xref: /freebsd/lib/libdevstat/devstat.c (revision 6990ffd8a95caaba6858ad44ff1b3157d1efba8f)
1 /*
2  * Copyright (c) 1997, 1998 Kenneth D. Merry.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. The name of the author may not be used to endorse or promote products
14  *    derived from this software without specific prior written permission.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include <sys/types.h>
33 #include <sys/sysctl.h>
34 #include <sys/errno.h>
35 #include <sys/dkstat.h>
36 #include <sys/queue.h>
37 
38 #include <ctype.h>
39 #include <err.h>
40 #include <fcntl.h>
41 #include <limits.h>
42 #include <stdio.h>
43 #include <stdlib.h>
44 #include <string.h>
45 #include <stdarg.h>
46 #include <kvm.h>
47 
48 #include "devstat.h"
49 
50 typedef enum {
51 	DEVSTAT_ARG_NOTYPE,
52 	DEVSTAT_ARG_UINT64,
53 	DEVSTAT_ARG_LD,
54 	DEVSTAT_ARG_SKIP
55 } devstat_arg_type;
56 
57 char devstat_errbuf[DEVSTAT_ERRBUF_SIZE];
58 
59 /*
60  * Table to match descriptive strings with device types.  These are in
61  * order from most common to least common to speed search time.
62  */
63 struct devstat_match_table match_table[] = {
64 	{"da",		DEVSTAT_TYPE_DIRECT,	DEVSTAT_MATCH_TYPE},
65 	{"cd",		DEVSTAT_TYPE_CDROM,	DEVSTAT_MATCH_TYPE},
66 	{"scsi",	DEVSTAT_TYPE_IF_SCSI,	DEVSTAT_MATCH_IF},
67 	{"ide",		DEVSTAT_TYPE_IF_IDE,	DEVSTAT_MATCH_IF},
68 	{"other",	DEVSTAT_TYPE_IF_OTHER,	DEVSTAT_MATCH_IF},
69 	{"worm",	DEVSTAT_TYPE_WORM,	DEVSTAT_MATCH_TYPE},
70 	{"sa",		DEVSTAT_TYPE_SEQUENTIAL,DEVSTAT_MATCH_TYPE},
71 	{"pass",	DEVSTAT_TYPE_PASS,	DEVSTAT_MATCH_PASS},
72 	{"optical",	DEVSTAT_TYPE_OPTICAL,	DEVSTAT_MATCH_TYPE},
73 	{"array",	DEVSTAT_TYPE_STORARRAY,	DEVSTAT_MATCH_TYPE},
74 	{"changer",	DEVSTAT_TYPE_CHANGER,	DEVSTAT_MATCH_TYPE},
75 	{"scanner",	DEVSTAT_TYPE_SCANNER,	DEVSTAT_MATCH_TYPE},
76 	{"printer",	DEVSTAT_TYPE_PRINTER,	DEVSTAT_MATCH_TYPE},
77 	{"floppy",	DEVSTAT_TYPE_FLOPPY,	DEVSTAT_MATCH_TYPE},
78 	{"proc",	DEVSTAT_TYPE_PROCESSOR,	DEVSTAT_MATCH_TYPE},
79 	{"comm",	DEVSTAT_TYPE_COMM,	DEVSTAT_MATCH_TYPE},
80 	{"enclosure",	DEVSTAT_TYPE_ENCLOSURE,	DEVSTAT_MATCH_TYPE},
81 	{NULL,		0,			0}
82 };
83 
84 struct devstat_args {
85 	devstat_metric 		metric;
86 	devstat_arg_type	argtype;
87 } devstat_arg_list[] = {
88 	{ DSM_NONE, DEVSTAT_ARG_NOTYPE },
89 	{ DSM_TOTAL_BYTES, DEVSTAT_ARG_UINT64 },
90 	{ DSM_TOTAL_BYTES_READ, DEVSTAT_ARG_UINT64 },
91 	{ DSM_TOTAL_BYTES_WRITE, DEVSTAT_ARG_UINT64 },
92 	{ DSM_TOTAL_TRANSFERS, DEVSTAT_ARG_UINT64 },
93 	{ DSM_TOTAL_TRANSFERS_READ, DEVSTAT_ARG_UINT64 },
94 	{ DSM_TOTAL_TRANSFERS_WRITE, DEVSTAT_ARG_UINT64 },
95 	{ DSM_TOTAL_TRANSFERS_OTHER, DEVSTAT_ARG_UINT64 },
96 	{ DSM_TOTAL_BLOCKS, DEVSTAT_ARG_UINT64 },
97 	{ DSM_TOTAL_BLOCKS_READ, DEVSTAT_ARG_UINT64 },
98 	{ DSM_TOTAL_BLOCKS_WRITE, DEVSTAT_ARG_UINT64 },
99 	{ DSM_KB_PER_TRANSFER, DEVSTAT_ARG_LD },
100 	{ DSM_KB_PER_TRANSFER_READ, DEVSTAT_ARG_LD },
101 	{ DSM_KB_PER_TRANSFER_WRITE, DEVSTAT_ARG_LD },
102 	{ DSM_TRANSFERS_PER_SECOND, DEVSTAT_ARG_LD },
103 	{ DSM_TRANSFERS_PER_SECOND_READ, DEVSTAT_ARG_LD },
104 	{ DSM_TRANSFERS_PER_SECOND_WRITE, DEVSTAT_ARG_LD },
105 	{ DSM_TRANSFERS_PER_SECOND_OTHER, DEVSTAT_ARG_LD },
106 	{ DSM_MB_PER_SECOND, DEVSTAT_ARG_LD },
107 	{ DSM_MB_PER_SECOND_READ, DEVSTAT_ARG_LD },
108 	{ DSM_MB_PER_SECOND_WRITE, DEVSTAT_ARG_LD },
109 	{ DSM_BLOCKS_PER_SECOND, DEVSTAT_ARG_LD },
110 	{ DSM_BLOCKS_PER_SECOND_READ, DEVSTAT_ARG_LD },
111 	{ DSM_BLOCKS_PER_SECOND_WRITE, DEVSTAT_ARG_LD },
112 	{ DSM_MS_PER_TRANSACTION, DEVSTAT_ARG_LD },
113 	{ DSM_MS_PER_TRANSACTION_READ, DEVSTAT_ARG_LD },
114 	{ DSM_MS_PER_TRANSACTION_WRITE, DEVSTAT_ARG_LD },
115 	{ DSM_SKIP, DEVSTAT_ARG_SKIP }
116 };
117 
118 static char *namelist[] = {
119 #define X_NUMDEVS	0
120 	"_devstat_num_devs",
121 #define X_GENERATION	1
122 	"_devstat_generation",
123 #define X_VERSION	2
124 	"_devstat_version",
125 #define X_DEVICE_STATQ	3
126 	"_device_statq",
127 #define X_END		4
128 };
129 
130 /*
131  * Local function declarations.
132  */
133 static int compare_select(const void *arg1, const void *arg2);
134 static int readkmem(kvm_t *kd, unsigned long addr, void *buf, size_t nbytes);
135 static int readkmem_nl(kvm_t *kd, char *name, void *buf, size_t nbytes);
136 static char *get_devstat_kvm(kvm_t *kd);
137 
138 #define KREADNL(kd, var, val) \
139 	readkmem_nl(kd, namelist[var], &val, sizeof(val))
140 
141 int
142 devstat_getnumdevs(kvm_t *kd)
143 {
144 	size_t numdevsize;
145 	int numdevs;
146 	char *func_name = "devstat_getnumdevs";
147 
148 	numdevsize = sizeof(int);
149 
150 	/*
151 	 * Find out how many devices we have in the system.
