1 /* 2 * Copyright (c) 1997, 1998 Kenneth D. Merry. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. The name of the author may not be used to endorse or promote products 14 * derived from this software without specific prior written permission. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 * 28 * $Id: devstat.c,v 1.3 1998/09/20 00:11:09 ken Exp $ 29 */ 30 31 #include <sys/types.h> 32 #include <sys/sysctl.h> 33 #include <sys/errno.h> 34 #include <sys/dkstat.h> 35 36 #include <ctype.h> 37 #include <err.h> 38 #include <stdio.h> 39 #include <stdlib.h> 40 #include <string.h> 41 42 #include "devstat.h" 43 44 char devstat_errbuf[DEVSTAT_ERRBUF_SIZE]; 45 46 /* 47 * Table to match descriptive strings with device types. These are in 48 * order from most common to least common to speed search time. 49 */ 50 struct devstat_match_table match_table[] = { 51 {"da", DEVSTAT_TYPE_DIRECT, DEVSTAT_MATCH_TYPE}, 52 {"cd", DEVSTAT_TYPE_CDROM, DEVSTAT_MATCH_TYPE}, 53 {"scsi", DEVSTAT_TYPE_IF_SCSI, DEVSTAT_MATCH_IF}, 54 {"ide", DEVSTAT_TYPE_IF_IDE, DEVSTAT_MATCH_IF}, 55 {"other", DEVSTAT_TYPE_IF_OTHER, DEVSTAT_MATCH_IF}, 56 {"worm", DEVSTAT_TYPE_WORM, DEVSTAT_MATCH_TYPE}, 57 {"sa", DEVSTAT_TYPE_SEQUENTIAL,DEVSTAT_MATCH_TYPE}, 58 {"pass", DEVSTAT_TYPE_PASS, DEVSTAT_MATCH_PASS}, 59 {"optical", DEVSTAT_TYPE_OPTICAL, DEVSTAT_MATCH_TYPE}, 60 {"array", DEVSTAT_TYPE_STORARRAY, DEVSTAT_MATCH_TYPE}, 61 {"changer", DEVSTAT_TYPE_CHANGER, DEVSTAT_MATCH_TYPE}, 62 {"scanner", DEVSTAT_TYPE_SCANNER, DEVSTAT_MATCH_TYPE}, 63 {"printer", DEVSTAT_TYPE_PRINTER, DEVSTAT_MATCH_TYPE}, 64 {"floppy", DEVSTAT_TYPE_FLOPPY, DEVSTAT_MATCH_TYPE}, 65 {"proc", DEVSTAT_TYPE_PROCESSOR, DEVSTAT_MATCH_TYPE}, 66 {"comm", DEVSTAT_TYPE_COMM, DEVSTAT_MATCH_TYPE}, 67 {"enclosure", DEVSTAT_TYPE_ENCLOSURE, DEVSTAT_MATCH_TYPE}, 68 {NULL, 0, 0} 69 }; 70 71 /* 72 * Local function declarations. 73 */ 74 static int compare_select(const void *arg1, const void *arg2); 75 76 int 77 getnumdevs(void) 78 { 79 size_t numdevsize; 80 int numdevs; 81 char *func_name = "getnumdevs"; 82 83 numdevsize = sizeof(int); 84 85 /* 86 * Find out how many devices we have in the system. 87 */ 88 if (sysctlbyname("kern.devstat.numdevs", &numdevs, 89 &numdevsize, NULL, 0) == -1) { 90 sprintf(devstat_errbuf, "%s: error getting number of devices\n" 91 "%s: %s", func_name, func_name, strerror(errno)); 92 return(-1); 93 } else 94 return(numdevs); 95 } 96 97 /* 98 * This is an easy way to get the generation number, but the generation is 99 * supplied in a more atmoic manner by the kern.devstat.all sysctl. 100 * Because this generation sysctl is separate from the statistics sysctl, 101 * the device list and the generation could change between the time that 102 * this function is called and the device list is retreived. 103 */ 104 long 105 getgeneration(void) 106 { 107 size_t gensize; 108 long generation; 109 char *func_name = "getgeneration"; 110 111 gensize = sizeof(long); 112 113 /* 114 * Get the current generation number. 115 */ 116 if (sysctlbyname("kern.devstat.generation", &generation, 117 &gensize, NULL, 0) == -1) { 118 sprintf(devstat_errbuf,"%s: error getting devstat generation\n" 119 "%s: %s", func_name, func_name, strerror(errno)); 120 return(-1); 121 } else 122 return(generation); 123 } 124 125 /* 126 * Get the current devstat version. The return value of this function 127 * should be compared with DEVSTAT_VERSION, which is defined in 128 * sys/devicestat.h. This will enable userland programs to determine 129 * whether they are out of sync with the kernel. 130 */ 131 int 132 getversion(void) 133 { 134 size_t versize; 135 int version; 136 char *func_name = "getversion"; 137 138 versize = sizeof(int); 139 140 /* 141 * Get the current devstat version. 142 */ 143 if (sysctlbyname("kern.devstat.version", &version, &versize, 144 NULL, 0) == -1) { 145 sprintf(devstat_errbuf, "%s: error getting devstat version\n" 146 "%s: %s", func_name, func_name, strerror(errno)); 147 return(-1); 148 } else 149 return(version); 150 } 151 152 /* 153 * Check the devstat version we know about against the devstat version the 154 * kernel knows about. If they don't match, print an error into the 155 * devstat error buffer, and return -1. If they match, return 0. 156 */ 157 int 158 checkversion(void) 159 { 160 int retval = 0; 161 int errlen = 0; 162 char *func_name = "checkversion"; 163 int version; 164 165 version = getversion(); 166 167 if (version != DEVSTAT_VERSION) { 168 int buflen = 0; 169 char tmpstr[256]; 170 171 /* 172 * This is really pretty silly, but basically the idea is 173 * that if getversion() returns an error (i.e. -1), then it 174 * has printed an error message in the buffer. Therefore, 175 * we need to add a \n to the end of that message before we 176 * print our own message in the buffer. 