1 /* 2 * Copyright (c) 1997, 1998 Kenneth D. Merry. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. The name of the author may not be used to endorse or promote products 14 * derived from this software without specific prior written permission. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include <sys/types.h> 33 #include <sys/sysctl.h> 34 #include <sys/errno.h> 35 #include <sys/resource.h> 36 #include <sys/queue.h> 37 38 #include <ctype.h> 39 #include <err.h> 40 #include <fcntl.h> 41 #include <limits.h> 42 #include <stdio.h> 43 #include <stdlib.h> 44 #include <string.h> 45 #include <stdarg.h> 46 #include <kvm.h> 47 #include <nlist.h> 48 49 #include "devstat.h" 50 51 int 52 compute_stats(struct devstat *current, struct devstat *previous, 53 long double etime, u_int64_t *total_bytes, 54 u_int64_t *total_transfers, u_int64_t *total_blocks, 55 long double *kb_per_transfer, long double *transfers_per_second, 56 long double *mb_per_second, long double *blocks_per_second, 57 long double *ms_per_transaction); 58 59 typedef enum { 60 DEVSTAT_ARG_NOTYPE, 61 DEVSTAT_ARG_UINT64, 62 DEVSTAT_ARG_LD, 63 DEVSTAT_ARG_SKIP 64 } devstat_arg_type; 65 66 char devstat_errbuf[DEVSTAT_ERRBUF_SIZE]; 67 68 /* 69 * Table to match descriptive strings with device types. These are in 70 * order from most common to least common to speed search time. 71 */ 72 struct devstat_match_table match_table[] = { 73 {"da", DEVSTAT_TYPE_DIRECT, DEVSTAT_MATCH_TYPE}, 74 {"cd", DEVSTAT_TYPE_CDROM, DEVSTAT_MATCH_TYPE}, 75 {"scsi", DEVSTAT_TYPE_IF_SCSI, DEVSTAT_MATCH_IF}, 76 {"ide", DEVSTAT_TYPE_IF_IDE, DEVSTAT_MATCH_IF}, 77 {"other", DEVSTAT_TYPE_IF_OTHER, DEVSTAT_MATCH_IF}, 78 {"worm", DEVSTAT_TYPE_WORM, DEVSTAT_MATCH_TYPE}, 79 {"sa", DEVSTAT_TYPE_SEQUENTIAL,DEVSTAT_MATCH_TYPE}, 80 {"pass", DEVSTAT_TYPE_PASS, DEVSTAT_MATCH_PASS}, 81 {"optical", DEVSTAT_TYPE_OPTICAL, DEVSTAT_MATCH_TYPE}, 82 {"array", DEVSTAT_TYPE_STORARRAY, DEVSTAT_MATCH_TYPE}, 83 {"changer", DEVSTAT_TYPE_CHANGER, DEVSTAT_MATCH_TYPE}, 84 {"scanner", DEVSTAT_TYPE_SCANNER, DEVSTAT_MATCH_TYPE}, 85 {"printer", DEVSTAT_TYPE_PRINTER, DEVSTAT_MATCH_TYPE}, 86 {"floppy", DEVSTAT_TYPE_FLOPPY, DEVSTAT_MATCH_TYPE}, 87 {"proc", DEVSTAT_TYPE_PROCESSOR, DEVSTAT_MATCH_TYPE}, 88 {"comm", DEVSTAT_TYPE_COMM, DEVSTAT_MATCH_TYPE}, 89 {"enclosure", DEVSTAT_TYPE_ENCLOSURE, DEVSTAT_MATCH_TYPE}, 90 {NULL, 0, 0} 91 }; 92 93 struct devstat_args { 94 devstat_metric metric; 95 devstat_arg_type argtype; 96 } devstat_arg_list[] = { 97 { DSM_NONE, DEVSTAT_ARG_NOTYPE }, 98 { DSM_TOTAL_BYTES, DEVSTAT_ARG_UINT64 }, 99 { DSM_TOTAL_BYTES_READ, DEVSTAT_ARG_UINT64 }, 100 { DSM_TOTAL_BYTES_WRITE, DEVSTAT_ARG_UINT64 }, 101 { DSM_TOTAL_TRANSFERS, DEVSTAT_ARG_UINT64 }, 102 { DSM_TOTAL_TRANSFERS_READ, DEVSTAT_ARG_UINT64 }, 103 { DSM_TOTAL_TRANSFERS_WRITE, DEVSTAT_ARG_UINT64 }, 104 { DSM_TOTAL_TRANSFERS_OTHER, DEVSTAT_ARG_UINT64 }, 105 { DSM_TOTAL_BLOCKS, DEVSTAT_ARG_UINT64 }, 106 { DSM_TOTAL_BLOCKS_READ, DEVSTAT_ARG_UINT64 }, 107 { DSM_TOTAL_BLOCKS_WRITE, DEVSTAT_ARG_UINT64 }, 108 { DSM_KB_PER_TRANSFER, DEVSTAT_ARG_LD }, 109 { DSM_KB_PER_TRANSFER_READ, DEVSTAT_ARG_LD }, 110 { DSM_KB_PER_TRANSFER_WRITE, DEVSTAT_ARG_LD }, 111 { DSM_TRANSFERS_PER_SECOND, DEVSTAT_ARG_LD }, 112 { DSM_TRANSFERS_PER_SECOND_READ, DEVSTAT_ARG_LD }, 113 { DSM_TRANSFERS_PER_SECOND_WRITE, DEVSTAT_ARG_LD }, 114 { DSM_TRANSFERS_PER_SECOND_OTHER, DEVSTAT_ARG_LD }, 115 { DSM_MB_PER_SECOND, DEVSTAT_ARG_LD }, 116 { DSM_MB_PER_SECOND_READ, DEVSTAT_ARG_LD }, 117 { DSM_MB_PER_SECOND_WRITE, DEVSTAT_ARG_LD }, 118 { DSM_BLOCKS_PER_SECOND, DEVSTAT_ARG_LD }, 119 { DSM_BLOCKS_PER_SECOND_READ, DEVSTAT_ARG_LD }, 120 { DSM_BLOCKS_PER_SECOND_WRITE, DEVSTAT_ARG_LD }, 121 { DSM_MS_PER_TRANSACTION, DEVSTAT_ARG_LD }, 122 { DSM_MS_PER_TRANSACTION_READ, DEVSTAT_ARG_LD }, 123 { DSM_MS_PER_TRANSACTION_WRITE, DEVSTAT_ARG_LD }, 124 { DSM_SKIP, DEVSTAT_ARG_SKIP }, 125 { DSM_TOTAL_BYTES_FREE, DEVSTAT_ARG_UINT64 }, 126 { DSM_TOTAL_TRANSFERS_FREE, DEVSTAT_ARG_UINT64 }, 127 { DSM_TOTAL_BLOCKS_FREE, DEVSTAT_ARG_UINT64 }, 128 { DSM_KB_PER_TRANSFER_FREE, DEVSTAT_ARG_LD }, 129 { DSM_MB_PER_SECOND_FREE, DEVSTAT_ARG_LD }, 130 { DSM_TRANSFERS_PER_SECOND_FREE, DEVSTAT_ARG_LD }, 131 { DSM_BLOCKS_PER_SECOND_FREE, DEVSTAT_ARG_LD }, 132 { DSM_MS_PER_TRANSACTION_OTHER, DEVSTAT_ARG_LD }, 133 { DSM_MS_PER_TRANSACTION_FREE, DEVSTAT_ARG_LD }, 134 { DSM_BUSY_PCT, DEVSTAT_ARG_LD }, 135 { DSM_QUEUE_LENGTH, DEVSTAT_ARG_UINT64 }, 136 { DSM_TOTAL_DURATION, DEVSTAT_ARG_LD }, 137 { DSM_TOTAL_DURATION_READ, DEVSTAT_ARG_LD }, 138 { DSM_TOTAL_DURATION_WRITE, DEVSTAT_ARG_LD }, 139 { DSM_TOTAL_DURATION_FREE, DEVSTAT_ARG_LD }, 140 { DSM_TOTAL_DURATION_OTHER, DEVSTAT_ARG_LD }, 141 { DSM_TOTAL_BUSY_TIME, DEVSTAT_ARG_LD }, 142 }; 143 144 static const char *namelist[] = { 145 #define X_NUMDEVS 0 146 "_devstat_num_devs", 147 #define X_GENERATION 1 148 "_devstat_generation", 149 #define X_VERSION 2 150 "_devstat_version", 151 #define X_DEVICE_STATQ 3 152 "_device_statq", 153 #define X_END 4 154 }; 155 156 /* 157 * Local function declarations. 158 */ 159 static int compare_select(const void *arg1, const void *arg2); 160 static int readkmem(kvm_t *kd, unsigned long addr, void *buf, size_t nbytes); 161 static int readkmem_nl(kvm_t *kd, const char *name, void *buf, size_t nbytes); 162 static char *get_devstat_kvm(kvm_t *kd); 163 164 #define KREADNL(kd, var, val) \ 165 readkmem_nl(kd, namelist[var], &val, sizeof(val)) 166 167 int 168 devstat_getnumdevs(kvm_t *kd) 169 { 170 size_t numdevsize; 171 int numdevs; 172 173 numdevsize = sizeof(int); 174 175 /* 176 * Find out how many devices we have in the system. 177 */ 178 if (kd == NULL) { 179 if (sysctlbyname("kern.devstat.numdevs", &numdevs, 180 &numdevsize, NULL, 0) == -1) { 181 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 182 "%s: error getting number of devices\n" 183 "%s: %s", __func__, __func__, 184 strerror(errno)); 185 return(-1); 186 } else 187 return(numdevs); 188 } else { 189 190 if (KREADNL(kd, X_NUMDEVS, numdevs) == -1) 191 return(-1); 192 else 193 return(numdevs); 194 } 195 } 196 197 /* 198 * This is an easy way to get the generation number, but the generation is 199 * supplied in a more atmoic manner by the kern.devstat.all sysctl. 200 * Because this generation sysctl is separate from the statistics sysctl, 201 * the device list and the generation could change between the time that 202 * this function is called and the device list is retreived. 203 */ 204 long 205 devstat_getgeneration(kvm_t *kd) 206 { 207 size_t gensize; 208 long generation; 209 210 gensize = sizeof(long); 211 212 /* 213 * Get the current generation number. 