152 	 */
153 	if (kd == NULL) {
154 		if (sysctlbyname("kern.devstat.numdevs", &numdevs,
155 				 &numdevsize, NULL, 0) == -1) {
156 			snprintf(devstat_errbuf, sizeof(devstat_errbuf),
157 				 "%s: error getting number of devices\n"
158 				 "%s: %s", func_name, func_name,
159 				 strerror(errno));
160 			return(-1);
161 		} else
162 			return(numdevs);
163 	} else {
164 		if (KREADNL(kd, X_NUMDEVS, numdevs) == -1)
165 			return(-1);
166 		else
167 			return(numdevs);
168 	}
169 }
170 
171 /*
172  * This is an easy way to get the generation number, but the generation is
173  * supplied in a more atmoic manner by the kern.devstat.all sysctl.
174  * Because this generation sysctl is separate from the statistics sysctl,
175  * the device list and the generation could change between the time that
176  * this function is called and the device list is retreived.
177  */
178 long
179 devstat_getgeneration(kvm_t *kd)
180 {
181 	size_t gensize;
182 	long generation;
183 	char *func_name = "devstat_getgeneration";
184 
185 	gensize = sizeof(long);
186 
187 	/*
188 	 * Get the current generation number.
189 	 */
190 	if (kd == NULL) {
191 		if (sysctlbyname("kern.devstat.generation", &generation,
192 				 &gensize, NULL, 0) == -1) {
193 			snprintf(devstat_errbuf, sizeof(devstat_errbuf),
194 				 "%s: error getting devstat generation\n%s: %s",
195 				 func_name, func_name, strerror(errno));
196 			return(-1);
197 		} else
198 			return(generation);
199 	} else {
200 		if (KREADNL(kd, X_GENERATION, generation) == -1)
201 			return(-1);
202 		else
203 			return(generation);
204 	}
205 }
206 
207 /*
208  * Get the current devstat version.  The return value of this function
209  * should be compared with DEVSTAT_VERSION, which is defined in
210  * sys/devicestat.h.  This will enable userland programs to determine
211  * whether they are out of sync with the kernel.
212  */
213 int
214 devstat_getversion(kvm_t *kd)
215 {
216 	size_t versize;
217 	int version;
218 	char *func_name = "devstat_getversion";
219 
220 	versize = sizeof(int);
221 
222 	/*
223 	 * Get the current devstat version.
224 	 */
225 	if (kd == NULL) {
226 		if (sysctlbyname("kern.devstat.version", &version, &versize,
227 				 NULL, 0) == -1) {
228 			snprintf(devstat_errbuf, sizeof(devstat_errbuf),
229 				 "%s: error getting devstat version\n%s: %s",
230 				 func_name, func_name, strerror(errno));
231 			return(-1);
232 		} else
233 			return(version);
234 	} else {
235 		if (KREADNL(kd, X_VERSION, version) == -1)
236 			return(-1);
237 		else
238 			return(version);
239 	}
240 }
241 
242 /*
243  * Check the devstat version we know about against the devstat version the
244  * kernel knows about.  If they don't match, print an error into the
245  * devstat error buffer, and return -1.  If they match, return 0.
246  */
247 int
248 devstat_checkversion(kvm_t *kd)
249 {
250 	char *func_name = "devstat_checkversion";
251 	int buflen, res, retval = 0, version;
252 
253 	version = devstat_getversion(kd);
254 
255 	if (version != DEVSTAT_VERSION) {
256 		/*
257 		 * If getversion() returns an error (i.e. -1), then it
258 		 * has printed an error message in the buffer.  Therefore,
259 		 * we need to add a \n to the end of that message before we
260 		 * print our own message in the buffer.
261 		 */
262 		if (version == -1)
263 			buflen = strlen(devstat_errbuf);
264 		else
265 			buflen = 0;
266 
267 		res = snprintf(devstat_errbuf + buflen,
268 			       DEVSTAT_ERRBUF_SIZE - buflen,
269 			       "%s%s: userland devstat version %d is not "
270 			       "the same as the kernel\n%s: devstat "
271 			       "version %d\n", version == -1 ? "\n" : "",
272 			       func_name, DEVSTAT_VERSION, func_name, version);
273 
274 		if (res < 0)
275 			devstat_errbuf[buflen] = '\0';
276 
277 		buflen = strlen(devstat_errbuf);
278 		if (version < DEVSTAT_VERSION)
279 			res = snprintf(devstat_errbuf + buflen,
280 				       DEVSTAT_ERRBUF_SIZE - buflen,
281 				       "%s: libdevstat newer than kernel\n",
282 				       func_name);
283 		else
284 			res = snprintf(devstat_errbuf + buflen,
285 				       DEVSTAT_ERRBUF_SIZE - buflen,
286 				       "%s: kernel newer than libdevstat\n",
287 				       func_name);
288 
289 		if (res < 0)
290 			devstat_errbuf[buflen] = '\0';
291 
292 		retval = -1;
293 	}
294 
295 	return(retval);
296 }
297 
298 /*
299  * Get the current list of devices and statistics, and the current
300  * generation number.
301  *
302  * Return values:
303  * -1  -- error
304  *  0  -- device list is unchanged
305  *  1  -- device list has changed
306  */
307 int
308 devstat_getdevs(kvm_t *kd, struct statinfo *stats)
309 {
310 	int error;
311 	size_t dssize;
312 	int oldnumdevs;
313 	long oldgeneration;
314 	int retval = 0;
315 	struct devinfo *dinfo;
316 	char *func_name = "devstat_getdevs";
317 
318 	dinfo = stats->dinfo;
319 
320 	if (dinfo == NULL) {
321 		snprintf(devstat_errbuf, sizeof(devstat_errbuf),
322 			 "%s: stats->dinfo was NULL", func_name);
323 		return(-1);
324 	}
325 
326 	oldnumdevs = dinfo->numdevs;
327 	oldgeneration = dinfo->generation;
328 
329 	/* Get the current time when we get the stats */
330 	gettimeofday(&stats->busy_time, NULL);
331 
332 	if (kd == NULL) {
333 		/* If this is our first time through, mem_ptr will be null. */
334 		if (dinfo->mem_ptr == NULL) {
335 			/*
336 			 * Get the number of devices.  If it's negative, it's an
337 			 * error.  Don't bother setting the error string, since
338 			 * getnumdevs() has already done that for us.
339 			 */
340 			if ((dinfo->numdevs = getnumdevs()) < 0)
341 				return(-1);
342 
343 			/*
344 			 * The kern.devstat.all sysctl returns the current
345 			 * generation number, as well as all the devices.
346 			 * So we need four bytes more.
347 			 */
348 			dssize = (dinfo->numdevs * sizeof(struct devstat)) +
349 				 sizeof(long);
350 			dinfo->mem_ptr = (u_int8_t *)malloc(dssize);
351 		} else
352 			dssize = (dinfo->numdevs * sizeof(struct devstat)) +
353 				 sizeof(long);
354 
355 		/*
356 		 * Request all of the devices.  We only really allow for one
357 		 * ENOMEM failure.  It would, of course, be possible to just go
358 		 * in a loop and keep reallocing the device structure until we
359 		 * don't get ENOMEM back.  I'm not sure it's worth it, though.
360 		 * If devices are being added to the system that quickly, maybe
361 		 * the user can just wait until all devices are added.
362 		 */
363 		if ((error = sysctlbyname("kern.devstat.all", dinfo->mem_ptr,
364 					  &dssize, NULL, 0)) == -1) {
365 			/*
366 			 * If we get ENOMEM back, that means that there are
367 			 * more devices now, so we need to allocate more
368 			 * space for the device array.
369 			 */
370 			if (errno == ENOMEM) {
371 				/*
372 				 * No need to set the error string here,
373 				 * getnumdevs() will do that if it fails.
