1 /* 2 * Copyright (c) 1997, 1998 Kenneth D. Merry. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. The name of the author may not be used to endorse or promote products 14 * derived from this software without specific prior written permission. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 * 28 * $Id: devstat.c,v 1.4 1998/10/14 23:28:26 ken Exp $ 29 */ 30 31 #include <sys/types.h> 32 #include <sys/sysctl.h> 33 #include <sys/errno.h> 34 #include <sys/dkstat.h> 35 36 #include <ctype.h> 37 #include <err.h> 38 #include <stdio.h> 39 #include <stdlib.h> 40 #include <string.h> 41 42 #include "devstat.h" 43 44 char devstat_errbuf[DEVSTAT_ERRBUF_SIZE]; 45 46 /* 47 * Table to match descriptive strings with device types. These are in 48 * order from most common to least common to speed search time. 49 */ 50 struct devstat_match_table match_table[] = { 51 {"da", DEVSTAT_TYPE_DIRECT, DEVSTAT_MATCH_TYPE}, 52 {"cd", DEVSTAT_TYPE_CDROM, DEVSTAT_MATCH_TYPE}, 53 {"scsi", DEVSTAT_TYPE_IF_SCSI, DEVSTAT_MATCH_IF}, 54 {"ide", DEVSTAT_TYPE_IF_IDE, DEVSTAT_MATCH_IF}, 55 {"other", DEVSTAT_TYPE_IF_OTHER, DEVSTAT_MATCH_IF}, 56 {"worm", DEVSTAT_TYPE_WORM, DEVSTAT_MATCH_TYPE}, 57 {"sa", DEVSTAT_TYPE_SEQUENTIAL,DEVSTAT_MATCH_TYPE}, 58 {"pass", DEVSTAT_TYPE_PASS, DEVSTAT_MATCH_PASS}, 59 {"optical", DEVSTAT_TYPE_OPTICAL, DEVSTAT_MATCH_TYPE}, 60 {"array", DEVSTAT_TYPE_STORARRAY, DEVSTAT_MATCH_TYPE}, 61 {"changer", DEVSTAT_TYPE_CHANGER, DEVSTAT_MATCH_TYPE}, 62 {"scanner", DEVSTAT_TYPE_SCANNER, DEVSTAT_MATCH_TYPE}, 63 {"printer", DEVSTAT_TYPE_PRINTER, DEVSTAT_MATCH_TYPE}, 64 {"floppy", DEVSTAT_TYPE_FLOPPY, DEVSTAT_MATCH_TYPE}, 65 {"proc", DEVSTAT_TYPE_PROCESSOR, DEVSTAT_MATCH_TYPE}, 66 {"comm", DEVSTAT_TYPE_COMM, DEVSTAT_MATCH_TYPE}, 67 {"enclosure", DEVSTAT_TYPE_ENCLOSURE, DEVSTAT_MATCH_TYPE}, 68 {NULL, 0, 0} 69 }; 70 71 /* 72 * Local function declarations. 73 */ 74 static int compare_select(const void *arg1, const void *arg2); 75 76 int 77 getnumdevs(void) 78 { 79 size_t numdevsize; 80 int numdevs; 81 char *func_name = "getnumdevs"; 82 83 numdevsize = sizeof(int); 84 85 /* 86 * Find out how many devices we have in the system. 87 */ 88 if (sysctlbyname("kern.devstat.numdevs", &numdevs, 89 &numdevsize, NULL, 0) == -1) { 90 sprintf(devstat_errbuf, "%s: error getting number of devices\n" 91 "%s: %s", func_name, func_name, strerror(errno)); 92 return(-1); 93 } else 94 return(numdevs); 95 } 96 97 /* 98 * This is an easy way to get the generation number, but the generation is 99 * supplied in a more atmoic manner by the kern.devstat.all sysctl. 100 * Because this generation sysctl is separate from the statistics sysctl, 101 * the device list and the generation could change between the time that 102 * this function is called and the device list is retreived. 103 */ 104 long 105 getgeneration(void) 106 { 107 size_t gensize; 108 long generation; 109 char *func_name = "getgeneration"; 110 111 gensize = sizeof(long); 112 113 /* 114 * Get the current generation number. 115 */ 116 if (sysctlbyname("kern.devstat.generation", &generation, 117 &gensize, NULL, 0) == -1) { 118 sprintf(devstat_errbuf,"%s: error getting devstat generation\n" 119 "%s: %s", func_name, func_name, strerror(errno)); 120 return(-1); 121 } else 122 return(generation); 123 } 124 125 /* 126 * Get the current devstat version. The return value of this function 127 * should be compared with DEVSTAT_VERSION, which is defined in 128 * sys/devicestat.h. This will enable userland programs to determine 129 * whether they are out of sync with the kernel. 130 */ 131 int 132 getversion(void) 133 { 134 size_t versize; 135 int version; 136 char *func_name = "getversion"; 137 138 versize = sizeof(int); 139 140 /* 141 * Get the current devstat version. 142 */ 143 if (sysctlbyname("kern.devstat.version", &version, &versize, 144 NULL, 0) == -1) { 145 sprintf(devstat_errbuf, "%s: error getting devstat version\n" 146 "%s: %s", func_name, func_name, strerror(errno)); 147 return(-1); 148 } else 149 return(version); 150 } 151 152 /* 153 * Check the devstat version we know about against the devstat version the 154 * kernel knows about. If they don't match, print an error into the 155 * devstat error buffer, and return -1. If they match, return 0. 156 */ 157 int 158 checkversion(void) 159 { 160 int retval = 0; 161 int errlen = 0; 162 char *func_name = "checkversion"; 163 int version; 164 165 version = getversion(); 166 167 if (version != DEVSTAT_VERSION) { 168 int buflen = 0; 169 char tmpstr[256]; 170 171 /* 172 * This is really pretty silly, but basically the idea is 173 * that if getversion() returns an error (i.e. -1), then it 174 * has printed an error message in the buffer. Therefore, 175 * we need to add a \n to the end of that message before we 176 * print our own message in the buffer. 