214 */ 215 if (kd == NULL) { 216 if (sysctlbyname("kern.devstat.generation", &generation, 217 &gensize, NULL, 0) == -1) { 218 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 219 "%s: error getting devstat generation\n%s: %s", 220 __func__, __func__, strerror(errno)); 221 return(-1); 222 } else 223 return(generation); 224 } else { 225 if (KREADNL(kd, X_GENERATION, generation) == -1) 226 return(-1); 227 else 228 return(generation); 229 } 230 } 231 232 /* 233 * Get the current devstat version. The return value of this function 234 * should be compared with DEVSTAT_VERSION, which is defined in 235 * sys/devicestat.h. This will enable userland programs to determine 236 * whether they are out of sync with the kernel. 237 */ 238 int 239 devstat_getversion(kvm_t *kd) 240 { 241 size_t versize; 242 int version; 243 244 versize = sizeof(int); 245 246 /* 247 * Get the current devstat version. 248 */ 249 if (kd == NULL) { 250 if (sysctlbyname("kern.devstat.version", &version, &versize, 251 NULL, 0) == -1) { 252 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 253 "%s: error getting devstat version\n%s: %s", 254 __func__, __func__, strerror(errno)); 255 return(-1); 256 } else 257 return(version); 258 } else { 259 if (KREADNL(kd, X_VERSION, version) == -1) 260 return(-1); 261 else 262 return(version); 263 } 264 } 265 266 /* 267 * Check the devstat version we know about against the devstat version the 268 * kernel knows about. If they don't match, print an error into the 269 * devstat error buffer, and return -1. If they match, return 0. 270 */ 271 int 272 devstat_checkversion(kvm_t *kd) 273 { 274 int buflen, res, retval = 0, version; 275 276 version = devstat_getversion(kd); 277 278 if (version != DEVSTAT_VERSION) { 279 /* 280 * If getversion() returns an error (i.e. -1), then it 281 * has printed an error message in the buffer. Therefore, 282 * we need to add a \n to the end of that message before we 283 * print our own message in the buffer. 284 */ 285 if (version == -1) 286 buflen = strlen(devstat_errbuf); 287 else 288 buflen = 0; 289 290 res = snprintf(devstat_errbuf + buflen, 291 DEVSTAT_ERRBUF_SIZE - buflen, 292 "%s%s: userland devstat version %d is not " 293 "the same as the kernel\n%s: devstat " 294 "version %d\n", version == -1 ? "\n" : "", 295 __func__, DEVSTAT_VERSION, __func__, version); 296 297 if (res < 0) 298 devstat_errbuf[buflen] = '\0'; 299 300 buflen = strlen(devstat_errbuf); 301 if (version < DEVSTAT_VERSION) 302 res = snprintf(devstat_errbuf + buflen, 303 DEVSTAT_ERRBUF_SIZE - buflen, 304 "%s: libdevstat newer than kernel\n", 305 __func__); 306 else 307 res = snprintf(devstat_errbuf + buflen, 308 DEVSTAT_ERRBUF_SIZE - buflen, 309 "%s: kernel newer than libdevstat\n", 310 __func__); 311 312 if (res < 0) 313 devstat_errbuf[buflen] = '\0'; 314 315 retval = -1; 316 } 317 318 return(retval); 319 } 320 321 /* 322 * Get the current list of devices and statistics, and the current 323 * generation number. 324 * 325 * Return values: 326 * -1 -- error 327 * 0 -- device list is unchanged 328 * 1 -- device list has changed 329 */ 330 int 331 devstat_getdevs(kvm_t *kd, struct statinfo *stats) 332 { 333 int error; 334 size_t dssize; 335 int oldnumdevs; 336 long oldgeneration; 337 int retval = 0; 338 struct devinfo *dinfo; 339 struct timespec ts; 340 341 dinfo = stats->dinfo; 342 343 if (dinfo == NULL) { 344 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 345 "%s: stats->dinfo was NULL", __func__); 346 return(-1); 347 } 348 349 oldnumdevs = dinfo->numdevs; 350 oldgeneration = dinfo->generation; 351 352 clock_gettime(CLOCK_MONOTONIC, &ts); 353 stats->snap_time = ts.tv_sec + ts.tv_nsec * 1e-9; 354 355 if (kd == NULL) { 356 /* If this is our first time through, mem_ptr will be null. */ 357 if (dinfo->mem_ptr == NULL) { 358 /* 359 * Get the number of devices. If it's negative, it's an 360 * error. Don't bother setting the error string, since 361 * getnumdevs() has already done that for us. 362 */ 363 if ((dinfo->numdevs = devstat_getnumdevs(kd)) < 0) 364 return(-1); 365 366 /* 367 * The kern.devstat.all sysctl returns the current 368 * generation number, as well as all the devices. 369 * So we need four bytes more. 370 */ 371 dssize = (dinfo->numdevs * sizeof(struct devstat)) + 372 sizeof(long); 373 dinfo->mem_ptr = (u_int8_t *)malloc(dssize); 374 if (dinfo->mem_ptr == NULL) { 375 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 376 "%s: Cannot allocate memory for mem_ptr element", 377 __func__); 378 return(-1); 379 } 380 } else 381 dssize = (dinfo->numdevs * sizeof(struct devstat)) + 382 sizeof(long); 383 384 /* 385 * Request all of the devices. We only really allow for one 386 * ENOMEM failure. It would, of course, be possible to just go 387 * in a loop and keep reallocing the device structure until we 388 * don't get ENOMEM back. I'm not sure it's worth it, though. 389 * If devices are being added to the system that quickly, maybe 390 * the user can just wait until all devices are added. 391 */ 392 for (;;) { 393 error = sysctlbyname("kern.devstat.all", 394 dinfo->mem_ptr, 395 &dssize, NULL, 0); 396 if (error != -1 || errno != EBUSY) 397 break; 398 } 399 if (error == -1) { 400 /* 401 * If we get ENOMEM back, that means that there are 402 * more devices now, so we need to allocate more 403 * space for the device array. 404 */ 405 if (errno == ENOMEM) { 406 /* 407 * No need to set the error string here, 408 * devstat_getnumdevs() will do that if it fails. 409 */ 410 if ((dinfo->numdevs = devstat_getnumdevs(kd)) < 0) 411 return(-1); 412 413 dssize = (dinfo->numdevs * 414 sizeof(struct devstat)) + sizeof(long); 415 dinfo->mem_ptr = (u_int8_t *) 416 realloc(dinfo->mem_ptr, dssize); 417 if ((error = sysctlbyname("kern.devstat.all", 418 dinfo->mem_ptr, &dssize, NULL, 0)) == -1) { 419 snprintf(devstat_errbuf, 420 sizeof(devstat_errbuf), 421 "%s: error getting device " 422 "stats\n%s: %s", __func__, 423 __func__, strerror(errno)); 424 return(-1); 425 } 426 } else { 427 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 428 "%s: error getting device stats\n" 429 "%s: %s", __func__, __func__, 430 strerror(errno)); 431 return(-1); 432 } 433 } 434 435 } else { 436 /* 437 * This is of course non-atomic, but since we are working 438 * on a core dump, the generation is unlikely to change 439 */ 440 if ((dinfo->numdevs = devstat_getnumdevs(kd)) == -1) 441 return(-1); 442 if ((dinfo->mem_ptr = (u_int8_t *)get_devstat_kvm(kd)) == NULL) 443 return(-1); 444 } 445 /* 446 * The sysctl spits out the generation as the first four bytes, 447 * then all of the device statistics structures. 