1 /* 2 * Copyright (c) 1997, 1998 Kenneth D. Merry. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. The name of the author may not be used to endorse or promote products 14 * derived from this software without specific prior written permission. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include <sys/types.h> 33 #include <sys/sysctl.h> 34 #include <sys/errno.h> 35 #include <sys/resource.h> 36 #include <sys/queue.h> 37 38 #include <ctype.h> 39 #include <err.h> 40 #include <fcntl.h> 41 #include <limits.h> 42 #include <stdio.h> 43 #include <stdlib.h> 44 #include <string.h> 45 #include <stdarg.h> 46 #include <kvm.h> 47 #include <nlist.h> 48 49 #include "devstat.h" 50 51 int 52 compute_stats(struct devstat *current, struct devstat *previous, 53 long double etime, u_int64_t *total_bytes, 54 u_int64_t *total_transfers, u_int64_t *total_blocks, 55 long double *kb_per_transfer, long double *transfers_per_second, 56 long double *mb_per_second, long double *blocks_per_second, 57 long double *ms_per_transaction); 58 59 typedef enum { 60 DEVSTAT_ARG_NOTYPE, 61 DEVSTAT_ARG_UINT64, 62 DEVSTAT_ARG_LD, 63 DEVSTAT_ARG_SKIP 64 } devstat_arg_type; 65 66 char devstat_errbuf[DEVSTAT_ERRBUF_SIZE]; 67 68 /* 69 * Table to match descriptive strings with device types. These are in 70 * order from most common to least common to speed search time. 71 */ 72 struct devstat_match_table match_table[] = { 73 {"da", DEVSTAT_TYPE_DIRECT, DEVSTAT_MATCH_TYPE}, 74 {"cd", DEVSTAT_TYPE_CDROM, DEVSTAT_MATCH_TYPE}, 75 {"scsi", DEVSTAT_TYPE_IF_SCSI, DEVSTAT_MATCH_IF}, 76 {"ide", DEVSTAT_TYPE_IF_IDE, DEVSTAT_MATCH_IF}, 77 {"other", DEVSTAT_TYPE_IF_OTHER, DEVSTAT_MATCH_IF}, 78 {"worm", DEVSTAT_TYPE_WORM, DEVSTAT_MATCH_TYPE}, 79 {"sa", DEVSTAT_TYPE_SEQUENTIAL,DEVSTAT_MATCH_TYPE}, 80 {"pass", DEVSTAT_TYPE_PASS, DEVSTAT_MATCH_PASS}, 81 {"optical", DEVSTAT_TYPE_OPTICAL, DEVSTAT_MATCH_TYPE}, 82 {"array", DEVSTAT_TYPE_STORARRAY, DEVSTAT_MATCH_TYPE}, 83 {"changer", DEVSTAT_TYPE_CHANGER, DEVSTAT_MATCH_TYPE}, 84 {"scanner", DEVSTAT_TYPE_SCANNER, DEVSTAT_MATCH_TYPE}, 85 {"printer", DEVSTAT_TYPE_PRINTER, DEVSTAT_MATCH_TYPE}, 86 {"floppy", DEVSTAT_TYPE_FLOPPY, DEVSTAT_MATCH_TYPE}, 87 {"proc", DEVSTAT_TYPE_PROCESSOR, DEVSTAT_MATCH_TYPE}, 88 {"comm", DEVSTAT_TYPE_COMM, DEVSTAT_MATCH_TYPE}, 89 {"enclosure", DEVSTAT_TYPE_ENCLOSURE, DEVSTAT_MATCH_TYPE}, 90 {NULL, 0, 0} 91 }; 92 93 struct devstat_args { 94 devstat_metric metric; 95 devstat_arg_type argtype; 96 } devstat_arg_list[] = { 97 { DSM_NONE, DEVSTAT_ARG_NOTYPE }, 98 { DSM_TOTAL_BYTES, DEVSTAT_ARG_UINT64 }, 99 { DSM_TOTAL_BYTES_READ, DEVSTAT_ARG_UINT64 }, 100 { DSM_TOTAL_BYTES_WRITE, DEVSTAT_ARG_UINT64 }, 101 { DSM_TOTAL_TRANSFERS, DEVSTAT_ARG_UINT64 }, 102 { DSM_TOTAL_TRANSFERS_READ, DEVSTAT_ARG_UINT64 }, 103 { DSM_TOTAL_TRANSFERS_WRITE, DEVSTAT_ARG_UINT64 }, 104 { DSM_TOTAL_TRANSFERS_OTHER, DEVSTAT_ARG_UINT64 }, 105 { DSM_TOTAL_BLOCKS, DEVSTAT_ARG_UINT64 }, 106 { DSM_TOTAL_BLOCKS_READ, DEVSTAT_ARG_UINT64 }, 107 { DSM_TOTAL_BLOCKS_WRITE, DEVSTAT_ARG_UINT64 }, 108 { DSM_KB_PER_TRANSFER, DEVSTAT_ARG_LD }, 109 { DSM_KB_PER_TRANSFER_READ, DEVSTAT_ARG_LD }, 110 { DSM_KB_PER_TRANSFER_WRITE, DEVSTAT_ARG_LD }, 111 { DSM_TRANSFERS_PER_SECOND, DEVSTAT_ARG_LD }, 112 { DSM_TRANSFERS_PER_SECOND_READ, DEVSTAT_ARG_LD }, 113 { DSM_TRANSFERS_PER_SECOND_WRITE, DEVSTAT_ARG_LD }, 114 { DSM_TRANSFERS_PER_SECOND_OTHER, DEVSTAT_ARG_LD }, 115 { DSM_MB_PER_SECOND, DEVSTAT_ARG_LD }, 116 { DSM_MB_PER_SECOND_READ, DEVSTAT_ARG_LD }, 117 { DSM_MB_PER_SECOND_WRITE, DEVSTAT_ARG_LD }, 118 { DSM_BLOCKS_PER_SECOND, DEVSTAT_ARG_LD }, 119 { DSM_BLOCKS_PER_SECOND_READ, DEVSTAT_ARG_LD }, 120 { DSM_BLOCKS_PER_SECOND_WRITE, DEVSTAT_ARG_LD }, 121 { DSM_MS_PER_TRANSACTION, DEVSTAT_ARG_LD }, 122 { DSM_MS_PER_TRANSACTION_READ, DEVSTAT_ARG_LD }, 123 { DSM_MS_PER_TRANSACTION_WRITE, DEVSTAT_ARG_LD }, 124 { DSM_SKIP, DEVSTAT_ARG_SKIP }, 125 { DSM_TOTAL_BYTES_FREE, DEVSTAT_ARG_UINT64 }, 126 { DSM_TOTAL_TRANSFERS_FREE, DEVSTAT_ARG_UINT64 }, 127 { DSM_TOTAL_BLOCKS_FREE, DEVSTAT_ARG_UINT64 }, 128 { DSM_KB_PER_TRANSFER_FREE, DEVSTAT_ARG_LD }, 129 { DSM_MB_PER_SECOND_FREE, DEVSTAT_ARG_LD }, 130 { DSM_TRANSFERS_PER_SECOND_FREE, DEVSTAT_ARG_LD }, 131 { DSM_BLOCKS_PER_SECOND_FREE, DEVSTAT_ARG_LD }, 132 { DSM_MS_PER_TRANSACTION_OTHER, DEVSTAT_ARG_LD }, 133 { DSM_MS_PER_TRANSACTION_FREE, DEVSTAT_ARG_LD }, 134 { DSM_BUSY_PCT, DEVSTAT_ARG_LD }, 135 { DSM_QUEUE_LENGTH, DEVSTAT_ARG_UINT64 }, 136 }; 137 138 static const char *namelist[] = { 139 #define X_NUMDEVS 0 140 "_devstat_num_devs", 141 #define X_GENERATION 1 142 "_devstat_generation", 143 #define X_VERSION 2 144 "_devstat_version", 145 #define X_DEVICE_STATQ 3 146 "_device_statq", 147 #define X_END 4 148 }; 149 150 /* 151 * Local function declarations. 152 */ 153 static int compare_select(const void *arg1, const void *arg2); 154 static int readkmem(kvm_t *kd, unsigned long addr, void *buf, size_t nbytes); 155 static int readkmem_nl(kvm_t *kd, const char *name, void *buf, size_t nbytes); 156 static char *get_devstat_kvm(kvm_t *kd); 157 158 #define KREADNL(kd, var, val) \ 159 readkmem_nl(kd, namelist[var], &val, sizeof(val)) 160 161 int 162 devstat_getnumdevs(kvm_t *kd) 163 { 164 size_t numdevsize; 165 int numdevs; 166 167 numdevsize = sizeof(int); 168 169 /* 170 * Find out how many devices we have in the system. 171 */ 172 if (kd == NULL) { 173 if (sysctlbyname("kern.devstat.numdevs", &numdevs, 174 &numdevsize, NULL, 0) == -1) { 175 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 176 "%s: error getting number of devices\n" 177 "%s: %s", __func__, __func__, 178 strerror(errno)); 179 return(-1); 180 } else 181 return(numdevs); 182 } else { 183 184 if (KREADNL(kd, X_NUMDEVS, numdevs) == -1) 185 return(-1); 186 else 187 return(numdevs); 188 } 189 } 190 191 /* 192 * This is an easy way to get the generation number, but the generation is 193 * supplied in a more atmoic manner by the kern.devstat.all sysctl. 194 * Because this generation sysctl is separate from the statistics sysctl, 195 * the device list and the generation could change between the time that 196 * this function is called and the device list is retreived. 197 */ 198 long 199 devstat_getgeneration(kvm_t *kd) 200 { 201 size_t gensize; 202 long generation; 203 204 gensize = sizeof(long); 205 206 /* 207 * Get the current generation number. 