177 */ 178 if (version == -1) { 179 buflen = strlen(devstat_errbuf); 180 errlen = snprintf(tmpstr, sizeof(tmpstr), "\n"); 181 strncat(devstat_errbuf, tmpstr, 182 DEVSTAT_ERRBUF_SIZE - buflen - 1); 183 buflen += errlen; 184 } 185 186 errlen = snprintf(tmpstr, sizeof(tmpstr), 187 "%s: userland devstat version %d is not " 188 "the same as the kernel\n%s: devstat " 189 "version %d\n", func_name, DEVSTAT_VERSION, 190 func_name, version); 191 192 if (version == -1) { 193 strncat(devstat_errbuf, tmpstr, 194 DEVSTAT_ERRBUF_SIZE - buflen - 1); 195 buflen += errlen; 196 } else { 197 strncpy(devstat_errbuf, tmpstr, DEVSTAT_ERRBUF_SIZE); 198 devstat_errbuf[DEVSTAT_ERRBUF_SIZE - 1] = '\0'; 199 } 200 201 if (version < DEVSTAT_VERSION) 202 snprintf(tmpstr, sizeof(tmpstr), 203 "%s: libdevstat newer than kernel\n", 204 func_name); 205 else 206 snprintf(tmpstr, sizeof(tmpstr), 207 "%s: kernel newer than libdevstat\n", 208 func_name); 209 210 strncat(devstat_errbuf, tmpstr, 211 DEVSTAT_ERRBUF_SIZE - buflen - 1); 212 213 retval = -1; 214 } 215 216 return(retval); 217 } 218 219 /* 220 * Get the current list of devices and statistics, and the current 221 * generation number. 222 * 223 * Return values: 224 * -1 -- error 225 * 0 -- device list is unchanged 226 * 1 -- device list has changed 227 */ 228 int 229 getdevs(struct statinfo *stats) 230 { 231 int error; 232 size_t dssize; 233 int oldnumdevs; 234 long oldgeneration; 235 int retval = 0; 236 struct devinfo *dinfo; 237 char *func_name = "getdevs"; 238 239 dinfo = stats->dinfo; 240 241 if (dinfo == NULL) { 242 sprintf(devstat_errbuf, "%s: stats->dinfo was NULL", func_name); 243 return(-1); 244 } 245 246 oldnumdevs = dinfo->numdevs; 247 oldgeneration = dinfo->generation; 248 249 /* 250 * If this is our first time through, mem_ptr will be null. 251 */ 252 if (dinfo->mem_ptr == NULL) { 253 /* 254 * Get the number of devices. If it's negative, it's an 255 * error. Don't bother setting the error string, since 256 * getnumdevs() has already done that for us. 257 */ 258 if ((dinfo->numdevs = getnumdevs()) < 0) 259 return(-1); 260 261 /* 262 * The kern.devstat.all sysctl returns the current generation 263 * number, as well as all the devices. So we need four 264 * bytes more. 265 */ 266 dssize =(dinfo->numdevs * sizeof(struct devstat)) +sizeof(long); 267 dinfo->mem_ptr = (u_int8_t *)malloc(dssize); 268 } else 269 dssize =(dinfo->numdevs * sizeof(struct devstat)) +sizeof(long); 270 271 /* Get the current time when we get the stats */ 272 gettimeofday(&stats->busy_time, NULL); 273 274 /* 275 * Request all of the devices. We only really allow for one 276 * ENOMEM failure. It would, of course, be possible to just go in 277 * a loop and keep reallocing the device structure until we don't 278 * get ENOMEM back. I'm not sure it's worth it, though. If 279 * devices are being added to the system that quickly, maybe the 280 * user can just wait until all devices are added. 281 */ 282 if ((error = sysctlbyname("kern.devstat.all", dinfo->mem_ptr, 283 &dssize, NULL, 0)) == -1) { 284 /* 285 * If we get ENOMEM back, that means that there are 286 * more devices now, so we need to allocate more 287 * space for the device array. 288 */ 289 if (errno == ENOMEM) { 290 /* 291 * No need to set the error string here, getnumdevs() 292 * will do that if it fails. 293 */ 294 if ((dinfo->numdevs = getnumdevs()) < 0) 295 return(-1); 296 297 dssize = (dinfo->numdevs * sizeof(struct devstat)) + 298 sizeof(long); 299 dinfo->mem_ptr = (u_int8_t *)realloc(dinfo->mem_ptr, 300 dssize); 301 if ((error = sysctlbyname("kern.devstat.all", 302 dinfo->mem_ptr, &dssize, NULL, 0)) == -1) { 303 sprintf(devstat_errbuf, 304 "%s: error getting device stats\n" 305 "%s: %s", func_name, func_name, 306 strerror(errno)); 307 return(-1); 308 } 309 } else { 310 sprintf(devstat_errbuf, 311 "%s: error getting device stats\n" 312 "%s: %s", func_name, func_name, 313 strerror(errno)); 314 return(-1); 315 } 316 } 317 318 /* 319 * The sysctl spits out the generation as the first four bytes, 320 * then all of the device statistics structures. 321 */ 322 dinfo->generation = *(long *)dinfo->mem_ptr; 323 324 /* 325 * If the generation has changed, and if the current number of 326 * devices is not the same as the number of devices recorded in the 327 * devinfo structure, it is likely that the device list has shrunk. 