1 /* 2 * Copyright (c) 2011 The FreeBSD Project. All rights reserved. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. Redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution. 12 * 13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 16 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 23 * SUCH DAMAGE. 24 */ 25 26 /* Based on: 27 * SHA512-based Unix crypt implementation. Released into the Public Domain by 28 * Ulrich Drepper <drepper@redhat.com>. */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include <sys/endian.h> 34 #include <sys/param.h> 35 36 #include <errno.h> 37 #include <limits.h> 38 #include <sha512.h> 39 #include <stdbool.h> 40 #include <stdint.h> 41 #include <stdio.h> 42 #include <stdlib.h> 43 #include <string.h> 44 45 #include "crypt.h" 46 47 /* Define our magic string to mark salt for SHA512 "encryption" replacement. */ 48 static const char sha512_salt_prefix[] = "$6$"; 49 50 /* Prefix for optional rounds specification. */ 51 static const char sha512_rounds_prefix[] = "rounds="; 52 53 /* Maximum salt string length. */ 54 #define SALT_LEN_MAX 16 55 /* Default number of rounds if not explicitly specified. */ 56 #define ROUNDS_DEFAULT 5000 57 /* Minimum number of rounds. */ 58 #define ROUNDS_MIN 1000 59 /* Maximum number of rounds. */ 60 #define ROUNDS_MAX 999999999 61 62 static char * 63 crypt_sha512_r(const char *key, const char *salt, char *buffer, int buflen) 64 { 65 u_long srounds; 66 int n; 67 uint8_t alt_result[64], temp_result[64]; 68 SHA512_CTX ctx, alt_ctx; 69 size_t salt_len, key_len, cnt, rounds; 70 char *cp, *copied_key, *copied_salt, *p_bytes, *s_bytes, *endp; 71 const char *num; 72 bool rounds_custom; 73 74 copied_key = NULL; 75 copied_salt = NULL; 76 77 /* Default number of rounds. */ 78 rounds = ROUNDS_DEFAULT; 79 rounds_custom = false; 80 81 /* Find beginning of salt string. The prefix should normally always 82 * be present. Just in case it is not. */ 83 if (strncmp(sha512_salt_prefix, salt, sizeof(sha512_salt_prefix) - 1) == 0) 84 /* Skip salt prefix. */ 85 salt += sizeof(sha512_salt_prefix) - 1; 86 87 if (strncmp(salt, sha512_rounds_prefix, sizeof(sha512_rounds_prefix) - 1) 88 == 0) { 89 num = salt + sizeof(sha512_rounds_prefix) - 1; 90 srounds = strtoul(num, &endp, 10); 91 92 if (*endp == '$') { 93 salt = endp + 1; 94 rounds = MAX(ROUNDS_MIN, MIN(srounds, ROUNDS_MAX)); 95 rounds_custom = true; 96 } 97 } 98 99 salt_len = MIN(strcspn(salt, "$"), SALT_LEN_MAX); 100 key_len = strlen(key); 101 102 /* Prepare for the real work. */ 103 SHA512_Init(&ctx); 104 105 /* Add the key string. */ 106 SHA512_Update(&ctx, key, key_len); 107 108 /* The last part is the salt string. This must be at most 8 109 * characters and it ends at the first `$' character (for 110 * compatibility with