208 */ 209 if (kd == NULL) { 210 if (sysctlbyname("kern.devstat.generation", &generation, 211 &gensize, NULL, 0) == -1) { 212 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 213 "%s: error getting devstat generation\n%s: %s", 214 __func__, __func__, strerror(errno)); 215 return(-1); 216 } else 217 return(generation); 218 } else { 219 if (KREADNL(kd, X_GENERATION, generation) == -1) 220 return(-1); 221 else 222 return(generation); 223 } 224 } 225 226 /* 227 * Get the current devstat version. The return value of this function 228 * should be compared with DEVSTAT_VERSION, which is defined in 229 * sys/devicestat.h. This will enable userland programs to determine 230 * whether they are out of sync with the kernel. 231 */ 232 int 233 devstat_getversion(kvm_t *kd) 234 { 235 size_t versize; 236 int version; 237 238 versize = sizeof(int); 239 240 /* 241 * Get the current devstat version. 242 */ 243 if (kd == NULL) { 244 if (sysctlbyname("kern.devstat.version", &version, &versize, 245 NULL, 0) == -1) { 246 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 247 "%s: error getting devstat version\n%s: %s", 248 __func__, __func__, strerror(errno)); 249 return(-1); 250 } else 251 return(version); 252 } else { 253 if (KREADNL(kd, X_VERSION, version) == -1) 254 return(-1); 255 else 256 return(version); 257 } 258 } 259 260 /* 261 * Check the devstat version we know about against the devstat version the 262 * kernel knows about. If they don't match, print an error into the 263 * devstat error buffer, and return -1. If they match, return 0. 264 */ 265 int 266 devstat_checkversion(kvm_t *kd) 267 { 268 int buflen, res, retval = 0, version; 269 270 version = devstat_getversion(kd); 271 272 if (version != DEVSTAT_VERSION) { 273 /* 274 * If getversion() returns an error (i.e. -1), then it 275 * has printed an error message in the buffer. Therefore, 276 * we need to add a \n to the end of that message before we 277 * print our own message in the buffer. 278 */ 279 if (version == -1) 280 buflen = strlen(devstat_errbuf); 281 else 282 buflen = 0; 283 284 res = snprintf(devstat_errbuf + buflen, 285 DEVSTAT_ERRBUF_SIZE - buflen, 286 "%s%s: userland devstat version %d is not " 287 "the same as the kernel\n%s: devstat " 288 "version %d\n", version == -1 ? "\n" : "", 289 __func__, DEVSTAT_VERSION, __func__, version); 290 291 if (res < 0) 292 devstat_errbuf[buflen] = '\0'; 293 294 buflen = strlen(devstat_errbuf); 295 if (version < DEVSTAT_VERSION) 296 res = snprintf(devstat_errbuf + buflen, 297 DEVSTAT_ERRBUF_SIZE - buflen, 298 "%s: libdevstat newer than kernel\n", 299 __func__); 300 else 301 res = snprintf(devstat_errbuf + buflen, 302 DEVSTAT_ERRBUF_SIZE - buflen, 303 "%s: kernel newer than libdevstat\n", 304 __func__); 305 306 if (res < 0) 307 devstat_errbuf[buflen] = '\0'; 308 309 retval = -1; 310 } 311 312 return(retval); 313 } 314 315 /* 316 * Get the current list of devices and statistics, and the current 317 * generation number. 318 * 319 * Return values: 320 * -1 -- error 321 * 0 -- device list is unchanged 322 * 1 -- device list has changed 323 */ 324 int 325 devstat_getdevs(kvm_t *kd, struct statinfo *stats) 326 { 327 int error; 328 size_t dssize; 329 int oldnumdevs; 330 long oldgeneration; 331 int retval = 0; 332 struct devinfo *dinfo; 333 struct timespec ts; 334 335 dinfo = stats->dinfo; 336 337 if (dinfo == NULL) { 338 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 339 "%s: stats->dinfo was NULL", __func__); 340 return(-1); 341 } 342 343 oldnumdevs = dinfo->numdevs; 344 oldgeneration = dinfo->generation; 345 346 clock_gettime(CLOCK_MONOTONIC, &ts); 347 stats->snap_time = ts.tv_sec + ts.tv_nsec * 1e-9; 348 349 if (kd == NULL) { 350 /* If this is our first time through, mem_ptr will be null. */ 351 if (dinfo->mem_ptr == NULL) { 352 /* 353 * Get the number of devices. If it's negative, it's an 354 * error. Don't bother setting the error string, since 355 * getnumdevs() has already done that for us. 356 */ 357 if ((dinfo->numdevs = devstat_getnumdevs(kd)) < 0) 358 return(-1); 359 360 /* 361 * The kern.devstat.all sysctl returns the current 362 * generation number, as well as all the devices. 363 * So we need four bytes more. 364 */ 365 dssize = (dinfo->numdevs * sizeof(struct devstat)) + 366 sizeof(long); 367 dinfo->mem_ptr = (u_int8_t *)malloc(dssize); 368 } else 369 dssize = (dinfo->numdevs * sizeof(struct devstat)) + 370 sizeof(long); 371 372 /* 373 * Request all of the devices. We only really allow for one 374 * ENOMEM failure. It would, of course, be possible to just go 375 * in a loop and keep reallocing the device structure until we 376 * don't get ENOMEM back. I'm not sure it's worth it, though. 377 * If devices are being added to the system that quickly, maybe 378 * the user can just wait until all devices are added. 379 */ 380 for (;;) { 381 error = sysctlbyname("kern.devstat.all", 382 dinfo->mem_ptr, 383 &dssize, NULL, 0); 384 if (error != -1 || errno != EBUSY) 385 break; 386 } 387 if (error == -1) { 388 /* 389 * If we get ENOMEM back, that means that there are 390 * more devices now, so we need to allocate more 391 * space for the device array. 392 */ 393 if (errno == ENOMEM) { 394 /* 395 * No need to set the error string here, 396 * devstat_getnumdevs() will do that if it fails. 397 */ 398 if ((dinfo->numdevs = devstat_getnumdevs(kd)) < 0) 399 return(-1); 400 401 dssize = (dinfo->numdevs * 402 sizeof(struct devstat)) + sizeof(long); 403 dinfo->mem_ptr = (u_int8_t *) 404 realloc(dinfo->mem_ptr, dssize); 405 if ((error = sysctlbyname("kern.devstat.all", 406 dinfo->mem_ptr, &dssize, NULL, 0)) == -1) { 407 snprintf(devstat_errbuf, 408 sizeof(devstat_errbuf), 409 "%s: error getting device " 410 "stats\n%s: %s", __func__, 411 __func__, strerror(errno)); 412 return(-1); 413 } 414 } else { 415 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 416 "%s: error getting device stats\n" 417 "%s: %s", __func__, __func__, 418 strerror(errno)); 419 return(-1); 420 } 421 } 422 423 } else { 424 /* 425 * This is of course non-atomic, but since we are working 426 * on a core dump, the generation is unlikely to change 427 */ 428 if ((dinfo->numdevs = devstat_getnumdevs(kd)) == -1) 429 return(-1); 430 if ((dinfo->mem_ptr = (u_int8_t *)get_devstat_kvm(kd)) == NULL) 431 return(-1); 432 } 433 /* 434 * The sysctl spits out the generation as the first four bytes, 435 * then all of the device statistics structures. 