328 * The reason that it is likely that the device list has shrunk in 329 * this case is that if the device list has grown, the sysctl above 330 * will return an ENOMEM error, and we will reset the number of 331 * devices and reallocate the device array. If the second sysctl 332 * fails, we will return an error and therefore never get to this 333 * point. If the device list has shrunk, the sysctl will not 334 * return an error since we have more space allocated than is 335 * necessary. So, in the shrinkage case, we catch it here and 336 * reallocate the array so that we don't use any more space than is 337 * necessary. 338 */ 339 if (oldgeneration != dinfo->generation) { 340 if (getnumdevs() != dinfo->numdevs) { 341 if ((dinfo->numdevs = getnumdevs()) < 0) 342 return(-1); 343 dssize = (dinfo->numdevs * sizeof(struct devstat)) + 344 sizeof(long); 345 dinfo->mem_ptr = (u_int8_t *)realloc(dinfo->mem_ptr, 346 dssize); 347 } 348 retval = 1; 349 } 350 351 dinfo->devices = (struct devstat *)(dinfo->mem_ptr + sizeof(long)); 352 353 return(retval); 354 } 355 356 /* 357 * selectdevs(): 358 * 359 * Devices are selected/deselected based upon the following criteria: 360 * - devices specified by the user on the command line 361 * - devices matching any device type expressions given on the command line 362 * - devices with the highest I/O, if 'top' mode is enabled 363 * - the first n unselected devices in the device list, if maxshowdevs 364 * devices haven't already been selected and if the user has not 365 * specified any devices on the command line and if we're in "add" mode. 366 * 367 * Input parameters: 368 * - device selection list (dev_select) 369 * - current number of devices selected (num_selected) 370 * - total number of devices in the selection list (num_selections) 371 * - devstat generation as of the last time selectdevs() was called 372 * (select_generation) 373 * - current devstat generation (current_generation) 374 * - current list of devices and statistics (devices) 375 * - number of devices in the current device list (numdevs) 376 * - compiled version of the command line device type arguments (matches) 377 * - This is optional. If the number of devices is 0, this will be ignored. 378 * - The matching code pays attention to the current selection mode. So 379 * if you pass in a matching expression, it will be evaluated based 380 * upon the selection mode that is passed in. See below for details. 381 * - number of device type matching expressions (num_matches) 382 * - Set to 0 to disable the matching code. 383 * - list of devices specified on the command line by the user (dev_selections) 384 * - number of devices selected on the command line by the user 385 * (num_dev_selections) 386 * - Our selection mode. There are four different selection modes: 387 * - add mode. (DS_SELECT_ADD) Any devices matching devices explicitly 388 * selected by the user or devices matching a pattern given by the 389 * user will be selected in addition to devices that are already 390 * selected. Additional devices will be selected, up to maxshowdevs 391 * number of devices. 392 * - only mode. (DS_SELECT_ONLY) Only devices matching devices 393 * explicitly given by the user or devices matching a pattern 394 * given by the user will be selected. No other devices will be 395 * selected. 396 * - addonly mode. (DS_SELECT_ADDONLY) This is similar to add and 397 * only. Basically, this will not de-select any devices that are 398 * current selected, as only mode would, but it will also not 399 * gratuitously select up to maxshowdevs devices as add mode would. 400 * - remove mode. (DS_SELECT_REMOVE) Any devices matching devices 401 * explicitly selected by the user or devices matching a pattern 402 * given by the user will be de-selected. 403 * - maximum number of devices we can select (maxshowdevs) 404 * - flag indicating whether or not we're in 'top' mode (perf_select) 405 * 406 * Output data: 407 * - the device selection list may be modified and passed back out 408 * - the number of devices selected and the total number of items in the 409 * device selection list may be changed 410 * - the selection generation may be changed to match the current generation 411 * 412 * Return values: 413 * -1 -- error 414 * 0 -- selected devices are unchanged 415 * 1 -- selected devices changed 416 */ 417 int 418 selectdevs(struct device_selection **dev_select, int *num_selected, 419 int *num_selections, long *select_generation, 420 long current_generation, struct devstat *devices, int numdevs, 421 struct devstat_match *matches, int num_matches, 422 char **dev_selections, int num_dev_selections, 423 devstat_select_mode select_mode, int maxshowdevs, int perf_select) 424 { 425 register int i, j, k; 426 int init_selections = 0, init_selected_var = 0; 427 struct device_selection *old_dev_select = NULL; 428 int old_num_selections = 0, old_num_selected; 429 int selection_number = 0; 430 int changed = 0, found = 0; 431 432 if ((dev_select == NULL) || (devices == NULL) || (numdevs <= 0)) 433 return(-1); 434 435 /* 436 * We always want to make sure that we have as many dev_select 437 * entries as there are devices. 