374 				 */
375 				if ((dinfo->numdevs = getnumdevs()) < 0)
376 					return(-1);
377 
378 				dssize = (dinfo->numdevs *
379 					sizeof(struct devstat)) + sizeof(long);
380 				dinfo->mem_ptr = (u_int8_t *)
381 					realloc(dinfo->mem_ptr, dssize);
382 				if ((error = sysctlbyname("kern.devstat.all",
383 				    dinfo->mem_ptr, &dssize, NULL, 0)) == -1) {
384 					snprintf(devstat_errbuf,
385 						 sizeof(devstat_errbuf),
386 					    	 "%s: error getting device "
387 					    	 "stats\n%s: %s", func_name,
388 					    	 func_name, strerror(errno));
389 					return(-1);
390 				}
391 			} else {
392 				snprintf(devstat_errbuf, sizeof(devstat_errbuf),
393 					 "%s: error getting device stats\n"
394 					 "%s: %s", func_name, func_name,
395 					 strerror(errno));
396 				return(-1);
397 			}
398 		}
399 
400 	} else {
401 		/*
402 		 * This is of course non-atomic, but since we are working
403 		 * on a core dump, the generation is unlikely to change
404 		 */
405 		if ((dinfo->numdevs = getnumdevs()) == -1)
406 			return(-1);
407 		if ((dinfo->mem_ptr = get_devstat_kvm(kd)) == NULL)
408 			return(-1);
409 	}
410 	/*
411 	 * The sysctl spits out the generation as the first four bytes,
412 	 * then all of the device statistics structures.
413 	 */
414 	dinfo->generation = *(long *)dinfo->mem_ptr;
415 
416 	/*
417 	 * If the generation has changed, and if the current number of
418 	 * devices is not the same as the number of devices recorded in the
419 	 * devinfo structure, it is likely that the device list has shrunk.
420 	 * The reason that it is likely that the device list has shrunk in
421 	 * this case is that if the device list has grown, the sysctl above
422 	 * will return an ENOMEM error, and we will reset the number of
423 	 * devices and reallocate the device array.  If the second sysctl
424 	 * fails, we will return an error and therefore never get to this
425 	 * point.  If the device list has shrunk, the sysctl will not
426 	 * return an error since we have more space allocated than is
427 	 * necessary.  So, in the shrinkage case, we catch it here and
428 	 * reallocate the array so that we don't use any more space than is
429 	 * necessary.
430 	 */
431 	if (oldgeneration != dinfo->generation) {
432 		if (getnumdevs() != dinfo->numdevs) {
433 			if ((dinfo->numdevs = getnumdevs()) < 0)
434 				return(-1);
435 			dssize = (dinfo->numdevs * sizeof(struct devstat)) +
436 				sizeof(long);
437 			dinfo->mem_ptr = (u_int8_t *)realloc(dinfo->mem_ptr,
438 							     dssize);
439 		}
440 		retval = 1;
441 	}
442 
443 	dinfo->devices = (struct devstat *)(dinfo->mem_ptr + sizeof(long));
444 
445 	return(retval);
446 }
447 
448 /*
449  * selectdevs():
450  *
451  * Devices are selected/deselected based upon the following criteria:
452  * - devices specified by the user on the command line
453  * - devices matching any device type expressions given on the command line
454  * - devices with the highest I/O, if 'top' mode is enabled
455  * - the first n unselected devices in the device list, if maxshowdevs
456  *   devices haven't already been selected and if the user has not
457  *   specified any devices on the command line and if we're in "add" mode.
458  *
459  * Input parameters:
460  * - device selection list (dev_select)
461  * - current number of devices selected (num_selected)
462  * - total number of devices in the selection list (num_selections)
463  * - devstat generation as of the last time selectdevs() was called
464  *   (select_generation)
465  * - current devstat generation (current_generation)
466  * - current list of devices and statistics (devices)
467  * - number of devices in the current device list (numdevs)
468  * - compiled version of the command line device type arguments (matches)
469  *   - This is optional.  If the number of devices is 0, this will be ignored.
470  *   - The matching code pays attention to the current selection mode.  So
471  *     if you pass in a matching expression, it will be evaluated based
472  *     upon the selection mode that is passed in.  See below for details.
473  * - number of device type matching expressions (num_matches)
474  *   - Set to 0 to disable the matching code.
475  * - list of devices specified on the command line by the user (dev_selections)
476  * - number of devices selected on the command line by the user
477  *   (num_dev_selections)
478  * - Our selection mode.  There are four different selection modes:
479  *      - add mode.  (DS_SELECT_ADD) Any devices matching devices explicitly
480  *        selected by the user or devices matching a pattern given by the
481  *        user will be selected in addition to devices that are already
482  *        selected.  Additional devices will be selected, up to maxshowdevs
483  *        number of devices.
484  *      - only mode. (DS_SELECT_ONLY)  Only devices matching devices
485  *        explicitly given by the user or devices matching a pattern
486  *        given by the user will be selected.  No other devices will be
487  *        selected.
488  *      - addonly mode.  (DS_SELECT_ADDONLY)  This is similar to add and
489  *        only.  Basically, this will not de-select any devices that are
490  *        current selected, as only mode would, but it will also not
491  *        gratuitously select up to maxshowdevs devices as add mode would.
492  *      - remove mode.  (DS_SELECT_REMOVE)  Any devices matching devices
493  *        explicitly selected by the user or devices matching a pattern
494  *        given by the user will be de-selected.
495  * - maximum number of devices we can select (maxshowdevs)
496  * - flag indicating whether or not we're in 'top' mode (perf_select)
497  *
498  * Output data:
499  * - the device selection list may be modified and passed back out
500  * - the number of devices selected and the total number of items in the
501  *   device selection list may be changed
502  * - the selection generation may be changed to match the current generation
503  *
504  * Return values:
505  * -1  -- error
506  *  0  -- selected devices are unchanged
507  *  1  -- selected devices changed
508  */
509 int
510 devstat_selectdevs(struct device_selection **dev_select, int *num_selected,
511 		   int *num_selections, long *select_generation,
512 		   long current_generation, struct devstat *devices,
513 		   int numdevs, struct devstat_match *matches, int num_matches,
514 		   char **dev_selections, int num_dev_selections,
515 		   devstat_select_mode select_mode, int maxshowdevs,
516 		   int perf_select)
517 {
518 	register int i, j, k;
519 	int init_selections = 0, init_selected_var = 0;
520 	struct device_selection *old_dev_select = NULL;
521 	int old_num_selections = 0, old_num_selected;
522 	int selection_number = 0;
523 	int changed = 0, found = 0;
524 
525 	if ((dev_select == NULL) || (devices == NULL) || (numdevs <= 0))
526 		return(-1);
527 
528 	/*
529 	 * We always want to make sure that we have as many dev_select
530 	 * entries as there are devices.
531 	 */
532 	/*
533 	 * In this case, we haven't selected devices before.
534 	 */
535 	if (*dev_select == NULL) {
536 		*dev_select = (struct device_selection *)malloc(numdevs *
537 			sizeof(struct device_selection));
538 		*select_generation = current_generation;
539 		init_selections = 1;
540 		changed = 1;
541 	/*
542 	 * In this case, we have selected devices before, but the device
543 	 * list has changed since we last selected devices, so we need to
544 	 * either enlarge or reduce the size of the device selection list.
545 	 */
546 	} else if (*num_selections != numdevs) {
547 		*dev_select = (struct device_selection *)realloc(*dev_select,
548 			numdevs * sizeof(struct device_selection));
549 		*select_generation = current_generation;
550 		init_selections = 1;
551 	/*
552 	 * In this case, we've selected devices before, and the selection
553 	 * list is the same size as it was the last time, but the device
554 	 * list has changed.
555 	 */
556 	} else if (*select_generation < current_generation) {
557 		*select_generation = current_generation;
558 		init_selections = 1;
559 	}
560 
561 	/*
562 	 * If we're in "only" mode, we want to clear out the selected
563 	 * variable since we're going to select exactly what the user wants
564 	 * this time through.