436 */ 437 dinfo->generation = *(long *)dinfo->mem_ptr; 438 439 /* 440 * If the generation has changed, and if the current number of 441 * devices is not the same as the number of devices recorded in the 442 * devinfo structure, it is likely that the device list has shrunk. 443 * The reason that it is likely that the device list has shrunk in 444 * this case is that if the device list has grown, the sysctl above 445 * will return an ENOMEM error, and we will reset the number of 446 * devices and reallocate the device array. If the second sysctl 447 * fails, we will return an error and therefore never get to this 448 * point. If the device list has shrunk, the sysctl will not 449 * return an error since we have more space allocated than is 450 * necessary. So, in the shrinkage case, we catch it here and 451 * reallocate the array so that we don't use any more space than is 452 * necessary. 453 */ 454 if (oldgeneration != dinfo->generation) { 455 if (devstat_getnumdevs(kd) != dinfo->numdevs) { 456 if ((dinfo->numdevs = devstat_getnumdevs(kd)) < 0) 457 return(-1); 458 dssize = (dinfo->numdevs * sizeof(struct devstat)) + 459 sizeof(long); 460 dinfo->mem_ptr = (u_int8_t *)realloc(dinfo->mem_ptr, 461 dssize); 462 } 463 retval = 1; 464 } 465 466 dinfo->devices = (struct devstat *)(dinfo->mem_ptr + sizeof(long)); 467 468 return(retval); 469 } 470 471 /* 472 * selectdevs(): 473 * 474 * Devices are selected/deselected based upon the following criteria: 475 * - devices specified by the user on the command line 476 * - devices matching any device type expressions given on the command line 477 * - devices with the highest I/O, if 'top' mode is enabled 478 * - the first n unselected devices in the device list, if maxshowdevs 479 * devices haven't already been selected and if the user has not 480 * specified any devices on the command line and if we're in "add" mode. 481 * 482 * Input parameters: 483 * - device selection list (dev_select) 484 * - current number of devices selected (num_selected) 485 * - total number of devices in the selection list (num_selections) 486 * - devstat generation as of the last time selectdevs() was called 487 * (select_generation) 488 * - current devstat generation (current_generation) 489 * - current list of devices and statistics (devices) 490 * - number of devices in the current device list (numdevs) 491 * - compiled version of the command line device type arguments (matches) 492 * - This is optional. If the number of devices is 0, this will be ignored. 493 * - The matching code pays attention to the current selection mode. So 494 * if you pass in a matching expression, it will be evaluated based 495 * upon the selection mode that is passed in. See below for details. 496 * - number of device type matching expressions (num_matches) 497 * - Set to 0 to disable the matching code. 498 * - list of devices specified on the command line by the user (dev_selections) 499 * - number of devices selected on the command line by the user 500 * (num_dev_selections) 501 * - Our selection mode. There are four different selection modes: 502 * - add mode. (DS_SELECT_ADD) Any devices matching devices explicitly 503 * selected by the user or devices matching a pattern given by the 504 * user will be selected in addition to devices that are already 505 * selected. Additional devices will be selected, up to maxshowdevs 506 * number of devices. 507 * - only mode. (DS_SELECT_ONLY) Only devices matching devices 508 * explicitly given by the user or devices matching a pattern 509 * given by the user will be selected. No other devices will be 510 * selected. 511 * - addonly mode. (DS_SELECT_ADDONLY) This is similar to add and 512 * only. Basically, this will not de-select any devices that are 513 * current selected, as only mode would, but it will also not 514 * gratuitously select up to maxshowdevs devices as add mode would. 515 * - remove mode. (DS_SELECT_REMOVE) Any devices matching devices 516 * explicitly selected by the user or devices matching a pattern 517 * given by the user will be de-selected. 518 * - maximum number of devices we can select (maxshowdevs) 519 * - flag indicating whether or not we're in 'top' mode (perf_select) 520 * 521 * Output data: 522 * - the device selection list may be modified and passed back out 523 * - the number of devices selected and the total number of items in the 524 * device selection list may be changed 525 * - the selection generation may be changed to match the current generation 526 * 527 * Return values: 528 * -1 -- error 529 * 0 -- selected devices are unchanged 530 * 1 -- selected devices changed 531 */ 532 int 533 devstat_selectdevs(struct device_selection **dev_select, int *num_selected, 534 int *num_selections, long *select_generation, 535 long current_generation, struct devstat *devices, 536 int numdevs, struct devstat_match *matches, int num_matches, 537 char **dev_selections, int num_dev_selections, 538 devstat_select_mode select_mode, int maxshowdevs, 539 int perf_select) 540 { 541 int i, j, k; 542 int init_selections = 0, init_selected_var = 0; 543 struct device_selection *old_dev_select = NULL; 544 int old_num_selections = 0, old_num_selected; 545 int selection_number = 0; 546 int changed = 0, found = 0; 547 548 if ((dev_select == NULL) || (devices == NULL) || (numdevs < 0)) 549 return(-1); 550 551 /* 552 * We always want to make sure that we have as many dev_select 553 * entries as there are devices. 554 */ 555 /* 556 * In this case, we haven't selected devices before. 557 */ 558 if (*dev_select == NULL) { 559 *dev_select = (struct device_selection *)malloc(numdevs * 560 sizeof(struct device_selection)); 561 *select_generation = current_generation; 562 init_selections = 1; 563 changed = 1; 564 /* 565 * In this case, we have selected devices before, but the device 566 * list has changed since we last selected devices, so we need to 567 * either enlarge or reduce the size of the device selection list. 568 */ 569 } else if (*num_selections != numdevs) { 570 *dev_select = (struct device_selection *)realloc(*dev_select, 571 numdevs * sizeof(struct device_selection)); 572 *select_generation = current_generation; 573 init_selections = 1; 574 /* 575 * In this case, we've selected devices before, and the selection 576 * list is the same size as it was the last time, but the device 577 * list has changed. 578 */ 579 } else if (*select_generation < current_generation) { 580 *select_generation = current_generation; 581 init_selections = 1; 582 } 583 584 /* 585 * If we're in "only" mode, we want to clear out the selected 586 * variable since we're going to select exactly what the user wants 587 * this time through. 