existing implementations). */ 111 SHA512_Update(&ctx, salt, salt_len); 112 113 /* Compute alternate SHA512 sum with input KEY, SALT, and KEY. The 114 * final result will be added to the first context. */ 115 SHA512_Init(&alt_ctx); 116 117 /* Add key. */ 118 SHA512_Update(&alt_ctx, key, key_len); 119 120 /* Add salt. */ 121 SHA512_Update(&alt_ctx, salt, salt_len); 122 123 /* Add key again. */ 124 SHA512_Update(&alt_ctx, key, key_len); 125 126 /* Now get result of this (64 bytes) and add it to the other context. */ 127 SHA512_Final(alt_result, &alt_ctx); 128 129 /* Add for any character in the key one byte of the alternate sum. */ 130 for (cnt = key_len; cnt > 64; cnt -= 64) 131 SHA512_Update(&ctx, alt_result, 64); 132 SHA512_Update(&ctx, alt_result, cnt); 133 134 /* Take the binary representation of the length of the key and for 135 * every 1 add the alternate sum, for every 0 the key. */ 136 for (cnt = key_len; cnt > 0; cnt >>= 1) 137 if ((cnt & 1) != 0) 138 SHA512_Update(&ctx, alt_result, 64); 139 else 140 SHA512_Update(&ctx, key, key_len); 141 142 /* Create intermediate result. */ 143 SHA512_Final(alt_result, &ctx); 144 145 /* Start computation of P byte sequence. */ 146 SHA512_Init(&alt_ctx); 147 148 /* For every character in the password add the entire password. */ 149 for (cnt = 0; cnt < key_len; ++cnt) 150 SHA512_Update(&alt_ctx, key, key_len); 151 152 /* Finish the digest. */ 153 SHA512_Final(temp_result, &alt_ctx); 154 155 /* Create byte sequence P. */ 156 cp = p_bytes = alloca(key_len); 157 for (cnt = key_len; cnt >= 64; cnt -= 64) { 158 memcpy(cp, temp_result, 64); 159 cp += 64; 160 } 161 memcpy(cp, temp_result, cnt); 162 163 /* Start computation of S byte sequence. */ 164 SHA512_Init(&alt_ctx); 165 166 /* For every character in the password add the entire password. */ 167 for (cnt = 0; cnt < 16 + alt_result[0]; ++cnt) 168 SHA512_Update(&alt_ctx, salt, salt_len); 169 170 /* Finish the digest. */ 171 SHA512_Final(temp_result, &alt_ctx); 172 173 /* Create byte sequence S. */ 174 cp = s_bytes = alloca(salt_len); 175 for (cnt = salt_len; cnt >= 64; cnt -= 64) { 176 memcpy(cp, temp_result, 64); 177 cp += 64; 178 } 179 memcpy(cp, temp_result, cnt); 180 181 /* Repeatedly run the collected hash value through SHA512 to burn CPU 182 * cycles. */ 183 for (cnt = 0; cnt < rounds; ++cnt) { 184 /* New context. */ 185 SHA512_Init(&ctx); 186 187 /* Add key or last result. */ 188 if ((cnt & 1) != 0) 189 SHA512_Update(&ctx, p_bytes, key_len); 190 else 191 SHA512_Update(&ctx, alt_result, 64); 192 193 /* Add salt for numbers not divisible by 3. */ 194 if (cnt % 3 != 0) 195 SHA512_Update(&ctx, s_bytes, salt_len); 196 197 /* Add key for numbers not divisible by 7. */ 198 if (cnt % 7 != 0) 199 SHA512_Update(&ctx, p_bytes, key_len); 200 201 /* Add