177 */ 178 if (version == -1) { 179 buflen = strlen(devstat_errbuf); 180 errlen = snprintf(tmpstr, sizeof(tmpstr), "\n"); 181 strncat(devstat_errbuf, tmpstr, 182 DEVSTAT_ERRBUF_SIZE - buflen - 1); 183 buflen += errlen; 184 } 185 186 errlen = snprintf(tmpstr, sizeof(tmpstr), 187 "%s: userland devstat version %d is not " 188 "the same as the kernel\n%s: devstat " 189 "version %d\n", func_name, DEVSTAT_VERSION, 190 func_name, version); 191 192 if (version == -1) { 193 strncat(devstat_errbuf, tmpstr, 194 DEVSTAT_ERRBUF_SIZE - buflen - 1); 195 buflen += errlen; 196 } else { 197 strncpy(devstat_errbuf, tmpstr, DEVSTAT_ERRBUF_SIZE); 198 devstat_errbuf[DEVSTAT_ERRBUF_SIZE - 1] = '\0'; 199 } 200 201 if (version < DEVSTAT_VERSION) 202 snprintf(tmpstr, sizeof(tmpstr), 203 "%s: you really should know better" 204 " than to upgrade your\n%s: " 205 "userland binaries without " 206 "upgrading your kernel", 207 func_name, func_name); 208 else 209 snprintf(tmpstr, sizeof(tmpstr), 210 "%s: you really should know better" 211 " than to upgrade your kernel " 212 "without\n%s: upgrading your " 213 "userland binaries", 214 func_name, func_name); 215 216 strncat(devstat_errbuf, tmpstr, 217 DEVSTAT_ERRBUF_SIZE - buflen - 1); 218 219 retval = -1; 220 } 221 222 return(retval); 223 } 224 225 /* 226 * Get the current list of devices and statistics, and the current 227 * generation number. 228 * 229 * Return values: 230 * -1 -- error 231 * 0 -- device list is unchanged 232 * 1 -- device list has changed 233 */ 234 int 235 getdevs(struct statinfo *stats) 236 { 237 int error; 238 size_t dssize; 239 int oldnumdevs; 240 long oldgeneration; 241 int retval = 0; 242 struct devinfo *dinfo; 243 char *func_name = "getdevs"; 244 245 dinfo = stats->dinfo; 246 247 if (dinfo == NULL) { 248 sprintf(devstat_errbuf, "%s: stats->dinfo was NULL", func_name); 249 return(-1); 250 } 251 252 oldnumdevs = dinfo->numdevs; 253 oldgeneration = dinfo->generation; 254 255 /* 256 * If this is our first time through, mem_ptr will be null. 257 */ 258 if (dinfo->mem_ptr == NULL) { 259 /* 260 * Get the number of devices. If it's negative, it's an 261 * error. Don't bother setting the error string, since 262 * getnumdevs() has already done that for us. 263 */ 264 if ((dinfo->numdevs = getnumdevs()) < 0) 265 return(-1); 266 267 /* 268 * The kern.devstat.all sysctl returns the current generation 269 * number, as well as all the devices. So we need four 270 * bytes more. 271 */ 272 dssize =(dinfo->numdevs * sizeof(struct devstat)) +sizeof(long); 273 dinfo->mem_ptr = (u_int8_t *)malloc(dssize); 274 } else 275 dssize =(dinfo->numdevs * sizeof(struct devstat)) +sizeof(long); 276 277 /* Get the current time when we get the stats */ 278 gettimeofday(&stats->busy_time, NULL); 279 280 /* 281 * Request all of the devices. We only really allow for one 282 * ENOMEM failure. It would, of course, be possible to just go in 283 * a loop and keep reallocing the device structure until we don't 284 * get ENOMEM back. I'm not sure it's worth it, though. If 285 * devices are being added to the system that quickly, maybe the 286 * user can just wait until all devices are added. 287 */ 288 if ((error = sysctlbyname("kern.devstat.all", dinfo->mem_ptr, 289 &dssize, NULL, 0)) == -1) { 290 /* 291 * If we get ENOMEM back, that means that there are 292 * more devices now, so we need to allocate more 293 * space for the device array. 294 */ 295 if (errno == ENOMEM) { 296 /* 297 * No need to set the error string here, getnumdevs() 298 * will do that if it fails. 299 */ 300 if ((dinfo->numdevs = getnumdevs()) < 0) 301 return(-1); 302 303 dssize = (dinfo->numdevs * sizeof(struct devstat)) + 304 sizeof(long); 305 dinfo->mem_ptr = (u_int8_t *)realloc(dinfo->mem_ptr, 306 dssize); 307 if ((error = sysctlbyname("kern.devstat.all", 308 dinfo->mem_ptr, &dssize, NULL, 0)) == -1) { 309 sprintf(devstat_errbuf, 310 "%s: error getting device stats\n" 311 "%s: %s", func_name, func_name, 312 strerror(errno)); 313 return(-1); 314 } 315 } else { 316 sprintf(devstat_errbuf, 317 "%s: error getting device stats\n" 318 "%s: %s", func_name, func_name, 319 strerror(errno)); 320 return(-1); 321 } 322 } 323 324 /* 325 * The sysctl spits out the generation as the first four bytes, 326 * then all of the device statistics structures. 