438 */ 439 /* 440 * In this case, we haven't selected devices before. 441 */ 442 if (*dev_select == NULL) { 443 *dev_select = (struct device_selection *)malloc(numdevs * 444 sizeof(struct device_selection)); 445 *select_generation = current_generation; 446 init_selections = 1; 447 changed = 1; 448 /* 449 * In this case, we have selected devices before, but the device 450 * list has changed since we last selected devices, so we need to 451 * either enlarge or reduce the size of the device selection list. 452 */ 453 } else if (*num_selections != numdevs) { 454 *dev_select = (struct device_selection *)realloc(*dev_select, 455 numdevs * sizeof(struct device_selection)); 456 *select_generation = current_generation; 457 init_selections = 1; 458 /* 459 * In this case, we've selected devices before, and the selection 460 * list is the same size as it was the last time, but the device 461 * list has changed. 462 */ 463 } else if (*select_generation < current_generation) { 464 *select_generation = current_generation; 465 init_selections = 1; 466 } 467 468 /* 469 * If we're in "only" mode, we want to clear out the selected 470 * variable since we're going to select exactly what the user wants 471 * this time through. 472 */ 473 if (select_mode == DS_SELECT_ONLY) 474 init_selected_var = 1; 475 476 /* 477 * In all cases, we want to back up the number of selected devices. 478 * It is a quick and accurate way to determine whether the selected 479 * devices have changed. 480 */ 481 old_num_selected = *num_selected; 482 483 /* 484 * We want to make a backup of the current selection list if 485 * the list of devices has changed, or if we're in performance 486 * selection mode. In both cases, we don't want to make a backup 487 * if we already know for sure that the list will be different. 488 * This is certainly the case if this is our first time through the 489 * selection code. 490 */ 491 if (((init_selected_var != 0) || (init_selections != 0) 492 || (perf_select != 0)) && (changed == 0)){ 493 old_dev_select = (struct device_selection *)malloc( 494 *num_selections * sizeof(struct device_selection)); 495 old_num_selections = *num_selections; 496 bcopy(*dev_select, old_dev_select, 497 sizeof(struct device_selection) * *num_selections); 498 } 499 500 if (init_selections != 0) { 501 bzero(*dev_select, sizeof(struct device_selection) * numdevs); 502 503 for (i = 0; i < numdevs; i++) { 504 (*dev_select)[i].device_number = 505 devices[i].device_number; 506 strncpy((*dev_select)[i].device_name, 507 devices[i].device_name, 508 DEVSTAT_NAME_LEN); 509 (*dev_select)[i].device_name[DEVSTAT_NAME_LEN - 1]='\0'; 510 (*dev_select)[i].unit_number = devices[i].unit_number; 511 (*dev_select)[i].position = i; 512 } 513 *num_selections = numdevs; 514 } else if (init_selected_var != 0) { 515 for (i = 0; i < numdevs; i++) 516 (*dev_select)[i].selected = 0; 517 } 518 519 /* we haven't gotten around to selecting anything yet.. */ 520 if ((select_mode == DS_SELECT_ONLY) || (init_selections != 0) 521 || (init_selected_var != 0)) 522 *num_selected = 0; 523 524 /* 525 * Look through any devices the user specified on the command line 526 * and see if they match known devices. If so, select them. 527 */ 528 for (i = 0; (i < *num_selections) && (num_dev_selections > 0); i++) { 529 char tmpstr[80]; 530 531 snprintf(tmpstr, sizeof(tmpstr), "%s%d", 532 (*dev_select)[i].device_name, 533 (*dev_select)[i].unit_number); 534 for (j = 0; j < num_dev_selections; j++) { 535 if (strcmp(tmpstr, dev_selections[j]) == 0) { 536 /* 537 * Here we do different things based on the 538 * mode we're in. If we're in add or 539 * addonly mode, we only select this device 540 * if it hasn't already been selected. 