goto bailout; 1319 break; /* NOTREACHED */ 1320 } 1321 1322 if (devstat_arg_list[metric].argtype == DEVSTAT_ARG_SKIP) 1323 continue; 1324 1325 switch (metric) { 1326 case DSM_TOTAL_BYTES: 1327 *destu64 = totalbytes; 1328 break; 1329 case DSM_TOTAL_BYTES_READ: 1330 *destu64 = totalbytesread; 1331 break; 1332 case DSM_TOTAL_BYTES_WRITE: 1333 *destu64 = totalbyteswrite; 1334 break; 1335 case DSM_TOTAL_BYTES_FREE: 1336 *destu64 = totalbytesfree; 1337 break; 1338 case DSM_TOTAL_TRANSFERS: 1339 *destu64 = totaltransfers; 1340 break; 1341 case DSM_TOTAL_TRANSFERS_READ: 1342 *destu64 = totaltransfersread; 1343 break; 1344 case DSM_TOTAL_TRANSFERS_WRITE: 1345 *destu64 = totaltransferswrite; 1346 break; 1347 case DSM_TOTAL_TRANSFERS_FREE: 1348 *destu64 = totaltransfersfree; 1349 break; 1350 case DSM_TOTAL_TRANSFERS_OTHER: 1351 *destu64 = totaltransfersother; 1352 break; 1353 case DSM_TOTAL_BLOCKS: 1354 *destu64 = totalblocks; 1355 break; 1356 case DSM_TOTAL_BLOCKS_READ: 1357 *destu64 = totalblocksread; 1358 break; 1359 case DSM_TOTAL_BLOCKS_WRITE: 1360 *destu64 = totalblockswrite; 1361 break; 1362 case DSM_TOTAL_BLOCKS_FREE: 1363 *destu64 = totalblocksfree; 1364 break; 1365 case DSM_KB_PER_TRANSFER: 1366 *destld = totalbytes; 1367 *destld /= 1024; 1368 if (totaltransfers > 0) 1369 *destld /= totaltransfers; 1370 else 1371 *destld = 0.0; 1372 break; 1373 case DSM_KB_PER_TRANSFER_READ: 1374 *destld = totalbytesread; 1375 *destld /= 1024; 1376 if (totaltransfersread > 0) 1377 *destld /= totaltransfersread; 1378 else 1379 *destld = 0.0; 1380 break; 1381 case DSM_KB_PER_TRANSFER_WRITE: 1382 *destld = totalbyteswrite; 1383 *destld /= 1024; 1384 if (totaltransferswrite > 0) 1385 *destld /= totaltransferswrite; 1386 else 1387 *destld = 0.0; 1388 break; 1389 case DSM_KB_PER_TRANSFER_FREE: 1390 *destld = totalbytesfree; 1391 *destld /= 1024; 1392 if (totaltransfersfree > 0) 1393 *destld /= totaltransfersfree; 1394 else 1395 *destld = 0.0; 1396 break; 1397 case DSM_TRANSFERS_PER_SECOND: 1398 if (etime > 0.0) { 1399 *destld = totaltransfers; 1400 *destld /= etime; 1401 } else 1402 *destld = 0.0; 1403 break; 1404 case DSM_TRANSFERS_PER_SECOND_READ: 1405 if (etime > 0.0) { 1406 *destld = totaltransfersread; 1407 *destld /= etime; 1408 } else 1409 *destld = 0.0; 1410 break; 1411 case DSM_TRANSFERS_PER_SECOND_WRITE: 1412 if (etime > 0.0) { 1413 *destld = totaltransferswrite; 1414 *destld /= etime; 1415 } else 1416 *destld = 0.0; 1417 break; 1418 case DSM_TRANSFERS_PER_SECOND_FREE: 1419 if (etime > 0.0) { 1420 *destld = totaltransfersfree; 1421 *destld /= etime; 1422 } else 1423 *destld = 0.0; 1424 break; 1425 case DSM_TRANSFERS_PER_SECOND_OTHER: 1426 if (etime > 0.0) { 1427 *destld = totaltransfersother; 1428 *destld /= etime; 1429 } else 1430 *destld = 0.0; 1431 break; 1432 case DSM_MB_PER_SECOND: 1433 *destld = totalbytes; 1434 *destld /= 1024 * 1024; 1435 if (etime > 0.0) 1436 *destld /= etime; 1437 else 1438 *destld = 