327 */ 328 dinfo->generation = *(long *)dinfo->mem_ptr; 329 330 /* 331 * If the generation has changed, and if the current number of 332 * devices is not the same as the number of devices recorded in the 333 * devinfo structure, it is likely that the device list has shrunk. 334 * The reason that it is likely that the device list has shrunk in 335 * this case is that if the device list has grown, the sysctl above 336 * will return an ENOMEM error, and we will reset the number of 337 * devices and reallocate the device array. If the second sysctl 338 * fails, we will return an error and therefore never get to this 339 * point. If the device list has shrunk, the sysctl will not 340 * return an error since we have more space allocated than is 341 * necessary. So, in the shrinkage case, we catch it here and 342 * reallocate the array so that we don't use any more space than is 343 * necessary. 344 */ 345 if (oldgeneration != dinfo->generation) { 346 if (getnumdevs() != dinfo->numdevs) { 347 if ((dinfo->numdevs = getnumdevs()) < 0) 348 return(-1); 349 dssize = (dinfo->numdevs * sizeof(struct devstat)) + 350 sizeof(long); 351 dinfo->mem_ptr = (u_int8_t *)realloc(dinfo->mem_ptr, 352 dssize); 353 } 354 retval = 1; 355 } 356 357 dinfo->devices = (struct devstat *)(dinfo->mem_ptr + sizeof(long)); 358 359 return(retval); 360 } 361 362 /* 363 * selectdevs(): 364 * 365 * Devices are selected/deselected based upon the following criteria: 366 * - devices specified by the user on the command line 367 * - devices matching any device type expressions given on the command line 368 * - devices with the highest I/O, if 'top' mode is enabled 369 * - the first n unselected devices in the device list, if maxshowdevs 370 * devices haven't already been selected and if the user has not 371 * specified any devices on the command line and if we're in "add" mode. 372 * 373 * Input parameters: 374 * - device selection list (dev_select) 375 * - current number of devices selected (num_selected) 376 * - total number of devices in the selection list (num_selections) 377 * - devstat generation as of the last time selectdevs() was called 378 * (select_generation) 379 * - current devstat generation (current_generation) 380 * - current list of devices and statistics (devices) 381 * - number of devices in the current device list (numdevs) 382 * - compiled version of the command line device type arguments (matches) 383 * - This is optional. If the number of devices is 0, this will be ignored. 384 * - The matching code pays attention to the current selection mode. So 385 * if you pass in a matching expression, it will be evaluated based 386 * upon the selection mode that is passed in. See below for details. 387 * - number of device type matching expressions (num_matches) 388 * - Set to 0 to disable the matching code. 389 * - list of devices specified on the command line by the user (dev_selections) 390 * - number of devices selected on the command line by the user 391 * (num_dev_selections) 392 * - Our selection mode. There are four different selection modes: 393 * - add mode. (DS_SELECT_ADD) Any devices matching devices explicitly 394 * selected by the user or devices matching a pattern given by the 395 * user will be selected in addition to devices that are already 396 * selected. Additional devices will be selected, up to maxshowdevs 397 * number of devices. 398 * - only mode. (DS_SELECT_ONLY) Only devices matching devices 399 * explicitly given by the user or devices matching a pattern 400 * given by the user will be selected. No other devices will be 401 * selected. 402 * - addonly mode. (DS_SELECT_ADDONLY) This is similar to add and 403 * only. Basically, this will not de-select any devices that are 404 * current selected, as only mode would, but it will also not 405 * gratuitously select up to maxshowdevs devices as add mode would. 406 * - remove mode. (DS_SELECT_REMOVE) Any devices matching devices 407 * explicitly selected by the user or devices matching a pattern 408 * given by the user will be de-selected. 