448 */ 449 dinfo->generation = *(long *)dinfo->mem_ptr; 450 451 /* 452 * If the generation has changed, and if the current number of 453 * devices is not the same as the number of devices recorded in the 454 * devinfo structure, it is likely that the device list has shrunk. 455 * The reason that it is likely that the device list has shrunk in 456 * this case is that if the device list has grown, the sysctl above 457 * will return an ENOMEM error, and we will reset the number of 458 * devices and reallocate the device array. If the second sysctl 459 * fails, we will return an error and therefore never get to this 460 * point. If the device list has shrunk, the sysctl will not 461 * return an error since we have more space allocated than is 462 * necessary. So, in the shrinkage case, we catch it here and 463 * reallocate the array so that we don't use any more space than is 464 * necessary. 465 */ 466 if (oldgeneration != dinfo->generation) { 467 if (devstat_getnumdevs(kd) != dinfo->numdevs) { 468 if ((dinfo->numdevs = devstat_getnumdevs(kd)) < 0) 469 return(-1); 470 dssize = (dinfo->numdevs * sizeof(struct devstat)) + 471 sizeof(long); 472 dinfo->mem_ptr = (u_int8_t *)realloc(dinfo->mem_ptr, 473 dssize); 474 } 475 retval = 1; 476 } 477 478 dinfo->devices = (struct devstat *)(dinfo->mem_ptr + sizeof(long)); 479 480 return(retval); 481 } 482 483 /* 484 * selectdevs(): 485 * 486 * Devices are selected/deselected based upon the following criteria: 487 * - devices specified by the user on the command line 488 * - devices matching any device type expressions given on the command line 489 * - devices with the highest I/O, if 'top' mode is enabled 490 * - the first n unselected devices in the device list, if maxshowdevs 491 * devices haven't already been selected and if the user has not 492 * specified any devices on the command line and if we're in "add" mode. 493 * 494 * Input parameters: 495 * - device selection list (dev_select) 496 * - current number of devices selected (num_selected) 497 * - total number of devices in the selection list (num_selections) 498 * - devstat generation as of the last time selectdevs() was called 499 * (select_generation) 500 * - current devstat generation (current_generation) 501 * - current list of devices and statistics (devices) 502 * - number of devices in the current device list (numdevs) 503 * - compiled version of the command line device type arguments (matches) 504 * - This is optional. If the number of devices is 0, this will be ignored. 505 * - The matching code pays attention to the current selection mode. So 506 * if you pass in a matching expression, it will be evaluated based 507 * upon the selection mode that is passed in. See below for details. 508 * - number of device type matching expressions (num_matches) 509 * - Set to 0 to disable the matching code. 510 * - list of devices specified on the command line by the user (dev_selections) 511 * - number of devices selected on the command line by the user 512 * (num_dev_selections) 513 * - Our selection mode. There are four different selection modes: 514 * - add mode. (DS_SELECT_ADD) Any devices matching devices explicitly 515 * selected by the user or devices matching a pattern given by the 516 * user will be selected in addition to devices that are already 517 * selected. Additional devices will be selected, up to maxshowdevs 518 * number of devices. 519 * - only mode. (DS_SELECT_ONLY) Only devices matching devices 520 * explicitly given by the user or devices matching a pattern 521 * given by the user will be selected. No other devices will be 522 * selected. 523 * - addonly mode. (DS_SELECT_ADDONLY) This is similar to add and 524 * only. Basically, this will not de-select any devices that are 525 * current selected, as only mode would, but it will also not 526 * gratuitously select up to maxshowdevs devices as add mode would. 527 * - remove mode. (DS_SELECT_REMOVE) Any devices matching devices 528 * explicitly selected by the user or devices matching a pattern 529 * given by the user will be de-selected. 530 * - maximum number of devices we can select (maxshowdevs) 531 * - flag indicating whether or not we're in 'top' mode (perf_select) 532 * 533 * Output data: 534 * - the device selection list may be modified and passed back out 535 * - the number of devices selected and the total number of items in the 536 * device selection list may be changed 537 * - the selection generation may be changed to match the current generation 538 * 539 * Return values: 540 * -1 -- error 541 * 0 -- selected devices are unchanged 542 * 1 -- selected devices changed 543 */ 544 int 545 devstat_selectdevs(struct device_selection **dev_select, int *num_selected, 546 int *num_selections, long *select_generation, 547 long current_generation, struct devstat *devices, 548 int numdevs, struct devstat_match *matches, int num_matches, 549 char **dev_selections, int num_dev_selections, 550 devstat_select_mode select_mode, int maxshowdevs, 551 int perf_select) 552 { 553 int i, j, k; 554 int init_selections = 0, init_selected_var = 0; 555 struct device_selection *old_dev_select = NULL; 556 int old_num_selections = 0, old_num_selected; 557 int selection_number = 0; 558 int changed = 0, found = 0; 559 560 if ((dev_select == NULL) || (devices == NULL) || (numdevs < 0)) 561 return(-1); 562 563 /* 564 * We always want to make sure that we have as many dev_select 565 * entries as there are devices. 566 */ 567 /* 568 * In this case, we haven't selected devices before. 569 */ 570 if (*dev_select == NULL) { 571 *dev_select = (struct device_selection *)malloc(numdevs * 572 sizeof(struct device_selection)); 573 *select_generation = current_generation; 574 init_selections = 1; 575 changed = 1; 576 /* 577 * In this case, we have selected devices before, but the device 578 * list has changed since we last selected devices, so we need to 579 * either enlarge or reduce the size of the device selection list. 580 */ 581 } else if (*num_selections != numdevs) { 582 *dev_select = (struct device_selection *)reallocf(*dev_select, 583 numdevs * sizeof(struct device_selection)); 584 *select_generation = current_generation; 585 init_selections = 1; 586 /* 587 * In this case, we've selected devices before, and the selection 588 * list is the same size as it was the last time, but the device 589 * list has changed. 590 */ 591 } else if (*select_generation < current_generation) { 592 *select_generation = current_generation; 593 init_selections = 1; 594 } 595 596 if (*dev_select == NULL) { 597 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 598 "%s: Cannot (re)allocate memory for dev_select argument", 599 __func__); 600 return(-1); 601 } 602 603 /* 604 * If we're in "only" mode, we want to clear out the selected 605 * variable since we're going to select exactly what the user wants 606 * this time through. 