565 	 */
566 	if (select_mode == DS_SELECT_ONLY)
567 		init_selected_var = 1;
568 
569 	/*
570 	 * In all cases, we want to back up the number of selected devices.
571 	 * It is a quick and accurate way to determine whether the selected
572 	 * devices have changed.
573 	 */
574 	old_num_selected = *num_selected;
575 
576 	/*
577 	 * We want to make a backup of the current selection list if
578 	 * the list of devices has changed, or if we're in performance
579 	 * selection mode.  In both cases, we don't want to make a backup
580 	 * if we already know for sure that the list will be different.
581 	 * This is certainly the case if this is our first time through the
582 	 * selection code.
583 	 */
584 	if (((init_selected_var != 0) || (init_selections != 0)
585 	 || (perf_select != 0)) && (changed == 0)){
586 		old_dev_select = (struct device_selection *)malloc(
587 		    *num_selections * sizeof(struct device_selection));
588 		old_num_selections = *num_selections;
589 		bcopy(*dev_select, old_dev_select,
590 		    sizeof(struct device_selection) * *num_selections);
591 	}
592 
593 	if (init_selections != 0) {
594 		bzero(*dev_select, sizeof(struct device_selection) * numdevs);
595 
596 		for (i = 0; i < numdevs; i++) {
597 			(*dev_select)[i].device_number =
598 				devices[i].device_number;
599 			strncpy((*dev_select)[i].device_name,
600 				devices[i].device_name,
601 				DEVSTAT_NAME_LEN);
602 			(*dev_select)[i].device_name[DEVSTAT_NAME_LEN - 1]='\0';
603 			(*dev_select)[i].unit_number = devices[i].unit_number;
604 			(*dev_select)[i].position = i;
605 		}
606 		*num_selections = numdevs;
607 	} else if (init_selected_var != 0) {
608 		for (i = 0; i < numdevs; i++)
609 			(*dev_select)[i].selected = 0;
610 	}
611 
612 	/* we haven't gotten around to selecting anything yet.. */
613 	if ((select_mode == DS_SELECT_ONLY) || (init_selections != 0)
614 	 || (init_selected_var != 0))
615 		*num_selected = 0;
616 
617 	/*
618 	 * Look through any devices the user specified on the command line
619 	 * and see if they match known devices.  If so, select them.
620 	 */
621 	for (i = 0; (i < *num_selections) && (num_dev_selections > 0); i++) {
622 		char tmpstr[80];
623 
624 		snprintf(tmpstr, sizeof(tmpstr), "%s%d",
625 			 (*dev_select)[i].device_name,
626 			 (*dev_select)[i].unit_number);
627 		for (j = 0; j < num_dev_selections; j++) {
628 			if (strcmp(tmpstr, dev_selections[j]) == 0) {
629 				/*
630 				 * Here we do different things based on the
631 				 * mode we're in.  If we're in add or
632 				 * addonly mode, we only select this device
633 				 * if it hasn't already been selected.
634 				 * Otherwise, we would be unnecessarily
635 				 * changing the selection order and
636 				 * incrementing the selection count.  If
637 				 * we're in only mode, we unconditionally
638 				 * select this device, since in only mode
639 				 * any previous selections are erased and
640 				 * manually specified devices are the first
641 				 * ones to be selected.  If we're in remove
642 				 * mode, we de-select the specified device and
643 				 * decrement the selection count.
644 				 */
645 				switch(select_mode) {
646 				case DS_SELECT_ADD:
647 				case DS_SELECT_ADDONLY:
648 					if ((*dev_select)[i].selected)
649 						break;
650 					/* FALLTHROUGH */
651 				case DS_SELECT_ONLY:
652 					(*dev_select)[i].selected =
653 						++selection_number;
654 					(*num_selected)++;
655 					break;
656 				case DS_SELECT_REMOVE:
657 					(*dev_select)[i].selected = 0;
658 					(*num_selected)--;
659 					/*
660 					 * This isn't passed back out, we
661 					 * just use it to keep track of
662 					 * how many devices we've removed.
663 					 */
664 					num_dev_selections--;
665 					break;
666 				}
667 				break;
668 			}
669 		}
670 	}
671 
672 	/*
673 	 * Go through the user's device type expressions and select devices
674 	 * accordingly.  We only do this if the number of devices already
675 	 * selected is less than the maximum number we can show.
676 	 */
677 	for (i = 0; (i < num_matches) && (*num_selected < maxshowdevs); i++) {
678 		/* We should probably indicate some error here */
679 		if ((matches[i].match_fields == DEVSTAT_MATCH_NONE)
680 		 || (matches[i].num_match_categories <= 0))
681 			continue;
682 
683 		for (j = 0; j < numdevs; j++) {
684 			int num_match_categories;
685 
686 			num_match_categories = matches[i].num_match_categories;
687 
688 			/*
689 			 * Determine whether or not the current device
690 			 * matches the given matching expression.  This if
691 			 * statement consists of three components:
692 			 *   - the device type check
693 			 *   - the device interface check
694 			 *   - the passthrough check
695 			 * If a the matching test is successful, it
696 			 * decrements the number of matching categories,
697 			 * and if we've reached the last element that
698 			 * needed to be matched, the if statement succeeds.
699 			 *
700 			 */
701 			if ((((matches[i].match_fields & DEVSTAT_MATCH_TYPE)!=0)
702 			  && ((devices[j].device_type & DEVSTAT_TYPE_MASK) ==
703 			        (matches[i].device_type & DEVSTAT_TYPE_MASK))
704 			  &&(((matches[i].match_fields & DEVSTAT_MATCH_PASS)!=0)
705 			   || (((matches[i].match_fields &
706 				DEVSTAT_MATCH_PASS) == 0)
707 			    && ((devices[j].device_type &
708 			        DEVSTAT_TYPE_PASS) == 0)))
709 			  && (--num_match_categories == 0))
710 			 || (((matches[i].match_fields & DEVSTAT_MATCH_IF) != 0)
711 			  && ((devices[j].device_type & DEVSTAT_TYPE_IF_MASK) ==
712 			        (matches[i].device_type & DEVSTAT_TYPE_IF_MASK))
713 			  &&(((matches[i].match_fields & DEVSTAT_MATCH_PASS)!=0)
714 			   || (((matches[i].match_fields &
715 				DEVSTAT_MATCH_PASS) == 0)
716 			    && ((devices[j].device_type &
717 				DEVSTAT_TYPE_PASS) == 0)))
718 			  && (--num_match_categories == 0))
719 			 || (((matches[i].match_fields & DEVSTAT_MATCH_PASS)!=0)
720 			  && ((devices[j].device_type & DEVSTAT_TYPE_PASS) != 0)
721 			  && (--num_match_categories == 0))) {
722 
723 				/*
724 				 * This is probably a non-optimal solution
725 				 * to the problem that the devices in the
726 				 * device list will not be in the same
727 				 * order as the devices in the selection
728 				 * array.
729 				 */
730 				for (k = 0; k < numdevs; k++) {
731 					if ((*dev_select)[k].position == j) {
732 						found = 1;
733 						break;
734 					}
735 				}
736 
737 				/*
738 				 * There shouldn't be a case where a device
739 				 * in the device list is not in the
740 				 * selection list...but it could happen.
741 				 */
742 				if (found != 1) {
743 					fprintf(stderr, "selectdevs: couldn't"
744 						" find %s%d in selection "
745 						"list\n",
746 						devices[j].device_name,
747 						devices[j].unit_number);
748 					break;
749 				}
750 
751 				/*
752 				 * We do different things based upon the
753 				 * mode we're in.  If we're in add or only
754 				 * mode, we go ahead and select this device
755 				 * if it hasn't already been selected.  If
756 				 * it has already been selected, we leave
757 				 * it alone so we don't mess up the
758 				 * selection ordering.  Manually specified
759 				 * devices have already been selected, and
760 				 * they have higher priority than pattern
761 				 * matched devices.  If we're in remove
762 				 * mode, we de-select the given device and
763 				 * decrement the selected count.