409 * - maximum number of devices we can select (maxshowdevs) 410 * - flag indicating whether or not we're in 'top' mode (perf_select) 411 * 412 * Output data: 413 * - the device selection list may be modified and passed back out 414 * - the number of devices selected and the total number of items in the 415 * device selection list may be changed 416 * - the selection generation may be changed to match the current generation 417 * 418 * Return values: 419 * -1 -- error 420 * 0 -- selected devices are unchanged 421 * 1 -- selected devices changed 422 */ 423 int 424 selectdevs(struct device_selection **dev_select, int *num_selected, 425 int *num_selections, long *select_generation, 426 long current_generation, struct devstat *devices, int numdevs, 427 struct devstat_match *matches, int num_matches, 428 char **dev_selections, int num_dev_selections, 429 devstat_select_mode select_mode, int maxshowdevs, int perf_select) 430 { 431 register int i, j, k; 432 int init_selections = 0, init_selected_var = 0; 433 struct device_selection *old_dev_select = NULL; 434 int old_num_selections = 0, old_num_selected; 435 int selection_number = 0; 436 int changed = 0, found = 0; 437 438 if ((dev_select == NULL) || (devices == NULL) || (numdevs <= 0)) 439 return(-1); 440 441 /* 442 * We always want to make sure that we have as many dev_select 443 * entries as there are devices. 444 */ 445 /* 446 * In this case, we haven't selected devices before. 447 */ 448 if (*dev_select == NULL) { 449 *dev_select = (struct device_selection *)malloc(numdevs * 450 sizeof(struct device_selection)); 451 *select_generation = current_generation; 452 init_selections = 1; 453 changed = 1; 454 /* 455 * In this case, we have selected devices before, but the device 456 * list has changed since we last selected devices, so we need to 457 * either enlarge or reduce the size of the device selection list. 458 */ 459 } else if (*num_selections != numdevs) { 460 *dev_select = (struct device_selection *)realloc(*dev_select, 461 numdevs * sizeof(struct device_selection)); 462 *select_generation = current_generation; 463 init_selections = 1; 464 /* 465 * In this case, we've selected devices before, and the selection 466 * list is the same size as it was the last time, but the device 467 * list has changed. 468 */ 469 } else if (*select_generation < current_generation) { 470 *select_generation = current_generation; 471 init_selections = 1; 472 } 473 474 /* 475 * If we're in "only" mode, we want to clear out the selected 476 * variable since we're going to select exactly what the user wants 477 * this time through. 478 */ 479 if (select_mode == DS_SELECT_ONLY) 480 init_selected_var = 1; 481 482 /* 483 * In all cases, we want to back up the number of selected devices. 484 * It is a quick and accurate way to determine whether the selected 485 * devices have changed. 486 */ 487 old_num_selected = *num_selected; 488 489 /* 490 * We want to make a backup of the current selection list if 491 * the list of devices has changed, or if we're in performance 492 * selection mode. In both cases, we don't want to make a backup 493 * if we already know for sure that the list will be different. 494 * This is certainly the case if this is our first time through the 495 * selection code. 496 */ 497 if (((init_selected_var != 0) || (init_selections != 0) 498 || (perf_select != 0)) && (changed == 0)){ 499 old_dev_select = (struct device_selection *)malloc( 500 *num_selections * sizeof(struct device_selection)); 501 old_num_selections = *num_selections; 502 bcopy(*dev_select, old_dev_select, 503 sizeof(struct device_selection) * *num_selections); 504 } 505 506 if (init_selections != 0) { 507 bzero(*dev_select, sizeof(struct device_selection) * numdevs); 508 509 for (i = 0; i < numdevs; i++) { 510 (*dev_select)[i].device_number = 511 devices[i].device_number; 512 strncpy((*dev_select)[i].device_name, 513 devices[i].device_name, 514 DEVSTAT_NAME_LEN); 515 (*dev_select)[i].device_name[DEVSTAT_NAME_LEN - 1]='\0'; 516 (*dev_select)[i].unit_number = devices[i].unit_number; 517 (*dev_select)[i].position = i; 518 } 519 *num_selections = numdevs; 520 } else if (init_selected_var != 0) { 521 for (i = 0; i < numdevs; i++) 522 (*dev_select)[i].selected = 0; 523 } 524 525 /* we haven't gotten around to selecting anything yet.. */ 526 if ((select_mode == DS_SELECT_ONLY) || (init_selections != 0) 527 || (init_selected_var != 0)) 528 *num_selected = 0; 529 530 /* 531 * Look through any devices the user specified on the command line 532 * and see if they match known devices. If so, select them. 533 */ 534 for (i = 0; (i < *num_selections) && (num_dev_selections > 0); i++) { 535 char tmpstr[80]; 536 537 snprintf(tmpstr, sizeof(tmpstr), "%s%d", 538 (*dev_select)[i].device_name, 539 (*dev_select)[i].unit_number); 540 for (j = 0; j < num_dev_selections; j++) { 541 if (strcmp(tmpstr, dev_selections[j]) == 0) { 542 /* 543 * Here we do different things based on the 544 * mode we're in. If we're in add or 545 * addonly mode, we only select this device 546 * if it hasn't already been selected. 