588 */ 589 if (select_mode == DS_SELECT_ONLY) 590 init_selected_var = 1; 591 592 /* 593 * In all cases, we want to back up the number of selected devices. 594 * It is a quick and accurate way to determine whether the selected 595 * devices have changed. 596 */ 597 old_num_selected = *num_selected; 598 599 /* 600 * We want to make a backup of the current selection list if 601 * the list of devices has changed, or if we're in performance 602 * selection mode. In both cases, we don't want to make a backup 603 * if we already know for sure that the list will be different. 604 * This is certainly the case if this is our first time through the 605 * selection code. 606 */ 607 if (((init_selected_var != 0) || (init_selections != 0) 608 || (perf_select != 0)) && (changed == 0)){ 609 old_dev_select = (struct device_selection *)malloc( 610 *num_selections * sizeof(struct device_selection)); 611 old_num_selections = *num_selections; 612 bcopy(*dev_select, old_dev_select, 613 sizeof(struct device_selection) * *num_selections); 614 } 615 616 if (init_selections != 0) { 617 bzero(*dev_select, sizeof(struct device_selection) * numdevs); 618 619 for (i = 0; i < numdevs; i++) { 620 (*dev_select)[i].device_number = 621 devices[i].device_number; 622 strncpy((*dev_select)[i].device_name, 623 devices[i].device_name, 624 DEVSTAT_NAME_LEN); 625 (*dev_select)[i].device_name[DEVSTAT_NAME_LEN - 1]='\0'; 626 (*dev_select)[i].unit_number = devices[i].unit_number; 627 (*dev_select)[i].position = i; 628 } 629 *num_selections = numdevs; 630 } else if (init_selected_var != 0) { 631 for (i = 0; i < numdevs; i++) 632 (*dev_select)[i].selected = 0; 633 } 634 635 /* we haven't gotten around to selecting anything yet.. */ 636 if ((select_mode == DS_SELECT_ONLY) || (init_selections != 0) 637 || (init_selected_var != 0)) 638 *num_selected = 0; 639 640 /* 641 * Look through any devices the user specified on the command line 642 * and see if they match known devices. If so, select them. 643 */ 644 for (i = 0; (i < *num_selections) && (num_dev_selections > 0); i++) { 645 char tmpstr[80]; 646 647 snprintf(tmpstr, sizeof(tmpstr), "%s%d", 648 (*dev_select)[i].device_name, 649 (*dev_select)[i].unit_number); 650 for (j = 0; j < num_dev_selections; j++) { 651 if (strcmp(tmpstr, dev_selections[j]) == 0) { 652 /* 653 * Here we do different things based on the 654 * mode we're in. If we're in add or 655 * addonly mode, we only select this device 656 * if it hasn't already been selected. 657 * Otherwise, we would be unnecessarily 658 * changing the selection order and 659 * incrementing the selection count. If 660 * we're in only mode, we unconditionally 661 * select this device, since in only mode 662 * any previous selections are erased and 663 * manually specified devices are the first 664 * ones to be selected. If we're in remove 665 * mode, we de-select the specified device and 666 * decrement the selection count. 667 */ 668 switch(select_mode) { 669 case DS_SELECT_ADD: 670 case DS_SELECT_ADDONLY: 671 if ((*dev_select)[i].selected) 672 break; 673 /* FALLTHROUGH */ 674 case DS_SELECT_ONLY: 675 (*dev_select)[i].selected = 676 ++selection_number; 677 (*num_selected)++; 678 break; 679 case DS_SELECT_REMOVE: 680 (*dev_select)[i].selected = 0; 681 (*num_selected)--; 682 /* 683 * This isn't passed back out, we 684 * just use it to keep track of 685 * how many devices we've removed. 686 */ 687 num_dev_selections--; 688 break; 689 } 690 break; 691 } 692 } 693 } 694 695 /* 696 * Go through the user's device type expressions and select devices 697 * accordingly. We only do this if the number of devices already 698 * selected is less than the maximum number we can show. 699 */ 700 for (i = 0; (i < num_matches) && (*num_selected < maxshowdevs); i++) { 701 /* We should probably indicate some error here */ 702 if ((matches[i].match_fields == DEVSTAT_MATCH_NONE) 703 || (matches[i].num_match_categories <= 0)) 704 continue; 705 706 for (j = 0; j < numdevs; j++) { 707 int num_match_categories; 708 709 num_match_categories = matches[i].num_match_categories; 710 711 /* 712 * Determine whether or not the current device 713 * matches the given matching expression. This if 714 * statement consists of three components: 715 * - the device type check 716 * - the device interface check 717 * - the passthrough check 718 * If a the matching test is successful, it 719 * decrements the number of matching categories, 720 * and if we've reached the last element that 721 * needed to be matched, the if statement succeeds. 722 * 723 */ 724 if ((((matches[i].match_fields & DEVSTAT_MATCH_TYPE)!=0) 725 && ((devices[j].device_type & DEVSTAT_TYPE_MASK) == 726 (matches[i].device_type & DEVSTAT_TYPE_MASK)) 727 &&(((matches[i].match_fields & DEVSTAT_MATCH_PASS)!=0) 728 || (((matches[i].match_fields & 729 DEVSTAT_MATCH_PASS) == 0) 730 && ((devices[j].device_type & 731 DEVSTAT_TYPE_PASS) == 0))) 732 && (--num_match_categories == 0)) 733 || (((matches[i].match_fields & DEVSTAT_MATCH_IF) != 0) 734 && ((devices[j].device_type & DEVSTAT_TYPE_IF_MASK) == 735 (matches[i].device_type & DEVSTAT_TYPE_IF_MASK)) 736 &&(((matches[i].match_fields & DEVSTAT_MATCH_PASS)!=0) 737 || (((matches[i].match_fields & 738 DEVSTAT_MATCH_PASS) == 0) 739 && ((devices[j].device_type & 740 DEVSTAT_TYPE_PASS) == 0))) 741 && (--num_match_categories == 0)) 742 || (((matches[i].match_fields & DEVSTAT_MATCH_PASS)!=0) 743 && ((devices[j].device_type & DEVSTAT_TYPE_PASS) != 0) 744 && (--num_match_categories == 0))) { 745 746 /* 747 * This is probably a non-optimal solution 748 * to the problem that the devices in the 749 * device list will not be in the same 750 * order as the devices in the selection 751 * array. 752 */ 753 for (k = 0; k < numdevs; k++) { 754 if ((*dev_select)[k].position == j) { 755 found = 1; 756 break; 757 } 758 } 759 760 /* 761 * There shouldn't be a case where a device 762 * in the device list is not in the 763 * selection list...but it could happen. 