541 * Otherwise, we would be unnecessarily 542 * changing the selection order and 543 * incrementing the selection count. If 544 * we're in only mode, we unconditionally 545 * select this device, since in only mode 546 * any previous selections are erased and 547 * manually specified devices are the first 548 * ones to be selected. If we're in remove 549 * mode, we de-select the specified device and 550 * decrement the selection count. 551 */ 552 switch(select_mode) { 553 case DS_SELECT_ADD: 554 case DS_SELECT_ADDONLY: 555 if ((*dev_select)[i].selected) 556 break; 557 /* FALLTHROUGH */ 558 case DS_SELECT_ONLY: 559 (*dev_select)[i].selected = 560 ++selection_number; 561 (*num_selected)++; 562 break; 563 case DS_SELECT_REMOVE: 564 (*dev_select)[i].selected = 0; 565 (*num_selected)--; 566 /* 567 * This isn't passed back out, we 568 * just use it to keep track of 569 * how many devices we've removed. 570 */ 571 num_dev_selections--; 572 break; 573 } 574 break; 575 } 576 } 577 } 578 579 /* 580 * Go through the user's device type expressions and select devices 581 * accordingly. We only do this if the number of devices already 582 * selected is less than the maximum number we can show. 583 */ 584 for (i = 0; (i < num_matches) && (*num_selected < maxshowdevs); i++) { 585 /* We should probably indicate some error here */ 586 if ((matches[i].match_fields == DEVSTAT_MATCH_NONE) 587 || (matches[i].num_match_categories <= 0)) 588 continue; 589 590 for (j = 0; j < numdevs; j++) { 591 int num_match_categories; 592 593 num_match_categories = matches[i].num_match_categories; 594 595 /* 596 * Determine whether or not the current device 597 * matches the given matching expression. This if 598 * statement consists of three components: 599 * - the device type check 600 * - the device interface check 601 * - the passthrough check 602 * If a the matching test is successful, it 603 * decrements the number of matching categories, 604 * and if we've reached the last element that 605 * needed to be matched, the if statement succeeds. 606 * 607 */ 608 if ((((matches[i].match_fields & DEVSTAT_MATCH_TYPE)!=0) 609 && ((devices[j].device_type & DEVSTAT_TYPE_MASK) == 610 (matches[i].device_type & DEVSTAT_TYPE_MASK)) 611 &&(((matches[i].match_fields & DEVSTAT_MATCH_PASS)!=0) 612 || (((matches[i].match_fields & 613 DEVSTAT_MATCH_PASS) == 0) 614 && ((devices[j].device_type & 615 DEVSTAT_TYPE_PASS) == 0))) 616 && (--num_match_categories == 0)) 617 || (((matches[i].match_fields & DEVSTAT_MATCH_IF) != 0) 618 && ((devices[j].device_type & DEVSTAT_TYPE_IF_MASK) == 619 (matches[i].device_type & DEVSTAT_TYPE_IF_MASK)) 620 &&(((matches[i].match_fields & DEVSTAT_MATCH_PASS)!=0) 621 || (((matches[i].match_fields & 622 DEVSTAT_MATCH_PASS) == 0) 623 && ((devices[j].device_type & 624 DEVSTAT_TYPE_PASS) == 0))) 625 && (--num_match_categories == 0)) 626 || (((matches[i].match_fields & DEVSTAT_MATCH_PASS)!=0) 627 && ((devices[j].device_type & DEVSTAT_TYPE_PASS) != 0) 628 && (--num_match_categories == 0))) { 629 630 /* 631 * This is probably a non-optimal solution 632 * to the problem that the devices in the 633 * device list will not be in the same 634 * order as the devices in the selection 635 * array. 636 */ 637 for (k = 0; k < numdevs; k++) { 638 if ((*dev_select)[k].position == j) { 639 found = 1; 640 break; 641 } 642 } 643 644 /* 645 * There shouldn't be a case where a device 646 * in the device list is not in the 647 * selection list...but it could happen. 648 */ 649 if (found != 1) { 650 fprintf(stderr, "selectdevs: couldn't" 651 " find %s%d in selection " 652 "list\n", 653 devices[j].device_name, 654 devices[j].unit_number); 655 break; 656 } 657 658 /* 659 * We do different things based upon the 660 * mode we're in. If we're in add or only 661 * mode, we go ahead and select this device 662 * if it hasn't already been selected. If 663 * it has already been selected, we leave 664 * it alone so we don't mess up the 665 * selection ordering. Manually specified 666 * devices have already been selected, and 667 * they have higher priority than pattern 668 * matched devices. If we're in remove 669 * mode, we de-select the given device and 670 * decrement the selected count. 