547 * Otherwise, we would be unnecessarily 548 * changing the selection order and 549 * incrementing the selection count. If 550 * we're in only mode, we unconditionally 551 * select this device, since in only mode 552 * any previous selections are erased and 553 * manually specified devices are the first 554 * ones to be selected. If we're in remove 555 * mode, we de-select the specified device and 556 * decrement the selection count. 557 */ 558 switch(select_mode) { 559 case DS_SELECT_ADD: 560 case DS_SELECT_ADDONLY: 561 if ((*dev_select)[i].selected) 562 break; 563 /* FALLTHROUGH */ 564 case DS_SELECT_ONLY: 565 (*dev_select)[i].selected = 566 ++selection_number; 567 (*num_selected)++; 568 break; 569 case DS_SELECT_REMOVE: 570 (*dev_select)[i].selected = 0; 571 (*num_selected)--; 572 /* 573 * This isn't passed back out, we 574 * just use it to keep track of 575 * how many devices we've removed. 576 */ 577 num_dev_selections--; 578 break; 579 } 580 break; 581 } 582 } 583 } 584 585 /* 586 * Go through the user's device type expressions and select devices 587 * accordingly. We only do this if the number of devices already 588 * selected is less than the maximum number we can show. 589 */ 590 for (i = 0; (i < num_matches) && (*num_selected < maxshowdevs); i++) { 591 /* We should probably indicate some error here */ 592 if ((matches[i].match_fields == DEVSTAT_MATCH_NONE) 593 || (matches[i].num_match_categories <= 0)) 594 continue; 595 596 for (j = 0; j < numdevs; j++) { 597 int num_match_categories; 598 599 num_match_categories = matches[i].num_match_categories; 600 601 /* 602 * Determine whether or not the current device 603 * matches the given matching expression. This if 604 * statement consists of three components: 605 * - the device type check 606 * - the device interface check 607 * - the passthrough check 608 * If a the matching test is successful, it 609 * decrements the number of matching categories, 610 * and if we've reached the last element that 611 * needed to be matched, the if statement succeeds. 612 * 613 */ 614 if ((((matches[i].match_fields & DEVSTAT_MATCH_TYPE)!=0) 615 && ((devices[j].device_type & DEVSTAT_TYPE_MASK) == 616 (matches[i].device_type & DEVSTAT_TYPE_MASK)) 617 &&(((matches[i].match_fields & DEVSTAT_MATCH_PASS)!=0) 618 || (((matches[i].match_fields & 619 DEVSTAT_MATCH_PASS) == 0) 620 && ((devices[j].device_type & 621 DEVSTAT_TYPE_PASS) == 0))) 622 && (--num_match_categories == 0)) 623 || (((matches[i].match_fields & DEVSTAT_MATCH_IF) != 0) 624 && ((devices[j].device_type & DEVSTAT_TYPE_IF_MASK) == 625 (matches[i].device_type & DEVSTAT_TYPE_IF_MASK)) 626 &&(((matches[i].match_fields & DEVSTAT_MATCH_PASS)!=0) 627 || (((matches[i].match_fields & 628 DEVSTAT_MATCH_PASS) == 0) 629 && ((devices[j].device_type & 630 DEVSTAT_TYPE_PASS) == 0))) 631 && (--num_match_categories == 0)) 632 || (((matches[i].match_fields & DEVSTAT_MATCH_PASS)!=0) 633 && ((devices[j].device_type & DEVSTAT_TYPE_PASS) != 0) 634 && (--num_match_categories == 0))) { 635 636 /* 637 * This is probably a non-optimal solution 638 * to the problem that the devices in the 639 * device list will not be in the same 640 * order as the devices in the selection 641 * array. 642 */ 643 for (k = 0; k < numdevs; k++) { 644 if ((*dev_select)[k].position == j) { 645 found = 1; 646 break; 647 } 648 } 649 650 /* 651 * There shouldn't be a case where a device 652 * in the device list is not in the 653 * selection list...but it could happen. 654 */ 655 if (found != 1) { 656 fprintf(stderr, "selectdevs: couldn't" 657 " find %s%d in selection " 658 "list\n", 659 devices[j].device_name, 660 devices[j].unit_number); 661 break; 662 } 663 664 /* 665 * We do different things based upon the 666 * mode we're in. If we're in add or only 667 * mode, we go ahead and select this device 668 * if it hasn't already been selected. If 669 * it has already been selected, we leave 670 * it alone so we don't mess up the 671 * selection ordering. Manually specified 672 * devices have already been selected, and 673 * they have higher priority than pattern 674 * matched devices. If we're in remove 675 * mode, we de-select the given device and 676 * decrement the selected count. 