607 */ 608 if (select_mode == DS_SELECT_ONLY) 609 init_selected_var = 1; 610 611 /* 612 * In all cases, we want to back up the number of selected devices. 613 * It is a quick and accurate way to determine whether the selected 614 * devices have changed. 615 */ 616 old_num_selected = *num_selected; 617 618 /* 619 * We want to make a backup of the current selection list if 620 * the list of devices has changed, or if we're in performance 621 * selection mode. In both cases, we don't want to make a backup 622 * if we already know for sure that the list will be different. 623 * This is certainly the case if this is our first time through the 624 * selection code. 625 */ 626 if (((init_selected_var != 0) || (init_selections != 0) 627 || (perf_select != 0)) && (changed == 0)){ 628 old_dev_select = (struct device_selection *)malloc( 629 *num_selections * sizeof(struct device_selection)); 630 if (old_dev_select == NULL) { 631 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 632 "%s: Cannot allocate memory for selection list backup", 633 __func__); 634 return(-1); 635 } 636 old_num_selections = *num_selections; 637 bcopy(*dev_select, old_dev_select, 638 sizeof(struct device_selection) * *num_selections); 639 } 640 641 if (init_selections != 0) { 642 bzero(*dev_select, sizeof(struct device_selection) * numdevs); 643 644 for (i = 0; i < numdevs; i++) { 645 (*dev_select)[i].device_number = 646 devices[i].device_number; 647 strncpy((*dev_select)[i].device_name, 648 devices[i].device_name, 649 DEVSTAT_NAME_LEN); 650 (*dev_select)[i].device_name[DEVSTAT_NAME_LEN - 1]='\0'; 651 (*dev_select)[i].unit_number = devices[i].unit_number; 652 (*dev_select)[i].position = i; 653 } 654 *num_selections = numdevs; 655 } else if (init_selected_var != 0) { 656 for (i = 0; i < numdevs; i++) 657 (*dev_select)[i].selected = 0; 658 } 659 660 /* we haven't gotten around to selecting anything yet.. */ 661 if ((select_mode == DS_SELECT_ONLY) || (init_selections != 0) 662 || (init_selected_var != 0)) 663 *num_selected = 0; 664 665 /* 666 * Look through any devices the user specified on the command line 667 * and see if they match known devices. If so, select them. 668 */ 669 for (i = 0; (i < *num_selections) && (num_dev_selections > 0); i++) { 670 char tmpstr[80]; 671 672 snprintf(tmpstr, sizeof(tmpstr), "%s%d", 673 (*dev_select)[i].device_name, 674 (*dev_select)[i].unit_number); 675 for (j = 0; j < num_dev_selections; j++) { 676 if (strcmp(tmpstr, dev_selections[j]) == 0) { 677 /* 678 * Here we do different things based on the 679 * mode we're in. If we're in add or 680 * addonly mode, we only select this device 681 * if it hasn't already been selected. 682 * Otherwise, we would be unnecessarily 683 * changing the selection order and 684 * incrementing the selection count. If 685 * we're in only mode, we unconditionally 686 * select this device, since in only mode 687 * any previous selections are erased and 688 * manually specified devices are the first 689 * ones to be selected. If we're in remove 690 * mode, we de-select the specified device and 691 * decrement the selection count. 692 */ 693 switch(select_mode) { 694 case DS_SELECT_ADD: 695 case DS_SELECT_ADDONLY: 696 if ((*dev_select)[i].selected) 697 break; 698 /* FALLTHROUGH */ 699 case DS_SELECT_ONLY: 700 (*dev_select)[i].selected = 701 ++selection_number; 702 (*num_selected)++; 703 break; 704 case DS_SELECT_REMOVE: 705 (*dev_select)[i].selected = 0; 706 (*num_selected)--; 707 /* 708 * This isn't passed back out, we 709 * just use it to keep track of 710 * how many devices we've removed. 711 */ 712 num_dev_selections--; 713 break; 714 } 715 break; 716 } 717 } 718 } 719 720 /* 721 * Go through the user's device type expressions and select devices 722 * accordingly. We only do this if the number of devices already 723 * selected is less than the maximum number we can show. 724 */ 725 for (i = 0; (i < num_matches) && (*num_selected < maxshowdevs); i++) { 726 /* We should probably indicate some error here */ 727 if ((matches[i].match_fields == DEVSTAT_MATCH_NONE) 728 || (matches[i].num_match_categories <= 0)) 729 continue; 730 731 for (j = 0; j < numdevs; j++) { 732 int num_match_categories; 733 734 num_match_categories = matches[i].num_match_categories; 735 736 /* 737 * Determine whether or not the current device 738 * matches the given matching expression. This if 739 * statement consists of three components: 740 * - the device type check 741 * - the device interface check 742 * - the passthrough check 743 * If a the matching test is successful, it 744 * decrements the number of matching categories, 745 * and if we've reached the last element that 746 * needed to be matched, the if statement succeeds. 747 * 748 */ 749 if ((((matches[i].match_fields & DEVSTAT_MATCH_TYPE)!=0) 750 && ((devices[j].device_type & DEVSTAT_TYPE_MASK) == 751 (matches[i].device_type & DEVSTAT_TYPE_MASK)) 752 &&(((matches[i].match_fields & DEVSTAT_MATCH_PASS)!=0) 753 || (((matches[i].match_fields & 754 DEVSTAT_MATCH_PASS) == 0) 755 && ((devices[j].device_type & 756 DEVSTAT_TYPE_PASS) == 0))) 757 && (--num_match_categories == 0)) 758 || (((matches[i].match_fields & DEVSTAT_MATCH_IF) != 0) 759 && ((devices[j].device_type & DEVSTAT_TYPE_IF_MASK) == 760 (matches[i].device_type & DEVSTAT_TYPE_IF_MASK)) 761 &&(((matches[i].match_fields & DEVSTAT_MATCH_PASS)!=0) 762 || (((matches[i].match_fields & 763 DEVSTAT_MATCH_PASS) == 0) 764 && ((devices[j].device_type & 765 DEVSTAT_TYPE_PASS) == 0))) 766 && (--num_match_categories == 0)) 767 || (((matches[i].match_fields & DEVSTAT_MATCH_PASS)!=0) 768 && ((devices[j].device_type & DEVSTAT_TYPE_PASS) != 0) 769 && (--num_match_categories == 0))) { 770 771 /* 772 * This is probably a non-optimal solution 773 * to the problem that the devices in the 774 * device list will not be in the same 775 * order as the devices in the selection 776 * array. 777 */ 778 for (k = 0; k < numdevs; k++) { 779 if ((*dev_select)[k].position == j) { 780 found = 1; 781 break; 782 } 783 } 784 785 /* 786 * There shouldn't be a case where a device 787 * in the device list is not in the 788 * selection list...but it could happen. 