671 */ 672 switch(select_mode) { 673 case DS_SELECT_ADD: 674 case DS_SELECT_ADDONLY: 675 case DS_SELECT_ONLY: 676 if ((*dev_select)[k].selected != 0) 677 break; 678 (*dev_select)[k].selected = 679 ++selection_number; 680 (*num_selected)++; 681 break; 682 case DS_SELECT_REMOVE: 683 (*dev_select)[k].selected = 0; 684 (*num_selected)--; 685 break; 686 } 687 } 688 } 689 } 690 691 /* 692 * Here we implement "top" mode. Devices are sorted in the 693 * selection array based on two criteria: whether or not they are 694 * selected (not selection number, just the fact that they are 695 * selected!) and the number of bytes in the "bytes" field of the 696 * selection structure. The bytes field generally must be kept up 697 * by the user. In the future, it may be maintained by library 698 * functions, but for now the user has to do the work. 699 * 700 * At first glance, it may seem wrong that we don't go through and 701 * select every device in the case where the user hasn't specified 702 * any devices or patterns. In fact, though, it won't make any 703 * difference in the device sorting. In that particular case (i.e. 704 * when we're in "add" or "only" mode, and the user hasn't 705 * specified anything) the first time through no devices will be 706 * selected, so the only criterion used to sort them will be their 707 * performance. The second time through, and every time thereafter, 708 * all devices will be selected, so again selection won't matter. 709 */ 710 if (perf_select != 0) { 711 712 /* Sort the device array by throughput */ 713 qsort(*dev_select, *num_selections, 714 sizeof(struct device_selection), 715 compare_select); 716 717 if (*num_selected == 0) { 718 /* 719 * Here we select every device in the array, if it 720 * isn't already selected. Because the 'selected' 721 * variable in the selection array entries contains 722 * the selection order, the devstats routine can show 723 * the devices that were selected first. 724 */ 725 for (i = 0; i < *num_selections; i++) { 726 if ((*dev_select)[i].selected == 0) { 727 (*dev_select)[i].selected = 728 ++selection_number; 729 (*num_selected)++; 730 } 731 } 732 } else { 733 selection_number = 0; 734 for (i = 0; i < *num_selections; i++) { 735 if ((*dev_select)[i].selected != 0) { 736 (*dev_select)[i].selected = 737 ++selection_number; 738 } 739 } 740 } 741 } 742 743 /* 744 * If we're in the "add" selection mode and if we haven't already 745 * selected maxshowdevs number of devices, go through the array and 746 * select any unselected devices. If we're in "only" mode, we 747 * obviously don't want to select anything other than what the user 748 * specifies. If we're in "remove" mode, it probably isn't a good 749 * idea to go through and select any more devices, since we might 750 * end up selecting something that the user wants removed. Through 751 * more complicated logic, we could actually figure this out, but 752 * that would probably require combining this loop with the various 753 * selections loops above. 754 */ 755 if ((select_mode == DS_SELECT_ADD) && (*num_selected < maxshowdevs)) { 756 for (i = 0; i < *num_selections; i++) 757 if ((*dev_select)[i].selected == 0) { 758 (*dev_select)[i].selected = ++selection_number; 759 (*num_selected)++; 760 } 761 } 762 763 /* 764 * Look at the number of devices that have been selected. If it 765 * has changed, set the changed variable. Otherwise, if we've 766 * made a backup of the selection list, compare it to the current 767 * selection list to see if the selected devices have changed. 768 */ 769 if ((changed == 0) && (old_num_selected != *num_selected)) 770 changed = 1; 771 else if ((changed == 0) && (old_dev_select != NULL)) { 772 /* 773 * Now we go through the selection list and we look at 774 * it three different ways. 775 */ 776 for (i = 0; (i < *num_selections) && (changed == 0) && 777 (i < old_num_selections); i++) { 778 /* 779 * If the device at index i in both the new and old 780 * selection arrays has the same device number and 781 * selection status, it hasn't changed. We 782 * continue on to the next index. 783 */ 784 if (((*dev_select)[i].device_number == 785 old_dev_select[i].device_number) 786 && ((*dev_select)[i].selected == 787 old_dev_select[i].selected)) 788 continue; 789 790 /* 791 * Now, if we're still going through the if 792 * statement, the above test wasn't true. So we 793 * check here to see if the device at index i in 794 * the current array is the same as the device at 795 * index i in the old array. If it is, that means 796 * that its selection number has changed. Set 797 * changed to 1 and exit the loop. 798 */ 799 else if ((*dev_select)[i].device_number == 800 old_dev_select[i].device_number) { 801 changed = 1; 802 break; 803 } 804 /* 805 * If we get here, then the device at index i in 806 * the current array isn't the same device as the 807 * device at index i in the old array. 