677 */ 678 switch(select_mode) { 679 case DS_SELECT_ADD: 680 case DS_SELECT_ADDONLY: 681 case DS_SELECT_ONLY: 682 if ((*dev_select)[k].selected != 0) 683 break; 684 (*dev_select)[k].selected = 685 ++selection_number; 686 (*num_selected)++; 687 break; 688 case DS_SELECT_REMOVE: 689 (*dev_select)[k].selected = 0; 690 (*num_selected)--; 691 break; 692 } 693 } 694 } 695 } 696 697 /* 698 * Here we implement "top" mode. Devices are sorted in the 699 * selection array based on two criteria: whether or not they are 700 * selected (not selection number, just the fact that they are 701 * selected!) and the number of bytes in the "bytes" field of the 702 * selection structure. The bytes field generally must be kept up 703 * by the user. In the future, it may be maintained by library 704 * functions, but for now the user has to do the work. 705 * 706 * At first glance, it may seem wrong that we don't go through and 707 * select every device in the case where the user hasn't specified 708 * any devices or patterns. In fact, though, it won't make any 709 * difference in the device sorting. In that particular case (i.e. 710 * when we're in "add" or "only" mode, and the user hasn't 711 * specified anything) the first time through no devices will be 712 * selected, so the only criterion used to sort them will be their 713 * performance. The second time through, and every time thereafter, 714 * all devices will be selected, so again selection won't matter. 715 */ 716 if (perf_select != 0) { 717 718 /* Sort the device array by throughput */ 719 qsort(*dev_select, *num_selections, 720 sizeof(struct device_selection), 721 compare_select); 722 723 if (*num_selected == 0) { 724 /* 725 * Here we select every device in the array, if it 726 * isn't already selected. Because the 'selected' 727 * variable in the selection array entries contains 728 * the selection order, the devstats routine can show 729 * the devices that were selected first. 730 */ 731 for (i = 0; i < *num_selections; i++) { 732 if ((*dev_select)[i].selected == 0) { 733 (*dev_select)[i].selected = 734 ++selection_number; 735 (*num_selected)++; 736 } 737 } 738 } else { 739 selection_number = 0; 740 for (i = 0; i < *num_selections; i++) { 741 if ((*dev_select)[i].selected != 0) { 742 (*dev_select)[i].selected = 743 ++selection_number; 744 } 745 } 746 } 747 } 748 749 /* 750 * If we're in the "add" selection mode and if we haven't already 751 * selected maxshowdevs number of devices, go through the array and 752 * select any unselected devices. If we're in "only" mode, we 753 * obviously don't want to select anything other than what the user 754 * specifies. If we're in "remove" mode, it probably isn't a good 755 * idea to go through and select any more devices, since we might 756 * end up selecting something that the user wants removed. Through 757 * more complicated logic, we could actually figure this out, but 758 * that would probably require combining this loop with the various 759 * selections loops above. 760 */ 761 if ((select_mode == DS_SELECT_ADD) && (*num_selected < maxshowdevs)) { 762 for (i = 0; i < *num_selections; i++) 763 if ((*dev_select)[i].selected == 0) { 764 (*dev_select)[i].selected = ++selection_number; 765 (*num_selected)++; 766 } 767 } 768 769 /* 770 * Look at the number of devices that have been selected. If it 771 * has changed, set the changed variable. Otherwise, if we've 772 * made a backup of the selection list, compare it to the current 773 * selection list to see if the selected devices have changed. 774 */ 775 if ((changed == 0) && (old_num_selected != *num_selected)) 776 changed = 1; 777 else if ((changed == 0) && (old_dev_select != NULL)) { 778 /* 779 * Now we go through the selection list and we look at 780 * it three different ways. 781 */ 782 for (i = 0; (i < *num_selections) && (changed == 0) && 783 (i < old_num_selections); i++) { 784 /* 785 * If the device at index i in both the new and old 786 * selection arrays has the same device number and 787 * selection status, it hasn't changed. We 788 * continue on to the next index. 789 */ 790 if (((*dev_select)[i].device_number == 791 old_dev_select[i].device_number) 792 && ((*dev_select)[i].selected == 793 old_dev_select[i].selected)) 794 continue; 795 796 /* 797 * Now, if we're still going through the if 798 * statement, the above test wasn't true. So we 799 * check here to see if the device at index i in 800 * the current array is the same as the device at 801 * index i in the old array. If it is, that means 802 * that its selection number has changed. Set 803 * changed to 1 and exit the loop. 804 */ 805 else if ((*dev_select)[i].device_number == 806 old_dev_select[i].device_number) { 807 changed = 1; 808 break; 809 } 810 /* 811 * If we get here, then the device at index i in 812 * the current array isn't the same device as the 813 * device at index i in the old array. 