789 */ 790 if (found != 1) { 791 fprintf(stderr, "selectdevs: couldn't" 792 " find %s%d in selection " 793 "list\n", 794 devices[j].device_name, 795 devices[j].unit_number); 796 break; 797 } 798 799 /* 800 * We do different things based upon the 801 * mode we're in. If we're in add or only 802 * mode, we go ahead and select this device 803 * if it hasn't already been selected. If 804 * it has already been selected, we leave 805 * it alone so we don't mess up the 806 * selection ordering. Manually specified 807 * devices have already been selected, and 808 * they have higher priority than pattern 809 * matched devices. If we're in remove 810 * mode, we de-select the given device and 811 * decrement the selected count. 812 */ 813 switch(select_mode) { 814 case DS_SELECT_ADD: 815 case DS_SELECT_ADDONLY: 816 case DS_SELECT_ONLY: 817 if ((*dev_select)[k].selected != 0) 818 break; 819 (*dev_select)[k].selected = 820 ++selection_number; 821 (*num_selected)++; 822 break; 823 case DS_SELECT_REMOVE: 824 (*dev_select)[k].selected = 0; 825 (*num_selected)--; 826 break; 827 } 828 } 829 } 830 } 831 832 /* 833 * Here we implement "top" mode. Devices are sorted in the 834 * selection array based on two criteria: whether or not they are 835 * selected (not selection number, just the fact that they are 836 * selected!) and the number of bytes in the "bytes" field of the 837 * selection structure. The bytes field generally must be kept up 838 * by the user. In the future, it may be maintained by library 839 * functions, but for now the user has to do the work. 840 * 841 * At first glance, it may seem wrong that we don't go through and 842 * select every device in the case where the user hasn't specified 843 * any devices or patterns. In fact, though, it won't make any 844 * difference in the device sorting. In that particular case (i.e. 845 * when we're in "add" or "only" mode, and the user hasn't 846 * specified anything) the first time through no devices will be 847 * selected, so the only criterion used to sort them will be their 848 * performance. The second time through, and every time thereafter, 849 * all devices will be selected, so again selection won't matter. 850 */ 851 if (perf_select != 0) { 852 853 /* Sort the device array by throughput */ 854 qsort(*dev_select, *num_selections, 855 sizeof(struct device_selection), 856 compare_select); 857 858 if (*num_selected == 0) { 859 /* 860 * Here we select every device in the array, if it 861 * isn't already selected. Because the 'selected' 862 * variable in the selection array entries contains 863 * the selection order, the devstats routine can show 864 * the devices that were selected first. 865 */ 866 for (i = 0; i < *num_selections; i++) { 867 if ((*dev_select)[i].selected == 0) { 868 (*dev_select)[i].selected = 869 ++selection_number; 870 (*num_selected)++; 871 } 872 } 873 } else { 874 selection_number = 0; 875 for (i = 0; i < *num_selections; i++) { 876 if ((*dev_select)[i].selected != 0) { 877 (*dev_select)[i].selected = 878 ++selection_number; 879 } 880 } 881 } 882 } 883 884 /* 885 * If we're in the "add" selection mode and if we haven't already 886 * selected maxshowdevs number of devices, go through the array and 887 * select any unselected devices. If we're in "only" mode, we 888 * obviously don't want to select anything other than what the user 889 * specifies. If we're in "remove" mode, it probably isn't a good 890 * idea to go through and select any more devices, since we might 891 * end up selecting something that the user wants removed. Through 892 * more complicated logic, we could actually figure this out, but 893 * that would probably require combining this loop with the various 894 * selections loops above. 895 */ 896 if ((select_mode == DS_SELECT_ADD) && (*num_selected < maxshowdevs)) { 897 for (i = 0; i < *num_selections; i++) 898 if ((*dev_select)[i].selected == 0) { 899 (*dev_select)[i].selected = ++selection_number; 900 (*num_selected)++; 901 } 902 } 903 904 /* 905 * Look at the number of devices that have been selected. If it 906 * has changed, set the changed variable. Otherwise, if we've 907 * made a backup of the selection list, compare it to the current 908 * selection list to see if the selected devices have changed. 909 */ 910 if ((changed == 0) && (old_num_selected != *num_selected)) 911 changed = 1; 912 else if ((changed == 0) && (old_dev_select != NULL)) { 913 /* 914 * Now we go through the selection list and we look at 915 * it three different ways. 916 */ 917 for (i = 0; (i < *num_selections) && (changed == 0) && 918 (i < old_num_selections); i++) { 919 /* 920 * If the device at index i in both the new and old 921 * selection arrays has the same device number and 922 * selection status, it hasn't changed. We 923 * continue on to the next index. 924 */ 925 if (((*dev_select)[i].device_number == 926 old_dev_select[i].device_number) 927 && ((*dev_select)[i].selected == 928 old_dev_select[i].selected)) 929 continue; 930 931 /* 932 * Now, if we're still going through the if 933 * statement, the above test wasn't true. So we 934 * check here to see if the device at index i in 935 * the current array is the same as the device at 936 * index i in the old array. If it is, that means 937 * that its selection number has changed. Set 938 * changed to 1 and exit the loop. 939 */ 940 else if ((*dev_select)[i].device_number == 941 old_dev_select[i].device_number) { 942 changed = 1; 943 break; 944 } 945 /* 946 * If we get here, then the device at index i in 947 * the current array isn't the same device as the 948 * device at index i in the old array. 949 */ 950 else { 951 found = 0; 952 953 /* 954 * Search through the old selection array 955 * looking for a device with the same 956 * device number as the device at index i 957 * in the current array. If the selection 958 * status is the same, then we mark it as 959 * found. If the selection status isn't 960 * the same, we break out of the loop. 961 * Since found isn't set, changed will be 962 * set to 1 below. 963 */ 964 for (j = 0; j < old_num_selections; j++) { 965 if (((*dev_select)[i].device_number == 966 old_dev_select[j].device_number) 967 && ((*dev_select)[i].selected == 968 old_dev_select[j].selected)){ 969 found = 1; 970 break; 971 } 972 else if ((*dev_select)[i].device_number 973 == old_dev_select[j].device_number) 974 break; 975 } 976 if (found == 0) 977 changed = 1; 978 } 979 } 980 } 981 if (old_dev_select != NULL) 982 free(old_dev_select); 983 984 return(changed); 985 } 986 987 /* 988 * Comparison routine for qsort() above. Note that the comparison here is 989 * backwards -- generally, it should return a value to indicate whether 990 * arg1 is <, =, or > arg2. Instead, it returns the opposite. The reason 991 * it returns the opposite is so that the selection array will be sorted in 992 * order of decreasing performance. We sort on two parameters. The first 993 * sort key is whether or not one or the other of the devices in question 994 * has been selected. If one of them has, and the other one has not, the 995 * selected device is automatically more important than the unselected 996 * device. If neither device is selected, we judge the devices based upon 997 * performance. 