764 */ 765 if (found != 1) { 766 fprintf(stderr, "selectdevs: couldn't" 767 " find %s%d in selection " 768 "list\n", 769 devices[j].device_name, 770 devices[j].unit_number); 771 break; 772 } 773 774 /* 775 * We do different things based upon the 776 * mode we're in. If we're in add or only 777 * mode, we go ahead and select this device 778 * if it hasn't already been selected. If 779 * it has already been selected, we leave 780 * it alone so we don't mess up the 781 * selection ordering. Manually specified 782 * devices have already been selected, and 783 * they have higher priority than pattern 784 * matched devices. If we're in remove 785 * mode, we de-select the given device and 786 * decrement the selected count. 787 */ 788 switch(select_mode) { 789 case DS_SELECT_ADD: 790 case DS_SELECT_ADDONLY: 791 case DS_SELECT_ONLY: 792 if ((*dev_select)[k].selected != 0) 793 break; 794 (*dev_select)[k].selected = 795 ++selection_number; 796 (*num_selected)++; 797 break; 798 case DS_SELECT_REMOVE: 799 (*dev_select)[k].selected = 0; 800 (*num_selected)--; 801 break; 802 } 803 } 804 } 805 } 806 807 /* 808 * Here we implement "top" mode. Devices are sorted in the 809 * selection array based on two criteria: whether or not they are 810 * selected (not selection number, just the fact that they are 811 * selected!) and the number of bytes in the "bytes" field of the 812 * selection structure. The bytes field generally must be kept up 813 * by the user. In the future, it may be maintained by library 814 * functions, but for now the user has to do the work. 815 * 816 * At first glance, it may seem wrong that we don't go through and 817 * select every device in the case where the user hasn't specified 818 * any devices or patterns. In fact, though, it won't make any 819 * difference in the device sorting. In that particular case (i.e. 820 * when we're in "add" or "only" mode, and the user hasn't 821 * specified anything) the first time through no devices will be 822 * selected, so the only criterion used to sort them will be their 823 * performance. The second time through, and every time thereafter, 824 * all devices will be selected, so again selection won't matter. 825 */ 826 if (perf_select != 0) { 827 828 /* Sort the device array by throughput */ 829 qsort(*dev_select, *num_selections, 830 sizeof(struct device_selection), 831 compare_select); 832 833 if (*num_selected == 0) { 834 /* 835 * Here we select every device in the array, if it 836 * isn't already selected. Because the 'selected' 837 * variable in the selection array entries contains 838 * the selection order, the devstats routine can show 839 * the devices that were selected first. 840 */ 841 for (i = 0; i < *num_selections; i++) { 842 if ((*dev_select)[i].selected == 0) { 843 (*dev_select)[i].selected = 844 ++selection_number; 845 (*num_selected)++; 846 } 847 } 848 } else { 849 selection_number = 0; 850 for (i = 0; i < *num_selections; i++) { 851 if ((*dev_select)[i].selected != 0) { 852 (*dev_select)[i].selected = 853 ++selection_number; 854 } 855 } 856 } 857 } 858 859 /* 860 * If we're in the "add" selection mode and if we haven't already 861 * selected maxshowdevs number of devices, go through the array and 862 * select any unselected devices. If we're in "only" mode, we 863 * obviously don't want to select anything other than what the user 864 * specifies. If we're in "remove" mode, it probably isn't a good 865 * idea to go through and select any more devices, since we might 866 * end up selecting something that the user wants removed. Through 867 * more complicated logic, we could actually figure this out, but 868 * that would probably require combining this loop with the various 869 * selections loops above. 870 */ 871 if ((select_mode == DS_SELECT_ADD) && (*num_selected < maxshowdevs)) { 872 for (i = 0; i < *num_selections; i++) 873 if ((*dev_select)[i].selected == 0) { 874 (*dev_select)[i].selected = ++selection_number; 875 (*num_selected)++; 876 } 877 } 878 879 /* 880 * Look at the number of devices that have been selected. If it 881 * has changed, set the changed variable. Otherwise, if we've 882 * made a backup of the selection list, compare it to the current 883 * selection list to see if the selected devices have changed. 884 */ 885 if ((changed == 0) && (old_num_selected != *num_selected)) 886 changed = 1; 887 else if ((changed == 0) && (old_dev_select != NULL)) { 888 /* 889 * Now we go through the selection list and we look at 890 * it three different ways. 891 */ 892 for (i = 0; (i < *num_selections) && (changed == 0) && 893 (i < old_num_selections); i++) { 894 /* 895 * If the device at index i in both the new and old 896 * selection arrays has the same device number and 897 * selection status, it hasn't changed. We 898 * continue on to the next index. 899 */ 900 if (((*dev_select)[i].device_number == 901 old_dev_select[i].device_number) 902 && ((*dev_select)[i].selected == 903 old_dev_select[i].selected)) 904 continue; 905 906 /* 907 * Now, if we're still going through the if 908 * statement, the above test wasn't true. So we 909 * check here to see if the device at index i in 910 * the current array is the same as the device at 911 * index i in the old array. If it is, that means 912 * that its selection number has changed. Set 913 * changed to 1 and exit the loop. 914 */ 915 else if ((*dev_select)[i].device_number == 916 old_dev_select[i].device_number) { 917 changed = 1; 918 break; 919 } 920 /* 921 * If we get here, then the device at index i in 922 * the current array isn't the same device as the 923 * device at index i in the old array. 924 */ 925 else { 926 found = 0; 927 928 /* 929 * Search through the old selection array 930 * looking for a device with the same 931 * device number as the device at index i 932 * in the current array. If the selection 933 * status is the same, then we mark it as 934 * found. If the selection status isn't 935 * the same, we break out of the loop. 936 * Since found isn't set, changed will be 937 * set to 1 below. 938 */ 939 for (j = 0; j < old_num_selections; j++) { 940 if (((*dev_select)[i].device_number == 941 old_dev_select[j].device_number) 942 && ((*dev_select)[i].selected == 943 old_dev_select[j].selected)){ 944 found = 1; 945 break; 946 } 947 else if ((*dev_select)[i].device_number 948 == old_dev_select[j].device_number) 949 break; 950 } 951 if (found == 0) 952 changed = 1; 953 } 954 } 955 } 956 if (old_dev_select != NULL) 957 free(old_dev_select); 958 959 return(changed); 960 } 961 962 /* 963 * Comparison routine for qsort() above. Note that the comparison here is 964 * backwards -- generally, it should return a value to indicate whether 965 * arg1 is <, =, or > arg2. Instead, it returns the opposite. The reason 966 * it returns the opposite is so that the selection array will be sorted in 967 * order of decreasing performance. We sort on two parameters. The first 968 * sort key is whether or not one or the other of the devices in question 969 * has been selected. If one of them has, and the other one has not, the 970 * selected device is automatically more important than the unselected 971 * device. If neither device is selected, we judge the devices based upon 972 * performance. 