764 				 */
765 				switch(select_mode) {
766 				case DS_SELECT_ADD:
767 				case DS_SELECT_ADDONLY:
768 				case DS_SELECT_ONLY:
769 					if ((*dev_select)[k].selected != 0)
770 						break;
771 					(*dev_select)[k].selected =
772 						++selection_number;
773 					(*num_selected)++;
774 					break;
775 				case DS_SELECT_REMOVE:
776 					(*dev_select)[k].selected = 0;
777 					(*num_selected)--;
778 					break;
779 				}
780 			}
781 		}
782 	}
783 
784 	/*
785 	 * Here we implement "top" mode.  Devices are sorted in the
786 	 * selection array based on two criteria:  whether or not they are
787 	 * selected (not selection number, just the fact that they are
788 	 * selected!) and the number of bytes in the "bytes" field of the
789 	 * selection structure.  The bytes field generally must be kept up
790 	 * by the user.  In the future, it may be maintained by library
791 	 * functions, but for now the user has to do the work.
792 	 *
793 	 * At first glance, it may seem wrong that we don't go through and
794 	 * select every device in the case where the user hasn't specified
795 	 * any devices or patterns.  In fact, though, it won't make any
796 	 * difference in the device sorting.  In that particular case (i.e.
797 	 * when we're in "add" or "only" mode, and the user hasn't
798 	 * specified anything) the first time through no devices will be
799 	 * selected, so the only criterion used to sort them will be their
800 	 * performance.  The second time through, and every time thereafter,
801 	 * all devices will be selected, so again selection won't matter.
802 	 */
803 	if (perf_select != 0) {
804 
805 		/* Sort the device array by throughput  */
806 		qsort(*dev_select, *num_selections,
807 		      sizeof(struct device_selection),
808 		      compare_select);
809 
810 		if (*num_selected == 0) {
811 			/*
812 			 * Here we select every device in the array, if it
813 			 * isn't already selected.  Because the 'selected'
814 			 * variable in the selection array entries contains
815 			 * the selection order, the devstats routine can show
816 			 * the devices that were selected first.
817 			 */
818 			for (i = 0; i < *num_selections; i++) {
819 				if ((*dev_select)[i].selected == 0) {
820 					(*dev_select)[i].selected =
821 						++selection_number;
822 					(*num_selected)++;
823 				}
824 			}
825 		} else {
826 			selection_number = 0;
827 			for (i = 0; i < *num_selections; i++) {
828 				if ((*dev_select)[i].selected != 0) {
829 					(*dev_select)[i].selected =
830 						++selection_number;
831 				}
832 			}
833 		}
834 	}
835 
836 	/*
837 	 * If we're in the "add" selection mode and if we haven't already
838 	 * selected maxshowdevs number of devices, go through the array and
839 	 * select any unselected devices.  If we're in "only" mode, we
840 	 * obviously don't want to select anything other than what the user
841 	 * specifies.  If we're in "remove" mode, it probably isn't a good
842 	 * idea to go through and select any more devices, since we might
843 	 * end up selecting something that the user wants removed.  Through
844 	 * more complicated logic, we could actually figure this out, but
845 	 * that would probably require combining this loop with the various
846 	 * selections loops above.
847 	 */
848 	if ((select_mode == DS_SELECT_ADD) && (*num_selected < maxshowdevs)) {
849 		for (i = 0; i < *num_selections; i++)
850 			if ((*dev_select)[i].selected == 0) {
851 				(*dev_select)[i].selected = ++selection_number;
852 				(*num_selected)++;
853 			}
854 	}
855 
856 	/*
857 	 * Look at the number of devices that have been selected.  If it
858 	 * has changed, set the changed variable.  Otherwise, if we've
859 	 * made a backup of the selection list, compare it to the current
860 	 * selection list to see if the selected devices have changed.
861 	 */
862 	if ((changed == 0) && (old_num_selected != *num_selected))
863 		changed = 1;
864 	else if ((changed == 0) && (old_dev_select != NULL)) {
865 		/*
866 		 * Now we go through the selection list and we look at
867 		 * it three different ways.
868 		 */
869 		for (i = 0; (i < *num_selections) && (changed == 0) &&
870 		     (i < old_num_selections); i++) {
871 			/*
872 			 * If the device at index i in both the new and old
873 			 * selection arrays has the same device number and
874 			 * selection status, it hasn't changed.  We
875 			 * continue on to the next index.
876 			 */
877 			if (((*dev_select)[i].device_number ==
878 			     old_dev_select[i].device_number)
879 			 && ((*dev_select)[i].selected ==
880 			     old_dev_select[i].selected))
881 				continue;
882 
883 			/*
884 			 * Now, if we're still going through the if
885 			 * statement, the above test wasn't true.  So we
886 			 * check here to see if the device at index i in
887 			 * the current array is the same as the device at
888 			 * index i in the old array.  If it is, that means
889 			 * that its selection number has changed.  Set
890 			 * changed to 1 and exit the loop.
891 			 */
892 			else if ((*dev_select)[i].device_number ==
893 			          old_dev_select[i].device_number) {
894 				changed = 1;
895 				break;
896 			}
897 			/*
898 			 * If we get here, then the device at index i in
899 			 * the current array isn't the same device as the
900 			 * device at index i in the old array.
901 			 */
902 			else {
903 				int found = 0;
904 
905 				/*
906 				 * Search through the old selection array
907 				 * looking for a device with the same
908 				 * device number as the device at index i
909 				 * in the current array.  If the selection
910 				 * status is the same, then we mark it as
911 				 * found.  If the selection status isn't
912 				 * the same, we break out of the loop.
913 				 * Since found isn't set, changed will be
914 				 * set to 1 below.
915 				 */
916 				for (j = 0; j < old_num_selections; j++) {
917 					if (((*dev_select)[i].device_number ==
918 					      old_dev_select[j].device_number)
919 					 && ((*dev_select)[i].selected ==
920 					      old_dev_select[j].selected)){
921 						found = 1;
922 						break;
923 					}
924 					else if ((*dev_select)[i].device_number
925 					    == old_dev_select[j].device_number)
926 						break;
927 				}
928 				if (found == 0)
929 					changed = 1;
930 			}
931 		}
932 	}
933 	if (old_dev_select != NULL)
934 		free(old_dev_select);
935 
936 	return(changed);
937 }
938 
939 /*
940  * Comparison routine for qsort() above.  Note that the comparison here is
941  * backwards -- generally, it should return a value to indicate whether
942  * arg1 is <, =, or > arg2.  Instead, it returns the opposite.  The reason
943  * it returns the opposite is so that the selection array will be sorted in
944  * order of decreasing performance.  We sort on two parameters.  The first
945  * sort key is whether or not one or the other of the devices in question
946  * has been selected.  If one of them has, and the other one has not, the
947  * selected device is automatically more important than the unselected
948  * device.  If neither device is selected, we judge the devices based upon
949  * performance.
950  */
951 static int
952 compare_select(const void *arg1, const void *arg2)
953 {
954 	if ((((struct device_selection *)arg1)->selected)
955 	 && (((struct device_selection *)arg2)->selected == 0))
956 		return(-1);
957 	else if ((((struct device_selection *)arg1)->selected == 0)
958 	      && (((struct device_selection *)arg2)->selected))
959 		return(1);
960 	else if (((struct device_selection *)arg2)->bytes <
961 	         ((struct device_selection *)arg1)->bytes)
962 		return(-1);
963 	else if (((struct device_selection *)arg2)->bytes >
964 		 ((struct device_selection *)arg1)->bytes)
965 		return(1);
966 	else
967 		return(0);
968 }
969 
970 /*
971  * Take a string with the general format "arg1,arg2,arg3", and build a
972  * device matching expression from it.