998 */ 999 static int 1000 compare_select(const void *arg1, const void *arg2) 1001 { 1002 if ((((const struct device_selection *)arg1)->selected) 1003 && (((const struct device_selection *)arg2)->selected == 0)) 1004 return(-1); 1005 else if ((((const struct device_selection *)arg1)->selected == 0) 1006 && (((const struct device_selection *)arg2)->selected)) 1007 return(1); 1008 else if (((const struct device_selection *)arg2)->bytes < 1009 ((const struct device_selection *)arg1)->bytes) 1010 return(-1); 1011 else if (((const struct device_selection *)arg2)->bytes > 1012 ((const struct device_selection *)arg1)->bytes) 1013 return(1); 1014 else 1015 return(0); 1016 } 1017 1018 /* 1019 * Take a string with the general format "arg1,arg2,arg3", and build a 1020 * device matching expression from it. 1021 */ 1022 int 1023 devstat_buildmatch(char *match_str, struct devstat_match **matches, 1024 int *num_matches) 1025 { 1026 char *tstr[5]; 1027 char **tempstr; 1028 int num_args; 1029 int i, j; 1030 1031 /* We can't do much without a string to parse */ 1032 if (match_str == NULL) { 1033 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 1034 "%s: no match expression", __func__); 1035 return(-1); 1036 } 1037 1038 /* 1039 * Break the (comma delimited) input string out into separate strings. 1040 */ 1041 for (tempstr = tstr, num_args = 0; 1042 (*tempstr = strsep(&match_str, ",")) != NULL && (num_args < 5);) 1043 if (**tempstr != '\0') { 1044 num_args++; 1045 if (++tempstr >= &tstr[5]) 1046 break; 1047 } 1048 1049 /* The user gave us too many type arguments */ 1050 if (num_args > 3) { 1051 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 1052 "%s: too many type arguments", __func__); 1053 return(-1); 1054 } 1055 1056 if (*num_matches == 0) 1057 *matches = NULL; 1058 1059 *matches = (struct devstat_match *)reallocf(*matches, 1060 sizeof(struct devstat_match) * (*num_matches + 1)); 1061 1062 if (*matches == NULL) { 1063 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 1064 "%s: Cannot allocate memory for matches list", __func__); 1065 return(-1); 1066 } 1067 1068 /* Make sure the current entry is clear */ 1069 bzero(&matches[0][*num_matches], sizeof(struct devstat_match)); 1070 1071 /* 1072 * Step through the arguments the user gave us and build a device 1073 * matching expression from them. 1074 */ 1075 for (i = 0; i < num_args; i++) { 1076 char *tempstr2, *tempstr3; 1077 1078 /* 1079 * Get rid of leading white space. 1080 */ 1081 tempstr2 = tstr[i]; 1082 while (isspace(*tempstr2) && (*tempstr2 != '\0')) 1083 tempstr2++; 1084 1085 /* 1086 * Get rid of trailing white space. 1087 */ 1088 tempstr3 = &tempstr2[strlen(tempstr2) - 1]; 1089 1090 while ((*tempstr3 != '\0') && (tempstr3 > tempstr2) 1091 && (isspace(*tempstr3))) { 1092 *tempstr3 = '\0'; 1093 tempstr3--; 1094 } 1095 1096 /* 1097 * Go through the match table comparing the user's 1098 * arguments to known device types, interfaces, etc. 1099 */ 1100 for (j = 0; match_table[j].match_str != NULL; j++) { 1101 /* 1102 * We do case-insensitive matching, in case someone 1103 * wants to enter "SCSI" instead of "scsi" or 1104 * something like that. Only compare as many 1105 * characters as are in the string in the match 1106 * table. This should help if someone tries to use 1107 * a super-long match expression. 1108 */ 1109 if (strncasecmp(tempstr2, match_table[j].match_str, 1110 strlen(match_table[j].match_str)) == 0) { 1111 /* 1112 * Make sure the user hasn't specified two 1113 * items of the same type, like "da" and 1114 * "cd". One device cannot be both. 1115 */ 1116 if (((*matches)[*num_matches].match_fields & 1117 match_table[j].match_field) != 0) { 1118 snprintf(devstat_errbuf, 1119 sizeof(devstat_errbuf), 1120 "%s: cannot have more than " 1121 "one match item in a single " 1122 "category", __func__); 1123 return(-1); 1124 } 1125 /* 1126 * If we've gotten this far, we have a 1127 * winner. Set the appropriate fields in 1128 * the match entry. 1129 */ 1130 (*matches)[*num_matches].match_fields |= 1131 match_table[j].match_field; 1132 (*matches)[*num_matches].device_type |= 1133 match_table[j].type; 1134 (*matches)[*num_matches].num_match_categories++; 1135 break; 1136 } 1137 } 1138 /* 1139 * We should have found a match in the above for loop. If 1140 * not, that means the user entered an invalid device type 1141 * or interface. 1142 */ 1143 if ((*matches)[*num_matches].num_match_categories != (i + 1)) { 1144 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 1145 "%s: unknown match item \"%s\"", __func__, 1146 tstr[i]); 1147 return(-1); 1148 } 1149 } 1150 1151 (*num_matches)++; 1152 1153 return(0); 1154 } 1155 1156 /* 1157 * Compute a number of device statistics. Only one field is mandatory, and 1158 * that is "current". Everything else is optional. The caller passes in 1159 * pointers to variables to hold the various statistics he desires. If he 1160 * doesn't want a particular staistic, he should pass in a NULL pointer. 1161 * Return values: 1162 * 0 -- success 1163 * -1 -- failure 1164 */ 1165 int 1166 compute_stats(struct devstat *current, struct devstat *previous, 1167 long double etime, u_int64_t *total_bytes, 1168 u_int64_t *total_transfers, u_int64_t *total_blocks, 1169 long double *kb_per_transfer, long double *transfers_per_second, 1170 long double *mb_per_second, long double *blocks_per_second, 1171 long double *ms_per_transaction) 1172 { 1173 return(devstat_compute_statistics(current, previous, etime, 1174 total_bytes ? DSM_TOTAL_BYTES : DSM_SKIP, 1175 total_bytes, 1176 total_transfers ? DSM_TOTAL_TRANSFERS : DSM_SKIP, 1177 total_transfers, 1178 total_blocks ? DSM_TOTAL_BLOCKS : DSM_SKIP, 1179 total_blocks, 1180 kb_per_transfer ? DSM_KB_PER_TRANSFER : DSM_SKIP, 1181 kb_per_transfer, 1182 transfers_per_second ? DSM_TRANSFERS_PER_SECOND : DSM_SKIP, 1183 transfers_per_second, 1184 mb_per_second ? DSM_MB_PER_SECOND : DSM_SKIP, 1185 mb_per_second, 1186 blocks_per_second ? DSM_BLOCKS_PER_SECOND : DSM_SKIP, 1187 blocks_per_second, 1188 ms_per_transaction ? DSM_MS_PER_TRANSACTION : DSM_SKIP, 1189 ms_per_transaction, 1190 DSM_NONE)); 1191 } 1192 1193 1194 /* This is 1/2^64 */ 1195 #define BINTIME_SCALE 5.42101086242752217003726400434970855712890625e-20 1196 1197 long double 1198 devstat_compute_etime(struct bintime *cur_time, struct bintime *prev_time) 1199 { 1200 long double etime; 1201 1202 etime = cur_time->sec; 1203 etime += cur_time->frac * BINTIME_SCALE; 1204 if (prev_time != NULL) { 1205 etime -= prev_time->sec; 1206 etime -= prev_time->frac * BINTIME_SCALE; 1207 } 1208 return(etime); 1209 } 1210 1211 #define DELTA(field, index) \ 1212 (current->field[(index)] - (previous ? previous->field[(index)] : 0)) 1213 1214 #define DELTA_T(field) \ 1215 devstat_compute_etime(¤t->field, \ 1216 (previous ? &previous->field : NULL)) 1217 1218 int 1219 devstat_compute_statistics(struct devstat *current, struct devstat *previous, 1220 long double etime, ...) 