814 */ 815 else { 816 int found = 0; 817 818 /* 819 * Search through the old selection array 820 * looking for a device with the same 821 * device number as the device at index i 822 * in the current array. If the selection 823 * status is the same, then we mark it as 824 * found. If the selection status isn't 825 * the same, we break out of the loop. 826 * Since found isn't set, changed will be 827 * set to 1 below. 828 */ 829 for (j = 0; j < old_num_selections; j++) { 830 if (((*dev_select)[i].device_number == 831 old_dev_select[j].device_number) 832 && ((*dev_select)[i].selected == 833 old_dev_select[j].selected)){ 834 found = 1; 835 break; 836 } 837 else if ((*dev_select)[i].device_number 838 == old_dev_select[j].device_number) 839 break; 840 } 841 if (found == 0) 842 changed = 1; 843 } 844 } 845 } 846 if (old_dev_select != NULL) 847 free(old_dev_select); 848 849 return(changed); 850 } 851 852 /* 853 * Comparison routine for qsort() above. Note that the comparison here is 854 * backwards -- generally, it should return a value to indicate whether 855 * arg1 is <, =, or > arg2. Instead, it returns the opposite. The reason 856 * it returns the opposite is so that the selection array will be sorted in 857 * order of decreasing performance. We sort on two parameters. The first 858 * sort key is whether or not one or the other of the devices in question 859 * has been selected. If one of them has, and the other one has not, the 860 * selected device is automatically more important than the unselected 861 * device. If neither device is selected, we judge the devices based upon 862 * performance. 863 */ 864 static int 865 compare_select(const void *arg1, const void *arg2) 866 { 867 if ((((struct device_selection *)arg1)->selected) 868 && (((struct device_selection *)arg2)->selected == 0)) 869 return(-1); 870 else if ((((struct device_selection *)arg1)->selected == 0) 871 && (((struct device_selection *)arg2)->selected)) 872 return(1); 873 else if (((struct device_selection *)arg2)->bytes < 874 ((struct device_selection *)arg1)->bytes) 875 return(-1); 876 else if (((struct device_selection *)arg2)->bytes > 877 ((struct device_selection *)arg1)->bytes) 878 return(1); 879 else 880 return(0); 881 } 882 883 /* 884 * Take a string with the general format "arg1,arg2,arg3", and build a 885 * device matching expression from it. 886 */ 887 int 888 buildmatch(char *match_str, struct devstat_match **matches, int *num_matches) 889 { 890 char *tstr[5]; 891 char **tempstr; 892 int num_args; 893 register int i, j; 894 char *func_name = "buildmatch"; 895 896 /* We can't do much without a string to parse */ 897 if (match_str == NULL) { 898 sprintf(devstat_errbuf, "%s: no match expression", func_name); 899 return(-1); 900 } 901 902 /* 903 * Break the (comma delimited) input string out into separate strings. 904 */ 905 for (tempstr = tstr, num_args = 0; 906 (*tempstr = strsep(&match_str, ",")) != NULL && (num_args < 5); 907 num_args++) 908 if (**tempstr != '\0') 909 if (++tempstr >= &tstr[5]) 910 break; 911 912 /* The user gave us too many type arguments */ 913 if (num_args > 3) { 914 sprintf(devstat_errbuf, "%s: too many type arguments", 915 func_name); 916 return(-1); 917 } 918 919 /* 920 * Since you can't realloc a pointer that hasn't been malloced 921 * first, we malloc first and then realloc. 922 */ 923 if (*num_matches == 0) 924 *matches = (struct devstat_match *)malloc( 925 sizeof(struct devstat_match)); 926 else 927 *matches = (struct devstat_match *)realloc(*matches, 928 sizeof(struct devstat_match) * (*num_matches + 1)); 929 930 /* Make sure the current entry is clear */ 931 bzero(&matches[0][*num_matches], sizeof(struct devstat_match)); 932 933 /* 934 * Step through the arguments the user gave us and build a device 935 * matching expression from them. 936 */ 937 for (i = 0; i < num_args; i++) { 938 char *tempstr2, *tempstr3; 939 940 /* 941 * Get rid of leading white space. 942 */ 943 tempstr2 = tstr[i]; 944 while (isspace(*tempstr2) && (*tempstr2 != '\0')) 945 tempstr2++; 946 947 /* 948 * Get rid of trailing white space. 949 */ 950 tempstr3 = &tempstr2[strlen(tempstr2) - 1]; 951 952 while ((*tempstr3 != '\0') && (tempstr3 > tempstr2) 953 && (isspace(*tempstr3))) { 954 *tempstr3 = '\0'; 955 tempstr3--; 956 } 957 958 /* 959 * Go through the match table comparing the user's 960 * arguments to known device types, interfaces, etc. 961 */ 962 for (j = 0; match_table[j].match_str != NULL; j++) { 963 /* 964 * We do case-insensitive matching, in case someone 965 * wants to enter "SCSI" instead of "scsi" or 966 * something like that. Only compare as many 967 * characters as are in the string in the match 968 * table. This should help if someone tries to use 969 * a super-long match expression. 