0.0; 1439 break; 1440 case DSM_MB_PER_SECOND_READ: 1441 *destld = totalbytesread; 1442 *destld /= 1024 * 1024; 1443 if (etime > 0.0) 1444 *destld /= etime; 1445 else 1446 *destld = 0.0; 1447 break; 1448 case DSM_MB_PER_SECOND_WRITE: 1449 *destld = totalbyteswrite; 1450 *destld /= 1024 * 1024; 1451 if (etime > 0.0) 1452 *destld /= etime; 1453 else 1454 *destld = 0.0; 1455 break; 1456 case DSM_MB_PER_SECOND_FREE: 1457 *destld = totalbytesfree; 1458 *destld /= 1024 * 1024; 1459 if (etime > 0.0) 1460 *destld /= etime; 1461 else 1462 *destld = 0.0; 1463 break; 1464 case DSM_BLOCKS_PER_SECOND: 1465 *destld = totalblocks; 1466 if (etime > 0.0) 1467 *destld /= etime; 1468 else 1469 *destld = 0.0; 1470 break; 1471 case DSM_BLOCKS_PER_SECOND_READ: 1472 *destld = totalblocksread; 1473 if (etime > 0.0) 1474 *destld /= etime; 1475 else 1476 *destld = 0.0; 1477 break; 1478 case DSM_BLOCKS_PER_SECOND_WRITE: 1479 *destld = totalblockswrite; 1480 if (etime > 0.0) 1481 *destld /= etime; 1482 else 1483 *destld = 0.0; 1484 break; 1485 case DSM_BLOCKS_PER_SECOND_FREE: 1486 *destld = totalblocksfree; 1487 if (etime > 0.0) 1488 *destld /= etime; 1489 else 1490 *destld = 0.0; 1491 break; 1492 /* 1493 * Some devstat callers update the duration and some don't. 1494 * So this will only be accurate if they provide the 1495 * duration. 1496 */ 1497 case DSM_MS_PER_TRANSACTION: 1498 if (totaltransfers > 0) { 1499 *destld = totalduration; 1500 *destld /= totaltransfers; 1501 *destld *= 1000; 1502 } else 1503 *destld = 0.0; 1504 break; 1505 case DSM_MS_PER_TRANSACTION_READ: 1506 if (totaltransfersread > 0) { 1507 *destld = totaldurationread; 1508 *destld /= totaltransfersread; 1509 *destld *= 1000; 1510 } else 1511 *destld = 0.0; 1512 break; 1513 case DSM_MS_PER_TRANSACTION_WRITE: 1514 if (totaltransferswrite > 0) { 1515 *destld = totaldurationwrite; 1516 *destld /= totaltransferswrite; 1517 *destld *= 1000; 1518 } else 1519 *destld = 0.0; 1520 break; 1521 case DSM_MS_PER_TRANSACTION_FREE: 1522 if (totaltransfersfree > 0) { 1523 *destld = totaldurationfree; 1524 *destld /= totaltransfersfree; 1525 *destld *= 1000; 1526 } else 1527 *destld = 0.0; 1528 break; 1529 case DSM_MS_PER_TRANSACTION_OTHER: 1530 if (totaltransfersother > 0) { 1531 *destld = totaldurationother; 1532 *destld /= totaltransfersother; 1533 *destld *= 1000; 1534 } else 1535 *destld = 0.0; 1536 break; 1537 case DSM_BUSY_PCT: 1538 *destld = DELTA_T(busy_time); 1539 if (*destld < 0) 1540 *destld = 0; 1541 *destld /= etime; 1542 *destld *= 100; 1543 if (*destld < 0) 1544 *destld = 0; 1545 break; 1546 case DSM_QUEUE_LENGTH: 1547 *destu64 = current->start_count - current->end_count; 1548 break; 1549 case DSM_TOTAL_DURATION: 1550 *destld = totalduration; 1551 break; 1552 case DSM_TOTAL_DURATION_READ: 1553 *destld = totaldurationread; 1554 break; 1555 case DSM_TOTAL_DURATION_WRITE: 1556 *destld = totaldurationwrite; 1557 break; 1558 case DSM_TOTAL_DURATION_FREE: 1559 *destld = totaldurationfree; 1560 break; 1561 case DSM_TOTAL_DURATION_OTHER: 1562 *destld = totaldurationother; 1563 break; 1564 case DSM_TOTAL_BUSY_TIME: 1565 *destld = DELTA_T(busy_time); 1566 break; 1567 /* 1568 * XXX: comment out the default block to see if any case's are missing. 