1221 { 1222 u_int64_t totalbytes, totalbytesread, totalbyteswrite, totalbytesfree; 1223 u_int64_t totaltransfers, totaltransfersread, totaltransferswrite; 1224 u_int64_t totaltransfersother, totalblocks, totalblocksread; 1225 u_int64_t totalblockswrite, totaltransfersfree, totalblocksfree; 1226 long double totalduration, totaldurationread, totaldurationwrite; 1227 long double totaldurationfree, totaldurationother; 1228 va_list ap; 1229 devstat_metric metric; 1230 u_int64_t *destu64; 1231 long double *destld; 1232 int retval; 1233 1234 retval = 0; 1235 1236 /* 1237 * current is the only mandatory field. 1238 */ 1239 if (current == NULL) { 1240 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 1241 "%s: current stats structure was NULL", __func__); 1242 return(-1); 1243 } 1244 1245 totalbytesread = DELTA(bytes, DEVSTAT_READ); 1246 totalbyteswrite = DELTA(bytes, DEVSTAT_WRITE); 1247 totalbytesfree = DELTA(bytes, DEVSTAT_FREE); 1248 totalbytes = totalbytesread + totalbyteswrite + totalbytesfree; 1249 1250 totaltransfersread = DELTA(operations, DEVSTAT_READ); 1251 totaltransferswrite = DELTA(operations, DEVSTAT_WRITE); 1252 totaltransfersother = DELTA(operations, DEVSTAT_NO_DATA); 1253 totaltransfersfree = DELTA(operations, DEVSTAT_FREE); 1254 totaltransfers = totaltransfersread + totaltransferswrite + 1255 totaltransfersother + totaltransfersfree; 1256 1257 totalblocks = totalbytes; 1258 totalblocksread = totalbytesread; 1259 totalblockswrite = totalbyteswrite; 1260 totalblocksfree = totalbytesfree; 1261 1262 if (current->block_size > 0) { 1263 totalblocks /= current->block_size; 1264 totalblocksread /= current->block_size; 1265 totalblockswrite /= current->block_size; 1266 totalblocksfree /= current->block_size; 1267 } else { 1268 totalblocks /= 512; 1269 totalblocksread /= 512; 1270 totalblockswrite /= 512; 1271 totalblocksfree /= 512; 1272 } 1273 1274 totaldurationread = DELTA_T(duration[DEVSTAT_READ]); 1275 totaldurationwrite = DELTA_T(duration[DEVSTAT_WRITE]); 1276 totaldurationfree = DELTA_T(duration[DEVSTAT_FREE]); 1277 totaldurationother = DELTA_T(duration[DEVSTAT_NO_DATA]); 1278 totalduration = totaldurationread + totaldurationwrite + 1279 totaldurationfree + totaldurationother; 1280 1281 va_start(ap, etime); 1282 1283 while ((metric = (devstat_metric)va_arg(ap, devstat_metric)) != 0) { 1284 1285 if (metric == DSM_NONE) 1286 break; 1287 1288 if (metric >= DSM_MAX) { 1289 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 1290 "%s: metric %d is out of range", __func__, 1291 metric); 1292 retval = -1; 1293 goto bailout; 1294 } 1295 1296 switch (devstat_arg_list[metric].argtype) { 1297 case DEVSTAT_ARG_UINT64: 1298 destu64 = (u_int64_t *)va_arg(ap, u_int64_t *); 1299 break; 1300 case DEVSTAT_ARG_LD: 1301 destld = (long double *)va_arg(ap, long double *); 1302 break; 1303 case DEVSTAT_ARG_SKIP: 1304 destld = (long double *)va_arg(ap, long double *); 1305 break; 1306 default: 1307 retval = -1; 1308 goto bailout; 1309 break; /* NOTREACHED */ 1310 } 1311 1312 if (devstat_arg_list[metric].argtype == DEVSTAT_ARG_SKIP) 1313 continue; 1314 1315 switch (metric) { 1316 case DSM_TOTAL_BYTES: 1317 *destu64 = totalbytes; 1318 break; 1319 case DSM_TOTAL_BYTES_READ: 1320 *destu64 = totalbytesread; 1321 break; 1322 case DSM_TOTAL_BYTES_WRITE: 1323 *destu64 = totalbyteswrite; 1324 break; 1325 case DSM_TOTAL_BYTES_FREE: 1326 *destu64 = totalbytesfree; 1327 break; 1328 case DSM_TOTAL_TRANSFERS: 1329 *destu64 = totaltransfers; 1330 break; 1331 case DSM_TOTAL_TRANSFERS_READ: 1332 *destu64 = totaltransfersread; 1333 break; 1334 case DSM_TOTAL_TRANSFERS_WRITE: 1335 *destu64 = totaltransferswrite; 1336 break; 1337 case DSM_TOTAL_TRANSFERS_FREE: 1338 *destu64 = totaltransfersfree; 1339 break; 1340 case DSM_TOTAL_TRANSFERS_OTHER: 1341 *destu64 = totaltransfersother; 1342 break; 1343 case DSM_TOTAL_BLOCKS: 1344 *destu64 = totalblocks; 1345 break; 1346 case DSM_TOTAL_BLOCKS_READ: 1347 *destu64 = totalblocksread; 1348 break; 1349 case DSM_TOTAL_BLOCKS_WRITE: 1350 *destu64 = totalblockswrite; 1351 break; 1352 case DSM_TOTAL_BLOCKS_FREE: 1353 *destu64 = totalblocksfree; 1354 break; 1355 case DSM_KB_PER_TRANSFER: 1356 *destld = totalbytes; 1357 *destld /= 1024; 1358 if (totaltransfers > 0) 1359 *destld /= totaltransfers; 1360 else 1361 *destld = 0.0; 1362 break; 1363 case DSM_KB_PER_TRANSFER_READ: 1364 *destld = totalbytesread; 1365 *destld /= 1024; 1366 if (totaltransfersread > 0) 1367 *destld /= totaltransfersread; 1368 else 1369 *destld = 0.0; 1370 break; 1371 case DSM_KB_PER_TRANSFER_WRITE: 1372 *destld = totalbyteswrite; 1373 *destld /= 1024; 1374 if (totaltransferswrite > 0) 1375 *destld /= totaltransferswrite; 1376 else 1377 *destld = 0.0; 1378 break; 1379 case DSM_KB_PER_TRANSFER_FREE: 1380 *destld = totalbytesfree; 1381 *destld /= 1024; 1382 if (totaltransfersfree > 0) 1383 *destld /= totaltransfersfree; 1384 else 1385 *destld = 0.0; 1386 break; 1387 case DSM_TRANSFERS_PER_SECOND: 1388 if (etime > 0.0) { 1389 *destld = totaltransfers; 1390 *destld /= etime; 1391 } else 1392 *destld = 0.0; 1393 break; 1394 case DSM_TRANSFERS_PER_SECOND_READ: 1395 if (etime > 0.0) { 1396 *destld = totaltransfersread; 1397 *destld /= etime; 1398 } else 1399 *destld = 0.0; 1400 break; 1401 case DSM_TRANSFERS_PER_SECOND_WRITE: 1402 if (etime > 0.0) { 1403 *destld = totaltransferswrite; 1404 *destld /= etime; 1405 } else 1406 *destld = 0.0; 1407 break; 1408 case DSM_TRANSFERS_PER_SECOND_FREE: 1409 if (etime > 0.0) { 1410 *destld = totaltransfersfree; 1411 *destld /= etime; 1412 } else 1413 *destld = 0.0; 1414 break; 1415 case DSM_TRANSFERS_PER_SECOND_OTHER: 1416 if (etime > 0.0) { 1417 *destld = totaltransfersother; 1418 *destld /= etime; 1419 } else 1420 *destld = 0.0; 1421 break; 1422 case DSM_MB_PER_SECOND: 1423 *destld = totalbytes; 1424 *destld /= 1024 * 1024; 1425 if (etime > 0.0) 1426 *destld /= etime; 1427 else 1428 *destld = 0.0; 1429 break; 1430 case DSM_MB_PER_SECOND_READ: 1431 *destld = totalbytesread; 1432 *destld /= 1024 * 1024; 1433 if (etime > 0.0) 1434 *destld /= etime; 1435 else 1436 *destld = 