973  */
974 int
975 devstat_buildmatch(char *match_str, struct devstat_match **matches,
976 		   int *num_matches)
977 {
978 	char *tstr[5];
979 	char **tempstr;
980 	int num_args;
981 	register int i, j;
982 	char *func_name = "devstat_buildmatch";
983 
984 	/* We can't do much without a string to parse */
985 	if (match_str == NULL) {
986 		snprintf(devstat_errbuf, sizeof(devstat_errbuf),
987 			 "%s: no match expression", func_name);
988 		return(-1);
989 	}
990 
991 	/*
992 	 * Break the (comma delimited) input string out into separate strings.
993 	 */
994 	for (tempstr = tstr, num_args  = 0;
995 	     (*tempstr = strsep(&match_str, ",")) != NULL && (num_args < 5);
996 	     num_args++)
997 		if (**tempstr != '\0')
998 			if (++tempstr >= &tstr[5])
999 				break;
1000 
1001 	/* The user gave us too many type arguments */
1002 	if (num_args > 3) {
1003 		snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1004 			 "%s: too many type arguments", func_name);
1005 		return(-1);
1006 	}
1007 
1008 	/*
1009 	 * Since you can't realloc a pointer that hasn't been malloced
1010 	 * first, we malloc first and then realloc.
1011 	 */
1012 	if (*num_matches == 0)
1013 		*matches = (struct devstat_match *)malloc(
1014 			   sizeof(struct devstat_match));
1015 	else
1016 		*matches = (struct devstat_match *)realloc(*matches,
1017 			  sizeof(struct devstat_match) * (*num_matches + 1));
1018 
1019 	/* Make sure the current entry is clear */
1020 	bzero(&matches[0][*num_matches], sizeof(struct devstat_match));
1021 
1022 	/*
1023 	 * Step through the arguments the user gave us and build a device
1024 	 * matching expression from them.
1025 	 */
1026 	for (i = 0; i < num_args; i++) {
1027 		char *tempstr2, *tempstr3;
1028 
1029 		/*
1030 		 * Get rid of leading white space.
1031 		 */
1032 		tempstr2 = tstr[i];
1033 		while (isspace(*tempstr2) && (*tempstr2 != '\0'))
1034 			tempstr2++;
1035 
1036 		/*
1037 		 * Get rid of trailing white space.
1038 		 */
1039 		tempstr3 = &tempstr2[strlen(tempstr2) - 1];
1040 
1041 		while ((*tempstr3 != '\0') && (tempstr3 > tempstr2)
1042 		    && (isspace(*tempstr3))) {
1043 			*tempstr3 = '\0';
1044 			tempstr3--;
1045 		}
1046 
1047 		/*
1048 		 * Go through the match table comparing the user's
1049 		 * arguments to known device types, interfaces, etc.
1050 		 */
1051 		for (j = 0; match_table[j].match_str != NULL; j++) {
1052 			/*
1053 			 * We do case-insensitive matching, in case someone
1054 			 * wants to enter "SCSI" instead of "scsi" or
1055 			 * something like that.  Only compare as many
1056 			 * characters as are in the string in the match
1057 			 * table.  This should help if someone tries to use
1058 			 * a super-long match expression.
1059 			 */
1060 			if (strncasecmp(tempstr2, match_table[j].match_str,
1061 			    strlen(match_table[j].match_str)) == 0) {
1062 				/*
1063 				 * Make sure the user hasn't specified two
1064 				 * items of the same type, like "da" and
1065 				 * "cd".  One device cannot be both.
1066 				 */
1067 				if (((*matches)[*num_matches].match_fields &
1068 				    match_table[j].match_field) != 0) {
1069 					snprintf(devstat_errbuf,
1070 						 sizeof(devstat_errbuf),
1071 						 "%s: cannot have more than "
1072 						 "one match item in a single "
1073 						 "category", func_name);
1074 					return(-1);
1075 				}
1076 				/*
1077 				 * If we've gotten this far, we have a
1078 				 * winner.  Set the appropriate fields in
1079 				 * the match entry.
1080 				 */
1081 				(*matches)[*num_matches].match_fields |=
1082 					match_table[j].match_field;
1083 				(*matches)[*num_matches].device_type |=
1084 					match_table[j].type;
1085 				(*matches)[*num_matches].num_match_categories++;
1086 				break;
1087 			}
1088 		}
1089 		/*
1090 		 * We should have found a match in the above for loop.  If
1091 		 * not, that means the user entered an invalid device type
1092 		 * or interface.
1093 		 */
1094 		if ((*matches)[*num_matches].num_match_categories != (i + 1)) {
1095 			snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1096 				 "%s: unknown match item \"%s\"", func_name,
1097 				 tstr[i]);
1098 			return(-1);
1099 		}
1100 	}
1101 
1102 	(*num_matches)++;
1103 
1104 	return(0);
1105 }
1106 
1107 /*
1108  * Compute a number of device statistics.  Only one field is mandatory, and
1109  * that is "current".  Everything else is optional.  The caller passes in
1110  * pointers to variables to hold the various statistics he desires.  If he
1111  * doesn't want a particular staistic, he should pass in a NULL pointer.
1112  * Return values:
1113  * 0   -- success
1114  * -1  -- failure
1115  */
1116 int
1117 compute_stats(struct devstat *current, struct devstat *previous,
1118 	      long double etime, u_int64_t *total_bytes,
1119 	      u_int64_t *total_transfers, u_int64_t *total_blocks,
1120 	      long double *kb_per_transfer, long double *transfers_per_second,
1121 	      long double *mb_per_second, long double *blocks_per_second,
1122 	      long double *ms_per_transaction)
1123 {
1124 	return(devstat_compute_statistics(current, previous, etime,
1125 	       total_bytes ? DSM_TOTAL_BYTES : DSM_SKIP,
1126 	       total_bytes,
1127 	       total_transfers ? DSM_TOTAL_TRANSFERS : DSM_SKIP,
1128 	       total_transfers,
1129 	       total_blocks ? DSM_TOTAL_BLOCKS : DSM_SKIP,
1130 	       total_blocks,
1131 	       kb_per_transfer ? DSM_KB_PER_TRANSFER : DSM_SKIP,
1132 	       kb_per_transfer,
1133 	       transfers_per_second ? DSM_TRANSFERS_PER_SECOND : DSM_SKIP,
1134 	       transfers_per_second,
1135 	       mb_per_second ? DSM_MB_PER_SECOND : DSM_SKIP,
1136 	       mb_per_second,
1137 	       blocks_per_second ? DSM_BLOCKS_PER_SECOND : DSM_SKIP,
1138 	       blocks_per_second,
1139 	       ms_per_transaction ? DSM_MS_PER_TRANSACTION : DSM_SKIP,
1140 	       ms_per_transaction,
1141 	       DSM_NONE));
1142 }
1143 
1144 long double
1145 devstat_compute_etime(struct timeval cur_time, struct timeval prev_time)
1146 {
1147 	struct timeval busy_time;
1148 	u_int64_t busy_usec;
1149 	long double etime;
1150 
1151 	timersub(&cur_time, &prev_time, &busy_time);
1152 
1153         busy_usec = busy_time.tv_sec;
1154         busy_usec *= 1000000;
1155         busy_usec += busy_time.tv_usec;
1156         etime = busy_usec;
1157         etime /= 1000000;
1158 
1159 	return(etime);
1160 }
1161 
1162 int
1163 devstat_compute_statistics(struct devstat *current, struct devstat *previous,
1164 			   long double etime, ...)