973 */ 974 static int 975 compare_select(const void *arg1, const void *arg2) 976 { 977 if ((((const struct device_selection *)arg1)->selected) 978 && (((const struct device_selection *)arg2)->selected == 0)) 979 return(-1); 980 else if ((((const struct device_selection *)arg1)->selected == 0) 981 && (((const struct device_selection *)arg2)->selected)) 982 return(1); 983 else if (((const struct device_selection *)arg2)->bytes < 984 ((const struct device_selection *)arg1)->bytes) 985 return(-1); 986 else if (((const struct device_selection *)arg2)->bytes > 987 ((const struct device_selection *)arg1)->bytes) 988 return(1); 989 else 990 return(0); 991 } 992 993 /* 994 * Take a string with the general format "arg1,arg2,arg3", and build a 995 * device matching expression from it. 996 */ 997 int 998 devstat_buildmatch(char *match_str, struct devstat_match **matches, 999 int *num_matches) 1000 { 1001 char *tstr[5]; 1002 char **tempstr; 1003 int num_args; 1004 int i, j; 1005 1006 /* We can't do much without a string to parse */ 1007 if (match_str == NULL) { 1008 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 1009 "%s: no match expression", __func__); 1010 return(-1); 1011 } 1012 1013 /* 1014 * Break the (comma delimited) input string out into separate strings. 1015 */ 1016 for (tempstr = tstr, num_args = 0; 1017 (*tempstr = strsep(&match_str, ",")) != NULL && (num_args < 5); 1018 num_args++) 1019 if (**tempstr != '\0') 1020 if (++tempstr >= &tstr[5]) 1021 break; 1022 1023 /* The user gave us too many type arguments */ 1024 if (num_args > 3) { 1025 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 1026 "%s: too many type arguments", __func__); 1027 return(-1); 1028 } 1029 1030 /* 1031 * Since you can't realloc a pointer that hasn't been malloced 1032 * first, we malloc first and then realloc. 1033 */ 1034 if (*num_matches == 0) 1035 *matches = (struct devstat_match *)malloc( 1036 sizeof(struct devstat_match)); 1037 else 1038 *matches = (struct devstat_match *)realloc(*matches, 1039 sizeof(struct devstat_match) * (*num_matches + 1)); 1040 1041 /* Make sure the current entry is clear */ 1042 bzero(&matches[0][*num_matches], sizeof(struct devstat_match)); 1043 1044 /* 1045 * Step through the arguments the user gave us and build a device 1046 * matching expression from them. 1047 */ 1048 for (i = 0; i < num_args; i++) { 1049 char *tempstr2, *tempstr3; 1050 1051 /* 1052 * Get rid of leading white space. 1053 */ 1054 tempstr2 = tstr[i]; 1055 while (isspace(*tempstr2) && (*tempstr2 != '\0')) 1056 tempstr2++; 1057 1058 /* 1059 * Get rid of trailing white space. 1060 */ 1061 tempstr3 = &tempstr2[strlen(tempstr2) - 1]; 1062 1063 while ((*tempstr3 != '\0') && (tempstr3 > tempstr2) 1064 && (isspace(*tempstr3))) { 1065 *tempstr3 = '\0'; 1066 tempstr3--; 1067 } 1068 1069 /* 1070 * Go through the match table comparing the user's 1071 * arguments to known device types, interfaces, etc. 1072 */ 1073 for (j = 0; match_table[j].match_str != NULL; j++) { 1074 /* 1075 * We do case-insensitive matching, in case someone 1076 * wants to enter "SCSI" instead of "scsi" or 1077 * something like that. Only compare as many 1078 * characters as are in the string in the match 1079 * table. This should help if someone tries to use 1080 * a super-long match expression. 1081 */ 1082 if (strncasecmp(tempstr2, match_table[j].match_str, 1083 strlen(match_table[j].match_str)) == 0) { 1084 /* 1085 * Make sure the user hasn't specified two 1086 * items of the same type, like "da" and 1087 * "cd". One device cannot be both. 1088 */ 1089 if (((*matches)[*num_matches].match_fields & 1090 match_table[j].match_field) != 0) { 1091 snprintf(devstat_errbuf, 1092 sizeof(devstat_errbuf), 1093 "%s: cannot have more than " 1094 "one match item in a single " 1095 "category", __func__); 1096 return(-1); 1097 } 1098 /* 1099 * If we've gotten this far, we have a 1100 * winner. Set the appropriate fields in 1101 * the match entry. 1102 */ 1103 (*matches)[*num_matches].match_fields |= 1104 match_table[j].match_field; 1105 (*matches)[*num_matches].device_type |= 1106 match_table[j].type; 1107 (*matches)[*num_matches].num_match_categories++; 1108 break; 1109 } 1110 } 1111 /* 1112 * We should have found a match in the above for loop. If 1113 * not, that means the user entered an invalid device type 1114 * or interface. 1115 */ 1116 if ((*matches)[*num_matches].num_match_categories != (i + 1)) { 1117 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 1118 "%s: unknown match item \"%s\"", __func__, 1119 tstr[i]); 1120 return(-1); 1121 } 1122 } 1123 1124 (*num_matches)++; 1125 1126 return(0); 1127 } 1128 1129 /* 1130 * Compute a number of device statistics. Only one field is mandatory, and 1131 * that is "current". Everything else is optional. The caller passes in 1132 * pointers to variables to hold the various statistics he desires. If he 1133 * doesn't want a particular staistic, he should pass in a NULL pointer. 1134 * Return values: 1135 * 0 -- success 1136 * -1 -- failure 1137 */ 1138 int 1139 compute_stats(struct devstat *current, struct devstat *previous, 1140 long double etime, u_int64_t *total_bytes, 1141 u_int64_t *total_transfers, u_int64_t *total_blocks, 1142 long double *kb_per_transfer, long double *transfers_per_second, 1143 long double *mb_per_second, long double *blocks_per_second, 1144 long double *ms_per_transaction) 1145 { 1146 return(devstat_compute_statistics(current, previous, etime, 1147 total_bytes ? DSM_TOTAL_BYTES : DSM_SKIP, 1148 total_bytes, 1149 total_transfers ? DSM_TOTAL_TRANSFERS : DSM_SKIP, 1150 total_transfers, 1151 total_blocks ? DSM_TOTAL_BLOCKS : DSM_SKIP, 1152 total_blocks, 1153 kb_per_transfer ? DSM_KB_PER_TRANSFER : DSM_SKIP, 1154 kb_per_transfer, 1155 transfers_per_second ? DSM_TRANSFERS_PER_SECOND : DSM_SKIP, 1156 transfers_per_second, 1157 mb_per_second ? DSM_MB_PER_SECOND : DSM_SKIP, 1158 mb_per_second, 1159 blocks_per_second ? DSM_BLOCKS_PER_SECOND : DSM_SKIP, 1160 blocks_per_second, 1161 ms_per_transaction ? DSM_MS_PER_TRANSACTION : DSM_SKIP, 1162 ms_per_transaction, 1163 DSM_NONE)); 1164 } 1165 1166 1167 /* This is 1/2^64 */ 1168 #define BINTIME_SCALE 5.42101086242752217003726400434970855712890625e-20 1169 1170 long double 1171 devstat_compute_etime(struct bintime *cur_time, struct bintime *prev_time) 1172 { 1173 long double etime; 1174 1175 etime = cur_time->sec; 1176 etime += cur_time->frac * BINTIME_SCALE; 1177 if (prev_time != NULL) { 1178 etime -= prev_time->sec; 1179 etime -= prev_time->frac * BINTIME_SCALE; 1180 } 1181 return(etime); 1182 } 1183 1184 #define DELTA(field, index) \ 1185 (current->field[(index)] - (previous ? previous->field[(index)] : 0)) 1186 1187 #define DELTA_T(field) \ 1188 devstat_compute_etime(¤t->field, \ 1189 (previous ? &previous->field : NULL)) 1190 1191 int 1192 devstat_compute_statistics(struct devstat *current, struct devstat *previous, 1193 long double etime, ...) 