0.0; 1437 break; 1438 case DSM_MB_PER_SECOND_WRITE: 1439 *destld = totalbyteswrite; 1440 *destld /= 1024 * 1024; 1441 if (etime > 0.0) 1442 *destld /= etime; 1443 else 1444 *destld = 0.0; 1445 break; 1446 case DSM_MB_PER_SECOND_FREE: 1447 *destld = totalbytesfree; 1448 *destld /= 1024 * 1024; 1449 if (etime > 0.0) 1450 *destld /= etime; 1451 else 1452 *destld = 0.0; 1453 break; 1454 case DSM_BLOCKS_PER_SECOND: 1455 *destld = totalblocks; 1456 if (etime > 0.0) 1457 *destld /= etime; 1458 else 1459 *destld = 0.0; 1460 break; 1461 case DSM_BLOCKS_PER_SECOND_READ: 1462 *destld = totalblocksread; 1463 if (etime > 0.0) 1464 *destld /= etime; 1465 else 1466 *destld = 0.0; 1467 break; 1468 case DSM_BLOCKS_PER_SECOND_WRITE: 1469 *destld = totalblockswrite; 1470 if (etime > 0.0) 1471 *destld /= etime; 1472 else 1473 *destld = 0.0; 1474 break; 1475 case DSM_BLOCKS_PER_SECOND_FREE: 1476 *destld = totalblocksfree; 1477 if (etime > 0.0) 1478 *destld /= etime; 1479 else 1480 *destld = 0.0; 1481 break; 1482 /* 1483 * This calculation is somewhat bogus. It simply divides 1484 * the elapsed time by the total number of transactions 1485 * completed. While that does give the caller a good 1486 * picture of the average rate of transaction completion, 1487 * it doesn't necessarily give the caller a good view of 1488 * how long transactions took to complete on average. 1489 * Those two numbers will be different for a device that 1490 * can handle more than one transaction at a time. e.g. 1491 * SCSI disks doing tagged queueing. 1492 * 1493 * The only way to accurately determine the real average 1494 * time per transaction would be to compute and store the 1495 * time on a per-transaction basis. That currently isn't 1496 * done in the kernel, and would only be desireable if it 1497 * could be implemented in a somewhat non-intrusive and high 1498 * performance way. 1499 */ 1500 case DSM_MS_PER_TRANSACTION: 1501 if (totaltransfers > 0) { 1502 *destld = totalduration; 1503 *destld /= totaltransfers; 1504 *destld *= 1000; 1505 } else 1506 *destld = 0.0; 1507 break; 1508 /* 1509 * As above, these next two really only give the average 1510 * rate of completion for read and write transactions, not 1511 * the average time the transaction took to complete. 1512 */ 1513 case DSM_MS_PER_TRANSACTION_READ: 1514 if (totaltransfersread > 0) { 1515 *destld = totaldurationread; 1516 *destld /= totaltransfersread; 1517 *destld *= 1000; 1518 } else 1519 *destld = 0.0; 1520 break; 1521 case DSM_MS_PER_TRANSACTION_WRITE: 1522 if (totaltransferswrite > 0) { 1523 *destld = totaldurationwrite; 1524 *destld /= totaltransferswrite; 1525 *destld *= 1000; 1526 } else 1527 *destld = 0.0; 1528 break; 1529 case DSM_MS_PER_TRANSACTION_FREE: 1530 if (totaltransfersfree > 0) { 1531 *destld = totaldurationfree; 1532 *destld /= totaltransfersfree; 1533 *destld *= 1000; 1534 } else 1535 *destld = 0.0; 1536 break; 1537 case DSM_MS_PER_TRANSACTION_OTHER: 1538 if (totaltransfersother > 0) { 1539 *destld = totaldurationother; 1540 *destld /= totaltransfersother; 1541 *destld *= 1000; 1542 } else 1543 *destld = 0.0; 1544 break; 1545 case DSM_BUSY_PCT: 1546 *destld = DELTA_T(busy_time); 1547 if (*destld < 0) 1548 *destld = 0; 1549 *destld /= etime; 1550 *destld *= 100; 1551 if (*destld < 0) 1552 *destld = 0; 1553 break; 1554 case DSM_QUEUE_LENGTH: 1555 *destu64 = current->start_count - current->end_count; 1556 break; 1557 case DSM_TOTAL_DURATION: 1558 *destld = totalduration; 1559 break; 1560 case DSM_TOTAL_DURATION_READ: 1561 *destld = totaldurationread; 1562 break; 1563 case DSM_TOTAL_DURATION_WRITE: 1564 *destld = totaldurationwrite; 1565 break; 1566 case DSM_TOTAL_DURATION_FREE: 1567 *destld = totaldurationfree; 1568 break; 1569 case DSM_TOTAL_DURATION_OTHER: 1570 *destld = totaldurationother; 1571 break; 1572 case DSM_TOTAL_BUSY_TIME: 1573 *destld = DELTA_T(busy_time); 1574 break; 1575 /* 1576 * XXX: comment out the default block to see if any case's are missing. 1577 */ 1578 #if 1 1579 default: 1580 /* 1581 * This shouldn't happen, since we should have 1582 * caught any out of range metrics at the top of 1583 * the loop. 1584 */ 1585 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 1586 "%s: unknown metric %d", __func__, metric); 1587 retval = -1; 1588 goto bailout; 1589 break; /* NOTREACHED */ 1590 #endif 1591 } 1592 } 1593 1594 bailout: 1595 1596 va_end(ap); 1597 return(retval); 1598 } 1599 1600 static int 1601 readkmem(kvm_t *kd, unsigned long addr, void *buf, size_t nbytes) 1602 { 1603 1604 if (kvm_read(kd, addr, buf, nbytes) == -1) { 1605 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 1606 "%s: error reading value (kvm_read): %s", __func__, 1607 kvm_geterr(kd)); 1608 return(-1); 1609 } 1610 return(0); 1611 } 1612 1613 static int 1614 readkmem_nl(kvm_t *kd, const char *name, void *buf, size_t nbytes) 1615 { 1616 struct nlist nl[2]; 1617 1618 nl[0].n_name = (char *)name; 1619 nl[1].n_name = NULL; 1620 1621 if (kvm_nlist(kd, nl) == -1) { 1622 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 1623 "%s: error getting name list (kvm_nlist): %s", 1624 __func__, kvm_geterr(kd)); 1625 return(-1); 1626 } 1627 return(readkmem(kd, nl[0].n_value, buf, nbytes)); 1628 } 1629 1630 /* 1631 * This duplicates the functionality of the kernel sysctl handler for poking 1632 * through crash dumps. 1633 */ 1634 static char * 1635 get_devstat_kvm(kvm_t *kd) 1636 { 1637 int i, wp; 1638 long gen; 1639 struct devstat *nds; 1640 struct devstat ds; 1641 struct devstatlist dhead; 1642 int num_devs; 1643 char *rv = NULL; 1644 1645 if ((num_devs = devstat_getnumdevs(kd)) <= 0) 1646 return(NULL); 1647 if (KREADNL(kd, X_DEVICE_STATQ, dhead) == -1) 1648 return(NULL); 1649 1650 nds = STAILQ_FIRST(&dhead); 1651 1652 if ((rv = malloc(sizeof(gen))) == NULL) { 1653 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 1654 "%s: out of memory (initial malloc failed)", 1655 __func__); 1656 return(NULL); 1657 } 1658 gen = devstat_getgeneration(kd); 1659 memcpy(rv, &gen, sizeof(gen)); 1660 wp = sizeof(gen); 1661 /* 1662 * Now push out all the devices. 1663 */ 1664 for (i = 0; (nds != NULL) && (i < num_devs); 1665 nds = STAILQ_NEXT(nds, dev_links), i++) { 1666 if (readkmem(kd, (long)nds, &ds, sizeof(ds)) == -1) { 1667 free(rv); 1668 return(NULL); 1669 } 1670 nds = &ds; 1671 rv = (char *)reallocf(rv, sizeof(gen) + 1672 sizeof(ds) * (i + 1)); 1673 if (rv == NULL) { 1674 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 1675 "%s: out of memory (malloc failed)", 1676 __func__); 1677 return(NULL); 1678 } 1679 memcpy(rv + wp, &ds, sizeof(ds)); 1680 wp += sizeof(ds); 1681 } 1682 return(rv); 1683 } 1684