808 */ 809 else { 810 int found = 0; 811 812 /* 813 * Search through the old selection array 814 * looking for a device with the same 815 * device number as the device at index i 816 * in the current array. If the selection 817 * status is the same, then we mark it as 818 * found. If the selection status isn't 819 * the same, we break out of the loop. 820 * Since found isn't set, changed will be 821 * set to 1 below. 822 */ 823 for (j = 0; j < old_num_selections; j++) { 824 if (((*dev_select)[i].device_number == 825 old_dev_select[j].device_number) 826 && ((*dev_select)[i].selected == 827 old_dev_select[j].selected)){ 828 found = 1; 829 break; 830 } 831 else if ((*dev_select)[i].device_number 832 == old_dev_select[j].device_number) 833 break; 834 } 835 if (found == 0) 836 changed = 1; 837 } 838 } 839 } 840 if (old_dev_select != NULL) 841 free(old_dev_select); 842 843 return(changed); 844 } 845 846 /* 847 * Comparison routine for qsort() above. Note that the comparison here is 848 * backwards -- generally, it should return a value to indicate whether 849 * arg1 is <, =, or > arg2. Instead, it returns the opposite. The reason 850 * it returns the opposite is so that the selection array will be sorted in 851 * order of decreasing performance. We sort on two parameters. The first 852 * sort key is whether or not one or the other of the devices in question 853 * has been selected. If one of them has, and the other one has not, the 854 * selected device is automatically more important than the unselected 855 * device. If neither device is selected, we judge the devices based upon 856 * performance. 857 */ 858 static int 859 compare_select(const void *arg1, const void *arg2) 860 { 861 if ((((struct device_selection *)arg1)->selected) 862 && (((struct device_selection *)arg2)->selected == 0)) 863 return(-1); 864 else if ((((struct device_selection *)arg1)->selected == 0) 865 && (((struct device_selection *)arg2)->selected)) 866 return(1); 867 else if (((struct device_selection *)arg2)->bytes < 868 ((struct device_selection *)arg1)->bytes) 869 return(-1); 870 else if (((struct device_selection *)arg2)->bytes > 871 ((struct device_selection *)arg1)->bytes) 872 return(1); 873 else 874 return(0); 875 } 876 877 /* 878 * Take a string with the general format "arg1,arg2,arg3", and build a 879 * device matching expression from it. 880 */ 881 int 882 buildmatch(char *match_str, struct devstat_match **matches, int *num_matches) 883 { 884 char *tstr[5]; 885 char **tempstr; 886 int num_args; 887 register int i, j; 888 char *func_name = "buildmatch"; 889 890 /* We can't do much without a string to parse */ 891 if (match_str == NULL) { 892 sprintf(devstat_errbuf, "%s: no match expression", func_name); 893 return(-1); 894 } 895 896 /* 897 * Break the (comma delimited) input string out into separate strings. 898 */ 899 for (tempstr = tstr, num_args = 0; 900 (*tempstr = strsep(&match_str, ",")) != NULL && (num_args < 5); 901 num_args++) 902 if (**tempstr != '\0') 903 if (++tempstr >= &tstr[5]) 904 break; 905 906 /* The user gave us too many type arguments */ 907 if (num_args > 3) { 908 sprintf(devstat_errbuf, "%s: too many type arguments", 909 func_name); 910 return(-1); 911 } 912 913 /* 914 * Since you can't realloc a pointer that hasn't been malloced 915 * first, we malloc first and then realloc. 916 */ 917 if (*num_matches == 0) 918 *matches = (struct devstat_match *)malloc( 919 sizeof(struct devstat_match)); 920 else 921 *matches = (struct devstat_match *)realloc(*matches, 922 sizeof(struct devstat_match) * (*num_matches + 1)); 923 924 /* Make sure the current entry is clear */ 925 bzero(&matches[0][*num_matches], sizeof(struct devstat_match)); 926 927 /* 928 * Step through the arguments the user gave us and build a device 929 * matching expression from them. 930 */ 931 for (i = 0; i < num_args; i++) { 932 char *tempstr2, *tempstr3; 933 934 /* 935 * Get rid of leading white space. 936 */ 937 tempstr2 = tstr[i]; 938 while (isspace(*tempstr2) && (*tempstr2 != '\0')) 939 tempstr2++; 940 941 /* 942 * Get rid of trailing white space. 943 */ 944 tempstr3 = &tempstr2[strlen(tempstr2) - 1]; 945 946 while ((*tempstr3 != '\0') && (tempstr3 > tempstr2) 947 && (isspace(*tempstr3))) { 948 *tempstr3 = '\0'; 949 tempstr3--; 950 } 951 952 /* 953 * Go through the match table comparing the user's 954 * arguments to known device types, interfaces, etc. 955 */ 956 for (j = 0; match_table[j].match_str != NULL; j++) { 957 /* 958 * We do case-insensitive matching, in case someone 959 * wants to enter "SCSI" instead of "scsi" or 960 * something like that. Only compare as many 961 * characters as are in the string in the match 962 * table. This should help if someone tries to use 963 * a super-long match expression. 