1194 { 1195 u_int64_t totalbytes, totalbytesread, totalbyteswrite, totalbytesfree; 1196 u_int64_t totaltransfers, totaltransfersread, totaltransferswrite; 1197 u_int64_t totaltransfersother, totalblocks, totalblocksread; 1198 u_int64_t totalblockswrite, totaltransfersfree, totalblocksfree; 1199 va_list ap; 1200 devstat_metric metric; 1201 u_int64_t *destu64; 1202 long double *destld; 1203 int retval, i; 1204 1205 retval = 0; 1206 1207 /* 1208 * current is the only mandatory field. 1209 */ 1210 if (current == NULL) { 1211 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 1212 "%s: current stats structure was NULL", __func__); 1213 return(-1); 1214 } 1215 1216 totalbytesread = DELTA(bytes, DEVSTAT_READ); 1217 totalbyteswrite = DELTA(bytes, DEVSTAT_WRITE); 1218 totalbytesfree = DELTA(bytes, DEVSTAT_FREE); 1219 totalbytes = totalbytesread + totalbyteswrite + totalbytesfree; 1220 1221 totaltransfersread = DELTA(operations, DEVSTAT_READ); 1222 totaltransferswrite = DELTA(operations, DEVSTAT_WRITE); 1223 totaltransfersother = DELTA(operations, DEVSTAT_NO_DATA); 1224 totaltransfersfree = DELTA(operations, DEVSTAT_FREE); 1225 totaltransfers = totaltransfersread + totaltransferswrite + 1226 totaltransfersother + totaltransfersfree; 1227 1228 totalblocks = totalbytes; 1229 totalblocksread = totalbytesread; 1230 totalblockswrite = totalbyteswrite; 1231 totalblocksfree = totalbytesfree; 1232 1233 if (current->block_size > 0) { 1234 totalblocks /= current->block_size; 1235 totalblocksread /= current->block_size; 1236 totalblockswrite /= current->block_size; 1237 totalblocksfree /= current->block_size; 1238 } else { 1239 totalblocks /= 512; 1240 totalblocksread /= 512; 1241 totalblockswrite /= 512; 1242 totalblocksfree /= 512; 1243 } 1244 1245 va_start(ap, etime); 1246 1247 while ((metric = (devstat_metric)va_arg(ap, devstat_metric)) != 0) { 1248 1249 if (metric == DSM_NONE) 1250 break; 1251 1252 if (metric >= DSM_MAX) { 1253 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 1254 "%s: metric %d is out of range", __func__, 1255 metric); 1256 retval = -1; 1257 goto bailout; 1258 } 1259 1260 switch (devstat_arg_list[metric].argtype) { 1261 case DEVSTAT_ARG_UINT64: 1262 destu64 = (u_int64_t *)va_arg(ap, u_int64_t *); 1263 break; 1264 case DEVSTAT_ARG_LD: 1265 destld = (long double *)va_arg(ap, long double *); 1266 break; 1267 case DEVSTAT_ARG_SKIP: 1268 destld = (long double *)va_arg(ap, long double *); 1269 break; 1270 default: 1271 retval = -1; 1272 goto bailout; 1273 break; /* NOTREACHED */ 1274 } 1275 1276 if (devstat_arg_list[metric].argtype == DEVSTAT_ARG_SKIP) 1277 continue; 1278 1279 switch (metric) { 1280 case DSM_TOTAL_BYTES: 1281 *destu64 = totalbytes; 1282 break; 1283 case DSM_TOTAL_BYTES_READ: 1284 *destu64 = totalbytesread; 1285 break; 1286 case DSM_TOTAL_BYTES_WRITE: 1287 *destu64 = totalbyteswrite; 1288 break; 1289 case DSM_TOTAL_BYTES_FREE: 1290 *destu64 = totalbytesfree; 1291 break; 1292 case DSM_TOTAL_TRANSFERS: 1293 *destu64 = totaltransfers; 1294 break; 1295 case DSM_TOTAL_TRANSFERS_READ: 1296 *destu64 = totaltransfersread; 1297 break; 1298 case DSM_TOTAL_TRANSFERS_WRITE: 1299 *destu64 = totaltransferswrite; 1300 break; 1301 case DSM_TOTAL_TRANSFERS_FREE: 1302 *destu64 = totaltransfersfree; 1303 break; 1304 case DSM_TOTAL_TRANSFERS_OTHER: 1305 *destu64 = totaltransfersother; 1306 break; 1307 case DSM_TOTAL_BLOCKS: 1308 *destu64 = totalblocks; 1309 break; 1310 case DSM_TOTAL_BLOCKS_READ: 1311 *destu64 = totalblocksread; 1312 break; 1313 case DSM_TOTAL_BLOCKS_WRITE: 1314 *destu64 = totalblockswrite; 1315 break; 1316 case DSM_TOTAL_BLOCKS_FREE: 1317 *destu64 = totalblocksfree; 1318 break; 1319 case DSM_KB_PER_TRANSFER: 1320 *destld = totalbytes; 1321 *destld /= 1024; 1322 if (totaltransfers > 0) 1323 *destld /= totaltransfers; 1324 else 1325 *destld = 0.0; 1326 break; 1327 case DSM_KB_PER_TRANSFER_READ: 1328 *destld = totalbytesread; 1329 *destld /= 1024; 1330 if (totaltransfersread > 0) 1331 *destld /= totaltransfersread; 1332 else 1333 *destld = 0.0; 1334 break; 1335 case DSM_KB_PER_TRANSFER_WRITE: 1336 *destld = totalbyteswrite; 1337 *destld /= 1024; 1338 if (totaltransferswrite > 0) 1339 *destld /= totaltransferswrite; 1340 else 1341 *destld = 0.0; 1342 break; 1343 case DSM_KB_PER_TRANSFER_FREE: 1344 *destld = totalbytesfree; 1345 *destld /= 1024; 1346 if (totaltransfersfree > 0) 1347 *destld /= totaltransfersfree; 1348 else 1349 *destld = 0.0; 1350 break; 1351 case DSM_TRANSFERS_PER_SECOND: 1352 if (etime > 0.0) { 1353 *destld = totaltransfers; 1354 *destld /= etime; 1355 } else 1356 *destld = 0.0; 1357 break; 1358 case DSM_TRANSFERS_PER_SECOND_READ: 1359 if (etime > 0.0) { 1360 *destld = totaltransfersread; 1361 *destld /= etime; 1362 } else 1363 *destld = 0.0; 1364 break; 1365 case DSM_TRANSFERS_PER_SECOND_WRITE: 1366 if (etime > 0.0) { 1367 *destld = totaltransferswrite; 1368 *destld /= etime; 1369 } else 1370 *destld = 0.0; 1371 break; 1372 case DSM_TRANSFERS_PER_SECOND_FREE: 1373 if (etime > 0.0) { 1374 *destld = totaltransfersfree; 1375 *destld /= etime; 1376 } else 1377 *destld = 0.0; 1378 break; 1379 case DSM_TRANSFERS_PER_SECOND_OTHER: 1380 if (etime > 0.0) { 1381 *destld = totaltransfersother; 1382 *destld /= etime; 1383 } else 1384 *destld = 0.0; 1385 break; 1386 case DSM_MB_PER_SECOND: 1387 *destld = totalbytes; 1388 *destld /= 1024 * 1024; 1389 if (etime > 0.0) 1390 *destld /= etime; 1391 else 1392 *destld = 0.0; 1393 break; 1394 case DSM_MB_PER_SECOND_READ: 