970 */ 971 if (strncasecmp(tempstr2, match_table[j].match_str, 972 strlen(match_table[j].match_str)) == 0) { 973 /* 974 * Make sure the user hasn't specified two 975 * items of the same type, like "da" and 976 * "cd". One device cannot be both. 977 */ 978 if (((*matches)[*num_matches].match_fields & 979 match_table[j].match_field) != 0) { 980 sprintf(devstat_errbuf, 981 "%s: cannot have more than " 982 "one match item in a single " 983 "category", func_name); 984 return(-1); 985 } 986 /* 987 * If we've gotten this far, we have a 988 * winner. Set the appropriate fields in 989 * the match entry. 990 */ 991 (*matches)[*num_matches].match_fields |= 992 match_table[j].match_field; 993 (*matches)[*num_matches].device_type |= 994 match_table[j].type; 995 (*matches)[*num_matches].num_match_categories++; 996 break; 997 } 998 } 999 /* 1000 * We should have found a match in the above for loop. If 1001 * not, that means the user entered an invalid device type 1002 * or interface. 1003 */ 1004 if ((*matches)[*num_matches].num_match_categories != (i + 1)) { 1005 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 1006 "%s: unknown match item \"%s\"", func_name, 1007 tstr[i]); 1008 return(-1); 1009 } 1010 } 1011 1012 (*num_matches)++; 1013 1014 return(0); 1015 } 1016 1017 /* 1018 * Compute a number of device statistics. Only one field is mandatory, and 1019 * that is "current". Everything else is optional. The caller passes in 1020 * pointers to variables to hold the various statistics he desires. If he 1021 * doesn't want a particular staistic, he should pass in a NULL pointer. 1022 * Return values: 1023 * 0 -- success 1024 * -1 -- failure 1025 */ 1026 int 1027 compute_stats(struct devstat *current, struct devstat *previous, 1028 long double etime, u_int64_t *total_bytes, 1029 u_int64_t *total_transfers, u_int64_t *total_blocks, 1030 long double *kb_per_transfer, long double *transfers_per_second, 1031 long double *mb_per_second, long double *blocks_per_second, 1032 long double *ms_per_transaction) 1033 { 1034 u_int64_t totalbytes, totaltransfers, totalblocks; 1035 char *func_name = "compute_stats"; 1036 1037 /* 1038 * current is the only mandatory field. 1039 */ 1040 if (current == NULL) { 1041 sprintf(devstat_errbuf, "%s: current stats structure was NULL", 1042 func_name); 1043 return(-1); 1044 } 1045 1046 totalbytes = (current->bytes_written + current->bytes_read) - 1047 ((previous) ? (previous->bytes_written + 1048 previous->bytes_read) : 0); 1049 1050 if (total_bytes) 1051 *total_bytes = totalbytes; 1052 1053 totaltransfers = (current->num_reads + 1054 current->num_writes + 1055 current->num_other) - 1056 ((previous) ? 1057 (previous->num_reads + 1058 previous->num_writes + 1059 previous->num_other) : 0); 1060 if (total_transfers) 1061 *total_transfers = totaltransfers; 1062 1063 if (transfers_per_second) { 1064 if (etime > 0.0) { 1065 *transfers_per_second = totaltransfers; 1066 *transfers_per_second /= etime; 1067 } else 1068 *transfers_per_second = 0.0; 1069 } 1070 1071 if (kb_per_transfer) { 1072 *kb_per_transfer = totalbytes; 1073 *kb_per_transfer /= 1024; 1074 if (totaltransfers > 0) 1075 *kb_per_transfer /= totaltransfers; 1076 else 1077 *kb_per_transfer = 0.0; 1078 } 1079 1080 if (mb_per_second) { 1081 *mb_per_second = totalbytes; 1082 *mb_per_second /= 1024 * 1024; 1083 if (etime > 0.0) 1084 *mb_per_second /= etime; 1085 else 1086 *mb_per_second = 0.0; 1087 } 1088 1089 totalblocks = totalbytes; 1090 if (current->block_size > 0) 1091 totalblocks /= current->block_size; 1092 else 1093 totalblocks /= 512; 1094 1095 if (total_blocks) 1096 *total_blocks = totalblocks; 1097 1098 if (blocks_per_second) { 1099 *blocks_per_second = totalblocks; 1100 if (etime > 0.0) 1101 *blocks_per_second /= etime; 1102 else 1103 *blocks_per_second = 0.0; 1104 } 1105 1106 if (ms_per_transaction) { 1107 if (totaltransfers > 0) { 1108 *ms_per_transaction = etime; 1109 *ms_per_transaction /= totaltransfers; 1110 *ms_per_transaction *= 1000; 1111 } else 1112 *ms_per_transaction = 0.0; 1113 } 1114 1115 return(0); 1116 } 1117 1118 long double 1119 compute_etime(struct timeval cur_time, struct timeval prev_time) 1120 { 1121 struct timeval busy_time; 1122 u_int64_t busy_usec; 1123 long double etime; 1124 1125 timersub(&cur_time, &prev_time, &busy_time); 1126 1127 busy_usec = busy_time.tv_sec; 1128 busy_usec *= 1000000; 1129 busy_usec += busy_time.tv_usec; 1130 etime = busy_usec; 1131 etime /= 1000000; 1132 1133 return(etime); 1134 } 1135