key or last result. */ 202 if ((cnt & 1) != 0) 203 SHA512_Update(&ctx, alt_result, 64); 204 else 205 SHA512_Update(&ctx, p_bytes, key_len); 206 207 /* Create intermediate result. */ 208 SHA512_Final(alt_result, &ctx); 209 } 210 211 /* Now we can construct the result string. It consists of three 212 * parts. */ 213 cp = stpncpy(buffer, sha512_salt_prefix, MAX(0, buflen)); 214 buflen -= sizeof(sha512_salt_prefix) - 1; 215 216 if (rounds_custom) { 217 n = snprintf(cp, MAX(0, buflen), "%s%zu$", 218 sha512_rounds_prefix, rounds); 219 220 cp += n; 221 buflen -= n; 222 } 223 224 cp = stpncpy(cp, salt, MIN((size_t)MAX(0, buflen), salt_len)); 225 buflen -= MIN((size_t)MAX(0, buflen), salt_len); 226 227 if (buflen > 0) { 228 *cp++ = '$'; 229 --buflen; 230 } 231 232 b64_from_24bit(alt_result[0], alt_result[21], alt_result[42], 4, &buflen, &cp); 233 b64_from_24bit(alt_result[22], alt_result[43], alt_result[1], 4, &buflen, &cp); 234 b64_from_24bit(alt_result[44], alt_result[2], alt_result[23], 4, &buflen, &cp); 235 b64_from_24bit(alt_result[3], alt_result[24], alt_result[45], 4, &buflen, &cp); 236 b64_from_24bit(alt_result[25], alt_result[46], alt_result[4], 4, &buflen, &cp); 237 b64_from_24bit(alt_result[47], alt_result[5], alt_result[26], 4, &buflen, &cp); 238 b64_from_24bit(alt_result[6], alt_result[27], alt_result[48], 4, &buflen, &cp); 239 b64_from_24bit(alt_result[28], alt_result[49], alt_result[7], 4, &buflen, &cp); 240 b64_from_24bit(alt_result[50], alt_result[8], alt_result[29], 4, &buflen, &cp); 241 b64_from_24bit(alt_result[9], alt_result[30], alt_result[51], 4, &buflen, &cp); 242 b64_from_24bit(alt_result[31], alt_result[52], alt_result[10], 4, &buflen, &cp); 243 b64_from_24bit(alt_result[53], alt_result[11], alt_result[32], 4, &buflen, &cp); 244 b64_from_24bit(alt_result[12], alt_result[33], alt_result[54], 4, &buflen, &cp); 245 b64_from_24bit(alt_result[34], alt_result[55], alt_result[13], 4, &buflen, &cp); 246 b64_from_24bit(alt_result[56], alt_result[14], alt_result[35], 4, &buflen, &cp); 247 b64_from_24bit(alt_result[15], alt_result[36], alt_result[57], 4, &buflen, &cp); 248 b64_from_24bit(alt_result[37], alt_result[58], alt_result[16], 4, &buflen, &cp); 249 b64_from_24bit(alt_result[59], alt_result[17], alt_result[38], 4, &buflen, &cp); 250 b64_from_24bit(alt_result[18], alt_result[39], alt_result[60], 4, &buflen, &cp); 251 b64_from_24bit(alt_result[40], alt_result[61], alt_result[19], 4, &buflen, &cp); 252 b64_from_24bit(alt_result[62], alt_result[20], alt_result[41], 4, &buflen, &cp); 253 b64_from_24bit(0, 0, alt_result[63], 2, &buflen, &cp); 254 255 if (buflen <= 0) { 256 errno = ERANGE; 257 buffer = NULL; 258 } 259 else 260 *cp = '\0'; /* Terminate the string. */ 261 262 /* Clear the buffer for the intermediate result so