1395 *destld = totalbytesread; 1396 *destld /= 1024 * 1024; 1397 if (etime > 0.0) 1398 *destld /= etime; 1399 else 1400 *destld = 0.0; 1401 break; 1402 case DSM_MB_PER_SECOND_WRITE: 1403 *destld = totalbyteswrite; 1404 *destld /= 1024 * 1024; 1405 if (etime > 0.0) 1406 *destld /= etime; 1407 else 1408 *destld = 0.0; 1409 break; 1410 case DSM_MB_PER_SECOND_FREE: 1411 *destld = totalbytesfree; 1412 *destld /= 1024 * 1024; 1413 if (etime > 0.0) 1414 *destld /= etime; 1415 else 1416 *destld = 0.0; 1417 break; 1418 case DSM_BLOCKS_PER_SECOND: 1419 *destld = totalblocks; 1420 if (etime > 0.0) 1421 *destld /= etime; 1422 else 1423 *destld = 0.0; 1424 break; 1425 case DSM_BLOCKS_PER_SECOND_READ: 1426 *destld = totalblocksread; 1427 if (etime > 0.0) 1428 *destld /= etime; 1429 else 1430 *destld = 0.0; 1431 break; 1432 case DSM_BLOCKS_PER_SECOND_WRITE: 1433 *destld = totalblockswrite; 1434 if (etime > 0.0) 1435 *destld /= etime; 1436 else 1437 *destld = 0.0; 1438 break; 1439 case DSM_BLOCKS_PER_SECOND_FREE: 1440 *destld = totalblocksfree; 1441 if (etime > 0.0) 1442 *destld /= etime; 1443 else 1444 *destld = 0.0; 1445 break; 1446 /* 1447 * This calculation is somewhat bogus. It simply divides 1448 * the elapsed time by the total number of transactions 1449 * completed. While that does give the caller a good 1450 * picture of the average rate of transaction completion, 1451 * it doesn't necessarily give the caller a good view of 1452 * how long transactions took to complete on average. 1453 * Those two numbers will be different for a device that 1454 * can handle more than one transaction at a time. e.g. 1455 * SCSI disks doing tagged queueing. 1456 * 1457 * The only way to accurately determine the real average 1458 * time per transaction would be to compute and store the 1459 * time on a per-transaction basis. That currently isn't 1460 * done in the kernel, and would only be desireable if it 1461 * could be implemented in a somewhat non-intrusive and high 1462 * performance way. 1463 */ 1464 case DSM_MS_PER_TRANSACTION: 1465 if (totaltransfers > 0) { 1466 *destld = 0; 1467 for (i = 0; i < DEVSTAT_N_TRANS_FLAGS; i++) 1468 *destld += DELTA_T(duration[i]); 1469 *destld /= totaltransfers; 1470 *destld *= 1000; 1471 } else 1472 *destld = 0.0; 1473 break; 1474 /* 1475 * As above, these next two really only give the average 1476 * rate of completion for read and write transactions, not 1477 * the average time the transaction took to complete. 1478 */ 1479 case DSM_MS_PER_TRANSACTION_READ: 1480 if (totaltransfersread > 0) { 1481 *destld = DELTA_T(duration[DEVSTAT_READ]); 1482 *destld /= totaltransfersread; 1483 *destld *= 1000; 1484 } else 1485 *destld = 0.0; 1486 break; 1487 case DSM_MS_PER_TRANSACTION_WRITE: 1488 if (totaltransferswrite > 0) { 1489 *destld = DELTA_T(duration[DEVSTAT_WRITE]); 1490 *destld /= totaltransferswrite; 1491 *destld *= 1000; 1492 } else 1493 *destld = 0.0; 1494 break; 1495 case DSM_MS_PER_TRANSACTION_FREE: 1496 if (totaltransfersfree > 0) { 1497 *destld = DELTA_T(duration[DEVSTAT_FREE]); 1498 *destld /= totaltransfersfree; 1499 *destld *= 1000; 1500 } else 1501 *destld = 0.0; 1502 break; 1503 case DSM_MS_PER_TRANSACTION_OTHER: 1504 if (totaltransfersother > 0) { 1505 *destld = DELTA_T(duration[DEVSTAT_NO_DATA]); 1506 *destld /= totaltransfersother; 1507 *destld *= 1000; 1508 } else 1509 *destld = 0.0; 1510 break; 1511 case DSM_BUSY_PCT: 1512 *destld = DELTA_T(busy_time); 1513 if (*destld < 0) 1514 *destld = 0; 1515 *destld /= etime; 1516 *destld *= 100; 1517 if (*destld < 0) 1518 *destld = 0; 1519 break; 1520 case DSM_QUEUE_LENGTH: 1521 *destu64 = current->start_count - current->end_count; 1522 break; 1523 /* 1524 * XXX: comment out the default block to see if any case's are missing. 1525 */ 1526 #if 1 1527 default: 1528 /* 1529 * This shouldn't happen, since we should have 1530 * caught any out of range metrics at the top of 1531 * the loop. 1532 */ 1533 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 1534 "%s: unknown metric %d", __func__, metric); 1535 retval = -1; 1536 goto bailout; 1537 break; /* NOTREACHED */ 1538 #endif 1539 } 1540 } 1541 1542 bailout: 1543 1544 va_end(ap); 1545 return(retval); 1546 } 1547 1548 static int 1549 readkmem(kvm_t *kd, unsigned long addr, void *buf, size_t nbytes) 1550 { 1551 1552 if (kvm_read(kd, addr, buf, nbytes) == -1) { 1553 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 1554 "%s: error reading value (kvm_read): %s", __func__, 1555 kvm_geterr(kd)); 1556 return(-1); 1557 } 1558 return(0); 1559 } 1560 1561 static int 1562 readkmem_nl(kvm_t *kd, const char *name, void *buf, size_t nbytes) 1563 { 1564 struct nlist nl[2]; 1565 1566 nl[0].n_name = (char *)name; 1567 nl[1].n_name = NULL; 1568 1569 if (kvm_nlist(kd, nl) == -1) { 1570 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 1571 "%s: error getting name list (kvm_nlist): %s", 1572 __func__, kvm_geterr(kd)); 1573 return(-1); 1574 } 1575 return(readkmem(kd, nl[0].n_value, buf, nbytes)); 1576 } 1577 1578 /* 1579 * This duplicates the functionality of the kernel sysctl handler for poking 1580 * through crash dumps. 1581 */ 1582 static char * 1583 get_devstat_kvm(kvm_t *kd) 1584 { 1585 int i, wp; 1586 long gen; 1587 struct devstat *nds; 1588 struct devstat ds; 1589 struct devstatlist dhead; 1590 int num_devs; 1591 char *rv = NULL; 1592 1593 if ((num_devs = devstat_getnumdevs(kd)) <= 0) 1594 return(NULL); 1595 if (KREADNL(kd, X_DEVICE_STATQ, dhead) == -1) 1596 return(NULL); 1597 1598 nds = STAILQ_FIRST(&dhead); 1599 1600 if ((rv = malloc(sizeof(gen))) == NULL) { 1601 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 1602 "%s: out of memory (initial malloc failed)", 1603 __func__); 1604 return(NULL); 1605 } 1606 gen = devstat_getgeneration(kd); 1607 memcpy(rv, &gen, sizeof(gen)); 1608 wp = sizeof(gen); 1609 /* 1610 * Now push out all the devices. 1611 */ 1612 for (i = 0; (nds != NULL) && (i < num_devs); 1613 nds = STAILQ_NEXT(nds, dev_links), i++) { 1614 if (readkmem(kd, (long)nds, &ds, sizeof(ds)) == -1) { 1615 free(rv); 1616 return(NULL); 1617 } 1618 nds = &ds; 1619 rv = (char *)reallocf(rv, sizeof(gen) + 1620 sizeof(ds) * (i + 1)); 1621 if (rv == NULL) { 1622 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 1623 "%s: out of memory (malloc failed)", 1624 __func__); 1625 return(NULL); 1626 } 1627 memcpy(rv + wp, &ds, sizeof(ds)); 1628 wp += sizeof(ds); 1629 } 1630 return(rv); 1631 } 1632