1569 */ 1570 #if 1 1571 default: 1572 /* 1573 * This shouldn't happen, since we should have 1574 * caught any out of range metrics at the top of 1575 * the loop. 1576 */ 1577 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 1578 "%s: unknown metric %d", __func__, metric); 1579 retval = -1; 1580 goto bailout; 1581 break; /* NOTREACHED */ 1582 #endif 1583 } 1584 } 1585 1586 bailout: 1587 1588 va_end(ap); 1589 return(retval); 1590 } 1591 1592 static int 1593 readkmem(kvm_t *kd, unsigned long addr, void *buf, size_t nbytes) 1594 { 1595 1596 if (kvm_read(kd, addr, buf, nbytes) == -1) { 1597 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 1598 "%s: error reading value (kvm_read): %s", __func__, 1599 kvm_geterr(kd)); 1600 return(-1); 1601 } 1602 return(0); 1603 } 1604 1605 static int 1606 readkmem_nl(kvm_t *kd, const char *name, void *buf, size_t nbytes) 1607 { 1608 struct nlist nl[2]; 1609 1610 nl[0].n_name = (char *)name; 1611 nl[1].n_name = NULL; 1612 1613 if (kvm_nlist(kd, nl) == -1) { 1614 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 1615 "%s: error getting name list (kvm_nlist): %s", 1616 __func__, kvm_geterr(kd)); 1617 return(-1); 1618 } 1619 return(readkmem(kd, nl[0].n_value, buf, nbytes)); 1620 } 1621 1622 /* 1623 * This duplicates the functionality of the kernel sysctl handler for poking 1624 * through crash dumps. 1625 */ 1626 static char * 1627 get_devstat_kvm(kvm_t *kd) 1628 { 1629 int i, wp; 1630 long gen; 1631 struct devstat *nds; 1632 struct devstat ds; 1633 struct devstatlist dhead; 1634 int num_devs; 1635 char *rv = NULL; 1636 1637 if ((num_devs = devstat_getnumdevs(kd)) <= 0) 1638 return(NULL); 1639 if (KREADNL(kd, X_DEVICE_STATQ, dhead) == -1) 1640 return(NULL); 1641 1642 nds = STAILQ_FIRST(&dhead); 1643 1644 if ((rv = malloc(sizeof(gen))) == NULL) { 1645 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 1646 "%s: out of memory (initial malloc failed)", 1647 __func__); 1648 return(NULL); 1649 } 1650 gen = devstat_getgeneration(kd); 1651 memcpy(rv, &gen, sizeof(gen)); 1652 wp = sizeof(gen); 1653 /* 1654 * Now push out all the devices. 1655 */ 1656 for (i = 0; (nds != NULL) && (i < num_devs); 1657 nds = STAILQ_NEXT(nds, dev_links), i++) { 1658 if (readkmem(kd, (long)nds, &ds, sizeof(ds)) == -1) { 1659 free(rv); 1660 return(NULL); 1661 } 1662 nds = &ds; 1663 rv = (char *)reallocf(rv, sizeof(gen) + 1664 sizeof(ds) * (i + 1)); 1665 if (rv == NULL) { 1666 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 1667 "%s: out of memory (malloc failed)", 1668 __func__); 1669 return(NULL); 1670 } 1671 memcpy(rv + wp, &ds, sizeof(ds)); 1672 wp += sizeof(ds); 1673 } 1674 return(rv); 1675 } 1676