that people 263 * attaching to processes or reading core dumps cannot get any 264 * information. We do it in this way to clear correct_words[] inside 265 * the SHA512 implementation as well. */ 266 SHA512_Init(&ctx); 267 SHA512_Final(alt_result, &ctx); 268 memset(temp_result, '\0', sizeof(temp_result)); 269 memset(p_bytes, '\0', key_len); 270 memset(s_bytes, '\0', salt_len); 271 memset(&ctx, '\0', sizeof(ctx)); 272 memset(&alt_ctx, '\0', sizeof(alt_ctx)); 273 if (copied_key != NULL) 274 memset(copied_key, '\0', key_len); 275 if (copied_salt != NULL) 276 memset(copied_salt, '\0', salt_len); 277 278 return buffer; 279 } 280 281 /* This entry point is equivalent to crypt(3). */ 282 char * 283 crypt_sha512(const char *key, const char *salt) 284 { 285 /* We don't want to have an arbitrary limit in the size of the 286 * password. We can compute an upper bound for the size of the 287 * result in advance and so we can prepare the buffer we pass to 288 * `crypt_sha512_r'. */ 289 static char *buffer; 290 static int buflen; 291 int needed; 292 char *new_buffer; 293 294 needed = (sizeof(sha512_salt_prefix) - 1 295 + sizeof(sha512_rounds_prefix) + 9 + 1 296 + strlen(salt) + 1 + 86 + 1); 297 298 if (buflen < needed) { 299 new_buffer = (char *)realloc(buffer, needed); 300 301 if (new_buffer == NULL) 302 return NULL; 303 304 buffer = new_buffer; 305 buflen = needed; 306 } 307 308 return crypt_sha512_r(key, salt, buffer, buflen); 309 } 310 311 #ifdef TEST 312 313 static const struct { 314 const char *input; 315 const char result[64]; 316 } tests[] = 317 { 318 /* Test vectors from FIPS 180-2: appendix C.1. */ 319 { 320 "abc", 321 "\xdd\xaf\x35\xa1\x93\x61\x7a\xba\xcc\x41\x73\x49\xae\x20\x41\x31" 322 "\x12\xe6\xfa\x4e\x89\xa9\x7e\xa2\x0a\x9e\xee\xe6\x4b\x55\xd3\x9a" 323 "\x21\x92\x99\x2a\x27\x4f\xc1\xa8\x36\xba\x3c\x23\xa3\xfe\xeb\xbd" 324 "\x45\x4d\x44\x23\x64\x3c\xe8\x0e\x2a\x9a\xc9\x4f\xa5\x4c\xa4\x9f" 325 }, 326 /* Test vectors from FIPS 180-2: appendix C.2. */ 327 { 328 "abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmn" 329 "hijklmnoijklmnopjklmnopqklmnopqrlmnopqrsmnopqrstnopqrstu", 330 "\x8e\x95\x9b\x75\xda\xe3\x13\xda\x8c\xf4\xf7\x28\x14\xfc\x14\x3f" 331 "\x8f\x77\x79\xc6\xeb\x9f\x7f\xa1\x72\x99\xae\xad\xb6\x88\x90\x18" 332 "\x50\x1d\x28\x9e\x49\x00\xf7\xe4\x33\x1b\x99\xde\xc4\xb5\x43\x3a" 333 "\xc7\xd3\x29\xee\xb6\xdd\x26\x54\x5e\x96\xe5\x5b\x87\x4b\xe9\x09" 334 }, 335 /* Test vectors from the NESSIE project. */ 336 { 337 "", 338 "\xcf\x83\xe1\x35\x7e\xef\xb8\xbd\xf1\x54\x28\x50\xd6\x6d\x80\x07" 339 "\xd6\x20\xe4\x05\x0b\x57\x15\xdc\x83\xf4\xa9\x21\xd3\x6c\xe9\xce" 340 "\x47\xd0\xd1\x3c\x5d\x85\xf2\xb0\xff\x83\x18\xd2\x87\x7e\xec\x2f" 341 "\x63\xb9\x31\xbd\x47\x41\x7a\x81\xa5\x38\x32\x7a\xf9\x27\xda\x3e" 342 }, 343 { 344 "a", 345 "\x1f\x40\xfc\x92\xda\x24\x16\x94\x75\x09\x79\xee\x6c\xf5\x82\xf2" 346 "\xd5\xd7\xd2\x8e\x18\x33\x5d\xe0\x5a\xbc\x54\xd0\x56\x0e\x0f\x53" 347 "\x02\x86\x0c\x65\x2b\xf0\x8d\x56\x02\x52\xaa\x5e\x74\x21\x05\x46" 348 "\xf3\x69\xfb\xbb\xce\x8c\x12\xcf\xc7\x95\x7b\x26\x52\xfe\x9a\x75" 349 }, 350 { 351 "message digest", 352 "\x10\x7d\xbf\x38\x9d\x9e\x9f\x71\xa3\xa9\x5f\x6c\x05\x5b\x92\x51" 353 "\xbc\x52\x68\xc2\xbe\x16\xd6\xc1\x34\x92\xea\x45\xb0\x19\x9f\x33" 354 "\x09\xe1\x64\x55\xab\x1e\x96\x11\x8e\x8a\x90\x5d\x55\x97\xb7\x20" 355 "\x38\xdd\xb3\x72\xa8\x98\x26\x04\x6d\xe6\x66\x87\xbb\x42\x0e\x7c" 356 }, 357 { 358 "abcdefghijklmnopqrstuvwxyz", 359 "\x4d\xbf\xf8\x6c\xc2\xca\x1b\xae\x1e\x16\x46\x8a\x05\xcb\x98\x81" 360 "\xc9\x7f\x17\x53\xbc\xe3\x61\x90\x34\x89\x8f\xaa\x1a\xab\xe4\x29" 361 "\x95\x5a\x1b\xf8\xec\x48\x3d\x74\x21\xfe\x3c\x16\x46\x61\x3a\x59" 362 "\xed\x54\x41\xfb\x0f\x32\x13\x89\xf7\x7f\x48\xa8\x79\xc7\xb1\xf1" 363 }, 364 { 365 "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq", 366 "\x20\x4a\x8f\xc6\xdd\xa8\x2f\x0a\x0c\xed\x7b\xeb\x8e\x08\xa4\x16" 367 "\x57\xc1\x6e\xf4\x68\xb2\x28\xa8\x27\x9b\xe3\x31\xa7\x03\xc3\x35" 368 "\x96\xfd\x15\xc1\x3b\x1b\x07\xf9\xaa\x1d\x3b\xea\x57\x78\x9c\xa0" 369 "\x31\xad\x85\xc7\xa7\x1d\xd7\x03\x54\xec\x63\x12\x38\xca\x34\x45" 370 }, 371 { 372 "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789", 373 "\x1e\x07\xbe\x23\xc2\x6a\x86\xea\x37\xea\x81\x0c\x8e\xc7\x80\x93" 374 "\x52\x51\x5a\x97\x0e\x92\x53\xc2\x6f\x53\x6c\xfc\x7a\x99\x96\xc4" 375 "\x5c\x83\x70\x58\x3e\x0a\x78\xfa\x4a\x90\x04\x1d\x71\xa4\xce\xab" 376 "\x74\x23\xf1\x9c\x71\xb9\xd5\xa3\xe0\x12\x49\xf0\xbe\xbd\x58\x94" 377 }, 378 { 379 "123456789012345678901234567890123456789012345678901234567890" 380 "12345678901234567890", 381 "\x72\xec\x1e\xf1\x12\x4a\x45\xb0\x47\xe8\xb7\xc7\x5a\x93\x21\x95" 382 "\x13\x5b\xb6\x1d\xe2\x4e\xc0\xd1\x91\x40\x42\x24\x6e\x0a\xec\x3a" 383 "\x23\x54\xe0\x93\xd7\x6f\x30\x48\xb4\x56\x76\x43\x46\x90\x0c\xb1" 384 "\x30\xd2\xa4\xfd\x5d\xd1\x6a\xbb\x5e\x30\xbc\xb8\x50\xde\xe8\x43" 385 } 386 }; 387 388 #define ntests (sizeof (tests) / sizeof (tests[0])) 389 390 static const struct { 391 const char *salt; 392 const char *input; 393 const char *expected; 394 } tests2[] = 395 { 396 { 397 "$6$saltstring", "Hello world!", 398 "$6$saltstring$svn8UoSVapNtMuq1ukKS4tPQd8iKwSMHWjl/O817G3uBnIFNjnQJu" 399 "esI68u4OTLiBFdcbYEdFCoEOfaS35inz1" 400 }, 401 { 402 "$6$rounds=10000$saltstringsaltstring", "Hello world!", 403 "$6$rounds=10000$saltstringsaltst$OW1/O6BYHV6BcXZu8QVeXbDWra3Oeqh0sb" 404 "HbbMCVNSnCM/UrjmM0Dp8vOuZeHBy/YTBmSK6H9qs/y3RnOaw5v." 405 }, 406 { 407 "$6$rounds=5000$toolongsaltstring", "This is just a test", 408 "$6$rounds=5000$toolongsaltstrin$lQ8jolhgVRVhY4b5pZKaysCLi0QBxGoNeKQ" 409 "zQ3glMhwllF7oGDZxUhx1yxdYcz/e1JSbq3y6JMxxl8audkUEm0" 410 }, 411 { 412 "$6$rounds=1400$anotherlongsaltstring", 413 "a very much longer text to encrypt. This one even stretches over more" 414 "than one line.", 415 "$6$rounds=1400$anotherlongsalts$POfYwTEok97VWcjxIiSOjiykti.o/pQs.wP" 416 "vMxQ6Fm7I6IoYN3CmLs66x9t0oSwbtEW7o7UmJEiDwGqd8p4ur1" 417 }, 418 { 419 "$6$rounds=77777$short", 420 "we have a short salt string but not a short password", 421 "$6$rounds=77777$short$WuQyW2YR.hBNpjjRhpYD/ifIw05xdfeEyQoMxIXbkvr0g" 422 "ge1a1x3yRULJ5CCaUeOxFmtlcGZelFl5CxtgfiAc0" 423 }, 424 { 425 "$6$rounds=123456$asaltof16chars..", "a short string", 426 "$6$rounds=123456$asaltof16chars..$BtCwjqMJGx5hrJhZywWvt0RLE8uZ4oPwc" 427 "elCjmw2kSYu.Ec6ycULevoBK25fs2xXgMNrCzIMVcgEJAstJeonj1" 428 }, 429 { 430 "$6$rounds=10$roundstoolow", "the minimum number is still observed", 431 "$6$rounds=1000$roundstoolow$kUMsbe306n21p9R.FRkW3IGn.S9NPN0x50YhH1x" 432 "hLsPuWGsUSklZt58jaTfF4ZEQpyUNGc0dqbpBYYBaHHrsX." 433 }, 434 }; 435 436 #define ntests2 (sizeof (tests2) / sizeof (tests2[0])) 437 438 int 439 main(void) 440 { 441 SHA512_CTX ctx; 442 uint8_t sum[64]; 443 int result = 0; 444 int i, cnt; 445 446 for (cnt = 0; cnt < (int)ntests; ++cnt) { 447 SHA512_Init(&ctx); 448 SHA512_Update(&ctx, tests[cnt].input, strlen(tests[cnt].input)); 449 SHA512_Final(sum, &ctx); 450 if (memcmp(tests[cnt].result, sum, 64) != 0) { 451 printf("test %d run %d failed\n", cnt, 1); 452 result = 1; 453 } 454 455 SHA512_Init(&ctx); 456 for (i = 0; tests[cnt].input[i] != '\0'; ++i) 457 SHA512_Update(&ctx, &tests[cnt].input[i], 1); 458 SHA512_Final(sum, &ctx); 459 if (memcmp(tests[cnt].result, sum, 64) != 0) { 460 printf("test %d run %d failed\n", cnt, 2); 461 result = 1; 462 } 463 } 464 465 /* Test vector from FIPS 180-2: appendix C.3. */ 466 char buf[1000]; 467 468 memset(buf, 'a', sizeof(buf)); 469 SHA512_Init(&ctx); 470 for (i = 0; i < 1000; ++i) 471 SHA512_Update(&ctx, buf, sizeof(buf)); 472 SHA512_Final(sum, &ctx); 473 static const char expected[64] = 474 "\xe7\x18\x48\x3d\x0c\xe7\x69\x64\x4e\x2e\x42\xc7\xbc\x15\xb4\x63" 475 "\x8e\x1f\x98\xb1\x3b\x20\x44\x28\x56\x32\xa8\x03\xaf\xa9\x73\xeb" 476 "\xde\x0f\xf2\x44\x87\x7e\xa6\x0a\x4c\xb0\x43\x2c\xe5\x77\xc3\x1b" 477 "\xeb\x00\x9c\x5c\x2c\x49\xaa\x2e\x4e\xad\xb2\x17\xad\x8c\xc0\x9b"; 478 479 if (memcmp(expected, sum, 64) != 0) { 480 printf("test %d failed\n", cnt); 481 result = 1; 482 } 483 484 for (cnt = 0; cnt < ntests2; ++cnt) { 485 char *cp = crypt_sha512(tests2[cnt].input, tests2[cnt].salt); 486 487 if (strcmp(cp, tests2[cnt].expected) != 0) { 488 printf("test %d: expected \"%s\", got \"%s\"\n", 489 cnt, tests2[cnt].expected, cp); 490 result = 1; 491 } 492 } 493 494 if (result == 0) 495 puts("all tests OK"); 496 497 return result; 498 } 499 500 #endif /* TEST */ 501