1165 {
1166 	char *func_name = "devstat_compute_statistics";
1167 	u_int64_t totalbytes, totalbytesread, totalbyteswrite;
1168 	u_int64_t totaltransfers, totaltransfersread, totaltransferswrite;
1169 	u_int64_t totaltransfersother, totalblocks, totalblocksread;
1170 	u_int64_t totalblockswrite;
1171 	va_list ap;
1172 	devstat_metric metric;
1173 	u_int64_t *destu64;
1174 	long double *destld;
1175 	int retval;
1176 
1177 	retval = 0;
1178 
1179 	/*
1180 	 * current is the only mandatory field.
1181 	 */
1182 	if (current == NULL) {
1183 		snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1184 			 "%s: current stats structure was NULL", func_name);
1185 		return(-1);
1186 	}
1187 
1188 	totalbytesread = current->bytes_read -
1189 			 ((previous) ? previous->bytes_read : 0);
1190 	totalbyteswrite = current->bytes_written -
1191 			    ((previous) ? previous->bytes_written : 0);
1192 
1193 	totalbytes = totalbytesread + totalbyteswrite;
1194 
1195 	totaltransfersread = current->num_reads -
1196 			     ((previous) ? previous->num_reads : 0);
1197 
1198 	totaltransferswrite = current->num_writes -
1199 			      ((previous) ? previous->num_writes : 0);
1200 
1201 	totaltransfersother = current->num_other -
1202 			      ((previous) ? previous->num_other : 0);
1203 
1204 	totaltransfers = totaltransfersread + totaltransferswrite +
1205 			 totaltransfersother;
1206 
1207 	totalblocks = totalbytes;
1208 	totalblocksread = totalbytesread;
1209 	totalblockswrite = totalbyteswrite;
1210 
1211 	if (current->block_size > 0) {
1212 		totalblocks /= current->block_size;
1213 		totalblocksread /= current->block_size;
1214 		totalblockswrite /= current->block_size;
1215 	} else {
1216 		totalblocks /= 512;
1217 		totalblocksread /= 512;
1218 		totalblockswrite /= 512;
1219 	}
1220 
1221 	va_start(ap, etime);
1222 
1223 	while ((metric = (devstat_metric)va_arg(ap, devstat_metric)) != 0) {
1224 
1225 		if (metric == DSM_NONE)
1226 			break;
1227 
1228 		if (metric >= DSM_MAX) {
1229 			snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1230 				 "%s: metric %d is out of range", func_name,
1231 				 metric);
1232 			retval = -1;
1233 			goto bailout;
1234 		}
1235 
1236 		switch (devstat_arg_list[metric].argtype) {
1237 		case DEVSTAT_ARG_UINT64:
1238 			destu64 = (u_int64_t *)va_arg(ap, u_int64_t *);
1239 			break;
1240 		case DEVSTAT_ARG_LD:
1241 			destld = (long double *)va_arg(ap, long double *);
1242 			break;
1243 		case DEVSTAT_ARG_SKIP:
1244 			destld = (long double *)va_arg(ap, long double *);
1245 			break;
1246 		default:
1247 			retval = -1;
1248 			goto bailout;
1249 			break; /* NOTREACHED */
1250 		}
1251 
1252 		if (devstat_arg_list[metric].argtype == DEVSTAT_ARG_SKIP)
1253 			continue;
1254 
1255 		switch (metric) {
1256 		case DSM_TOTAL_BYTES:
1257 			*destu64 = totalbytes;
1258 			break;
1259 		case DSM_TOTAL_BYTES_READ:
1260 			*destu64 = totalbytesread;
1261 			break;
1262 		case DSM_TOTAL_BYTES_WRITE:
1263 			*destu64 = totalbyteswrite;
1264 			break;
1265 		case DSM_TOTAL_TRANSFERS:
1266 			*destu64 = totaltransfers;
1267 			break;
1268 		case DSM_TOTAL_TRANSFERS_READ:
1269 			*destu64 = totaltransfersread;
1270 			break;
1271 		case DSM_TOTAL_TRANSFERS_WRITE:
1272 			*destu64 = totaltransferswrite;
1273 			break;
1274 		case DSM_TOTAL_TRANSFERS_OTHER:
1275 			*destu64 = totaltransfersother;
1276 			break;
1277 		case DSM_TOTAL_BLOCKS:
1278 			*destu64 = totalblocks;
1279 			break;
1280 		case DSM_TOTAL_BLOCKS_READ:
1281 			*destu64 = totalblocksread;
1282 			break;
1283 		case DSM_TOTAL_BLOCKS_WRITE:
1284 			*destu64 = totalblockswrite;
1285 			break;
1286 		case DSM_KB_PER_TRANSFER:
1287 			*destld = totalbytes;
1288 			*destld /= 1024;
1289 			if (totaltransfers > 0)
1290 				*destld /= totaltransfers;
1291 			else
1292 				*destld = 0.0;
1293 			break;
1294 		case DSM_KB_PER_TRANSFER_READ:
1295 			*destld = totalbytesread;
1296 			*destld /= 1024;
1297 			if (totaltransfersread > 0)
1298 				*destld /= totaltransfersread;
1299 			else
1300 				*destld = 0.0;
1301 			break;
1302 		case DSM_KB_PER_TRANSFER_WRITE:
1303 			*destld = totalbyteswrite;
1304 			*destld /= 1024;
1305 			if (totaltransferswrite > 0)
1306 				*destld /= totaltransferswrite;
1307 			else
1308 				*destld = 0.0;
1309 			break;
1310 		case DSM_TRANSFERS_PER_SECOND:
1311 			if (etime > 0.0) {
1312 				*destld = totaltransfers;
1313 				*destld /= etime;
1314 			} else
1315 				*destld = 0.0;
1316 			break;
1317 		case DSM_TRANSFERS_PER_SECOND_READ:
1318 			if (etime > 0.0) {
1319 				*destld = totaltransfersread;
1320 				*destld /= etime;
1321 			} else
1322 				*destld = 0.0;
1323 			break;
1324 		case DSM_TRANSFERS_PER_SECOND_WRITE:
1325 			if (etime > 0.0) {
1326 				*destld = totaltransferswrite;
1327 				*destld /= etime;
1328 			} else
1329 				*destld = 0.0;
1330 			break;
1331 		case DSM_TRANSFERS_PER_SECOND_OTHER:
1332 			if (etime > 0.0) {
1333 				*destld = totaltransfersother;
1334 				*destld /= etime;
1335 			} else
1336 				*destld = 0.0;
1337 			break;
1338 		case DSM_MB_PER_SECOND:
1339 			*destld = totalbytes;
1340 			*destld /= 1024 * 1024;
1341 			if (etime > 0.0)
1342 				*destld /= etime;
1343 			else
1344 				*destld = 0.0;
1345 			break;
1346 		case DSM_MB_PER_SECOND_READ:
1347 			*destld = totalbytesread;
1348 			*destld /= 1024 * 1024;
1349 			if (etime > 0.0)
1350 				*destld /= etime;
1351 			else
1352 				*destld = 0.0;
1353 			break;
1354 		case DSM_MB_PER_SECOND_WRITE:
1355 			*destld = totalbyteswrite;
1356 			*destld /= 1024 * 1024;
1357 			if (etime > 0.0)
1358 				*destld /= etime;
1359 			else
1360 				*destld = 0.0;
1361 			break;
1362 		case DSM_BLOCKS_PER_SECOND:
1363 			*destld = totalblocks;
1364 			if (etime > 0.0)
1365 				*destld /= etime;
1366 			else
1367 				*destld = 0.0;
1368 			break;
1369 		case DSM_BLOCKS_PER_SECOND_READ:
1370 			*destld = totalblocksread;
1371 			if (etime > 0.0)
1372 				*destld /= etime;
1373 			else
1374 				*destld = 0.0;
1375 			break;
1376 		case DSM_BLOCKS_PER_SECOND_WRITE:
1377 			*destld = totalblockswrite;
1378 			if (etime > 0.0)
1379 				*destld /= etime;
1380 			else
1381 				*destld = 0.0;
1382 			break;
1383 		/*
1384 		 * This calculation is somewhat bogus.  It simply divides
1385 		 * the elapsed time by the total number of transactions
1386 		 * completed.  While that does give the caller a good
1387 		 * picture of the average rate of transaction completion,
1388 		 * it doesn't necessarily give the caller a good view of
1389 		 * how long transactions took to complete on average.