964 */ 965 if (strncasecmp(tempstr2, match_table[j].match_str, 966 strlen(match_table[j].match_str)) == 0) { 967 /* 968 * Make sure the user hasn't specified two 969 * items of the same type, like "da" and 970 * "cd". One device cannot be both. 971 */ 972 if (((*matches)[*num_matches].match_fields & 973 match_table[j].match_field) != 0) { 974 sprintf(devstat_errbuf, 975 "%s: cannot have more than " 976 "one match item in a single " 977 "category", func_name); 978 return(-1); 979 } 980 /* 981 * If we've gotten this far, we have a 982 * winner. Set the appropriate fields in 983 * the match entry. 984 */ 985 (*matches)[*num_matches].match_fields |= 986 match_table[j].match_field; 987 (*matches)[*num_matches].device_type |= 988 match_table[j].type; 989 (*matches)[*num_matches].num_match_categories++; 990 break; 991 } 992 } 993 /* 994 * We should have found a match in the above for loop. If 995 * not, that means the user entered an invalid device type 996 * or interface. 997 */ 998 if ((*matches)[*num_matches].num_match_categories != (i + 1)) { 999 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 1000 "%s: unknown match item \"%s\"", func_name, 1001 tstr[i]); 1002 return(-1); 1003 } 1004 } 1005 1006 (*num_matches)++; 1007 1008 return(0); 1009 } 1010 1011 /* 1012 * Compute a number of device statistics. Only one field is mandatory, and 1013 * that is "current". Everything else is optional. The caller passes in 1014 * pointers to variables to hold the various statistics he desires. If he 1015 * doesn't want a particular staistic, he should pass in a NULL pointer. 1016 * Return values: 1017 * 0 -- success 1018 * -1 -- failure 1019 */ 1020 int 1021 compute_stats(struct devstat *current, struct devstat *previous, 1022 long double etime, u_int64_t *total_bytes, 1023 u_int64_t *total_transfers, u_int64_t *total_blocks, 1024 long double *kb_per_transfer, long double *transfers_per_second, 1025 long double *mb_per_second, long double *blocks_per_second, 1026 long double *ms_per_transaction) 1027 { 1028 u_int64_t totalbytes, totaltransfers, totalblocks; 1029 char *func_name = "compute_stats"; 1030 1031 /* 1032 * current is the only mandatory field. 1033 */ 1034 if (current == NULL) { 1035 sprintf(devstat_errbuf, "%s: current stats structure was NULL", 1036 func_name); 1037 return(-1); 1038 } 1039 1040 totalbytes = (current->bytes_written + current->bytes_read) - 1041 ((previous) ? (previous->bytes_written + 1042 previous->bytes_read) : 0); 1043 1044 if (total_bytes) 1045 *total_bytes = totalbytes; 1046 1047 totaltransfers = (current->num_reads + 1048 current->num_writes + 1049 current->num_other) - 1050 ((previous) ? 1051 (previous->num_reads + 1052 previous->num_writes + 1053 previous->num_other) : 0); 1054 if (total_transfers) 1055 *total_transfers = totaltransfers; 1056 1057 if (transfers_per_second) { 1058 if (etime > 0.0) { 1059 *transfers_per_second = totaltransfers; 1060 *transfers_per_second /= etime; 1061 } else 1062 *transfers_per_second = 0.0; 1063 } 1064 1065 if (kb_per_transfer) { 1066 *kb_per_transfer = totalbytes; 1067 *kb_per_transfer /= 1024; 1068 if (totaltransfers > 0) 1069 *kb_per_transfer /= totaltransfers; 1070 else 1071 *kb_per_transfer = 0.0; 1072 } 1073 1074 if (mb_per_second) { 1075 *mb_per_second = totalbytes; 1076 *mb_per_second /= 1024 * 1024; 1077 if (etime > 0.0) 1078 *mb_per_second /= etime; 1079 else 1080 *mb_per_second = 0.0; 1081 } 1082 1083 totalblocks = totalbytes; 1084 if (current->block_size > 0) 1085 totalblocks /= current->block_size; 1086 else 1087 totalblocks /= 512; 1088 1089 if (total_blocks) 1090 *total_blocks = totalblocks; 1091 1092 if (blocks_per_second) { 1093 *blocks_per_second = totalblocks; 1094 if (etime > 0.0) 1095 *blocks_per_second /= etime; 1096 else 1097 *blocks_per_second = 0.0; 1098 } 1099 1100 if (ms_per_transaction) { 1101 if (totaltransfers > 0) { 1102 *ms_per_transaction = etime; 1103 *ms_per_transaction /= totaltransfers; 1104 *ms_per_transaction *= 1000; 1105 } else 1106 *ms_per_transaction = 0.0; 1107 } 1108 1109 return(0); 1110 } 1111 1112 long double 1113 compute_etime(struct timeval cur_time, struct timeval prev_time) 1114 { 1115 struct timeval busy_time; 1116 u_int64_t busy_usec; 1117 long double etime; 1118 1119 timersub(&cur_time, &prev_time, &busy_time); 1120 1121 busy_usec = busy_time.tv_sec; 1122 busy_usec *= 1000000; 1123 busy_usec += busy_time.tv_usec; 1124 etime = busy_usec; 1125 etime /= 1000000; 1126 1127 return(etime); 1128 } 1129