1390 		 * Those two numbers will be different for a device that
1391 		 * can handle more than one transaction at a time.  e.g.
1392 		 * SCSI disks doing tagged queueing.
1393 		 *
1394 		 * The only way to accurately determine the real average
1395 		 * time per transaction would be to compute and store the
1396 		 * time on a per-transaction basis.  That currently isn't
1397 		 * done in the kernel, and would only be desireable if it
1398 		 * could be implemented in a somewhat non-intrusive and high
1399 		 * performance way.
1400 		 */
1401 		case DSM_MS_PER_TRANSACTION:
1402 			if (totaltransfers > 0) {
1403 				*destld = etime;
1404 				*destld /= totaltransfers;
1405 				*destld *= 1000;
1406 			} else
1407 				*destld = 0.0;
1408 			break;
1409 		/*
1410 		 * As above, these next two really only give the average
1411 		 * rate of completion for read and write transactions, not
1412 		 * the average time the transaction took to complete.
1413 		 */
1414 		case DSM_MS_PER_TRANSACTION_READ:
1415 			if (totaltransfersread > 0) {
1416 				*destld = etime;
1417 				*destld /= totaltransfersread;
1418 				*destld *= 1000;
1419 			} else
1420 				*destld = 0.0;
1421 			break;
1422 		case DSM_MS_PER_TRANSACTION_WRITE:
1423 			if (totaltransferswrite > 0) {
1424 				*destld = etime;
1425 				*destld /= totaltransferswrite;
1426 				*destld *= 1000;
1427 			} else
1428 				*destld = 0.0;
1429 			break;
1430 		default:
1431 			/*
1432 			 * This shouldn't happen, since we should have
1433 			 * caught any out of range metrics at the top of
1434 			 * the loop.
1435 			 */
1436 			snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1437 				 "%s: unknown metric %d", func_name, metric);
1438 			retval = -1;
1439 			goto bailout;
1440 			break; /* NOTREACHED */
1441 		}
1442 	}
1443 
1444 bailout:
1445 
1446 	va_end(ap);
1447 	return(retval);
1448 }
1449 
1450 static int
1451 readkmem(kvm_t *kd, unsigned long addr, void *buf, size_t nbytes)
1452 {
1453 	char *func_name = "readkmem";
1454 
1455 	if (kvm_read(kd, addr, buf, nbytes) == -1) {
1456 		snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1457 			 "%s: error reading value (kvm_read): %s", func_name,
1458 			 kvm_geterr(kd));
1459 		return(-1);
1460 	}
1461 	return(0);
1462 }
1463 
1464 static int
1465 readkmem_nl(kvm_t *kd, char *name, void *buf, size_t nbytes)
1466 {
1467 	char *func_name = "readkmem_nl";
1468 	struct nlist nl[2] = { { name }, { NULL } };
1469 
1470 	if (kvm_nlist(kd, nl) == -1) {
1471 		snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1472 			 "%s: error getting name list (kvm_nlist): %s",
1473 			 func_name, kvm_geterr(kd));
1474 		return(-1);
1475 	}
1476 	return(readkmem(kd, nl[0].n_value, buf, nbytes));
1477 }
1478 
1479 /*
1480  * This duplicates the functionality of the kernel sysctl handler for poking
1481  * through crash dumps.
1482  */
1483 static char *
1484 get_devstat_kvm(kvm_t *kd)
1485 {
1486 	int error, i, wp;
1487 	long gen;
1488 	struct devstat *nds;
1489 	struct devstat ds;
1490 	struct devstatlist dhead;
1491 	int num_devs;
1492 	char *rv = NULL;
1493 	char *func_name = "get_devstat_kvm";
1494 
1495 	if ((num_devs = getnumdevs()) <= 0)
1496 		return(NULL);
1497 	error = 0;
1498 	if (KREADNL(kd, X_DEVICE_STATQ, dhead) == -1)
1499 		return(NULL);
1500 
1501 	nds = STAILQ_FIRST(&dhead);
1502 
1503 	if ((rv = malloc(sizeof(gen))) == NULL) {
1504 		snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1505 			 "%s: out of memory (initial malloc failed)",
1506 			 func_name);
1507 		return(NULL);
1508 	}
1509 	gen = getgeneration();
1510 	memcpy(rv, &gen, sizeof(gen));
1511 	wp = sizeof(gen);
1512 	/*
1513 	 * Now push out all the devices.
1514 	 */
1515 	for (i = 0; (nds != NULL) && (i < num_devs);
1516 	     nds = STAILQ_NEXT(nds, dev_links), i++) {
1517 		if (readkmem(kd, (long)nds, &ds, sizeof(ds)) == -1) {
1518 			free(rv);
1519 			return(NULL);
1520 		}
1521 		nds = &ds;
1522 		rv = (char *)reallocf(rv, sizeof(gen) +
1523 				      sizeof(ds) * (i + 1));
1524 		if (rv == NULL) {
1525 			snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1526 				 "%s: out of memory (malloc failed)",
1527 				 func_name);
1528 			return(NULL);
1529 		}
1530 		memcpy(rv + wp, &ds, sizeof(ds));
1531 		wp += sizeof(ds);
1532 	}
1533 	return(rv);
1534 }
1535 
1536 /*
1537  * Compatability functions for libdevstat 2. These are deprecated and may
1538  * eventually be removed.
1539  */
1540 int
1541 getnumdevs(void)
1542 {
1543 	return(devstat_getnumdevs(NULL));
1544 }
1545 
1546 long
1547 getgeneration(void)
1548 {
1549 	return(devstat_getgeneration(NULL));
1550 }
1551 
1552 int
1553 getversion(void)
1554 {
1555 	return(devstat_getversion(NULL));
1556 }
1557 
1558 int
1559 checkversion(void)
1560 {
1561 	return(devstat_checkversion(NULL));
1562 }
1563 
1564 int
1565 getdevs(struct statinfo *stats)
1566 {
1567 	return(devstat_getdevs(NULL, stats));
1568 }
1569 
1570 int
1571 selectdevs(struct device_selection **dev_select, int *num_selected,
1572 	   int *num_selections, long *select_generation,
1573 	   long current_generation, struct devstat *devices, int numdevs,
1574 	   struct devstat_match *matches, int num_matches,
1575 	   char **dev_selections, int num_dev_selections,
1576 	   devstat_select_mode select_mode, int maxshowdevs,
1577 	   int perf_select)
1578 {
1579 
1580 	return(devstat_selectdevs(dev_select, num_selected, num_selections,
1581 	       select_generation, current_generation, devices, numdevs,
1582 	       matches, num_matches, dev_selections, num_dev_selections,
1583 	       select_mode, maxshowdevs, perf_select));
1584 }
1585 
1586 int
1587 buildmatch(char *match_str, struct devstat_match **matches,
1588 	   int *num_matches)
1589 {
1590 	return(devstat_buildmatch(match_str, matches, num_matches));
1591 }
1592 
1593 long double
1594 compute_etime(struct timeval cur_time, struct timeval prev_time)
1595 {
1596 	return(devstat_compute_etime(cur_time, prev_time));
1597 }
1598