xref: /freebsd/lib/libcrypt/crypt-sha256.c (revision e1e636193db45630c7881246d25902e57c43d24e)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2011 The FreeBSD Project. All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 /* Based on:
29  * SHA256-based Unix crypt implementation. Released into the Public Domain by
30  * Ulrich Drepper <drepper@redhat.com>. */
31 
32 #include <sys/cdefs.h>
33 #include <sys/endian.h>
34 #include <sys/param.h>
35 
36 #include <errno.h>
37 #include <limits.h>
38 #include <sha256.h>
39 #include <stdbool.h>
40 #include <stdint.h>
41 #include <stdio.h>
42 #include <stdlib.h>
43 #include <string.h>
44 
45 #include "crypt.h"
46 
47 /* Define our magic string to mark salt for SHA256 "encryption" replacement. */
48 static const char sha256_salt_prefix[] = "$5$";
49 
50 /* Prefix for optional rounds specification. */
51 static const char sha256_rounds_prefix[] = "rounds=";
52 
53 /* Maximum salt string length. */
54 #define SALT_LEN_MAX 16
55 /* Default number of rounds if not explicitly specified. */
56 #define ROUNDS_DEFAULT 5000
57 /* Minimum number of rounds. */
58 #define ROUNDS_MIN 1000
59 /* Maximum number of rounds. */
60 #define ROUNDS_MAX 999999999
61 
62 int
63 crypt_sha256(const char *key, const char *salt, char *buffer)
64 {
65 	u_long srounds;
66 	uint8_t alt_result[32], temp_result[32];
67 	SHA256_CTX ctx, alt_ctx;
68 	size_t salt_len, key_len, cnt, rounds;
69 	char *cp, *p_bytes, *s_bytes, *endp;
70 	const char *num;
71 	bool rounds_custom;
72 
73 	/* Default number of rounds. */
74 	rounds = ROUNDS_DEFAULT;
75 	rounds_custom = false;
76 
77 	/* Find beginning of salt string. The prefix should normally always
78 	 * be present. Just in case it is not. */
79 	if (strncmp(sha256_salt_prefix, salt, sizeof(sha256_salt_prefix) - 1) == 0)
80 		/* Skip salt prefix. */
81 		salt += sizeof(sha256_salt_prefix) - 1;
82 
83 	if (strncmp(salt, sha256_rounds_prefix, sizeof(sha256_rounds_prefix) - 1)
84 	    == 0) {
85 		num = salt + sizeof(sha256_rounds_prefix) - 1;
86 		srounds = strtoul(num, &endp, 10);
87 
88 		if (*endp == '$') {
89 			salt = endp + 1;
90 			rounds = MAX(ROUNDS_MIN, MIN(srounds, ROUNDS_MAX));
91 			rounds_custom = true;
92 		}
93 	}
94 
95 	salt_len = MIN(strcspn(salt, "$"), SALT_LEN_MAX);
96 	key_len = strlen(key);
97 
98 	/* Prepare for the real work. */
99 	SHA256_Init(&ctx);
100 
101 	/* Add the key string. */
102 	SHA256_Update(&ctx, key, key_len);
103 
104 	/* The last part is the salt string. This must be at most 8
105 	 * characters and it ends at the first `$' character (for
106 	 * compatibility with existing implementations). */
107 	SHA256_Update(&ctx, salt, salt_len);
108 
109 	/* Compute alternate SHA256 sum with input KEY, SALT, and KEY. The
110 	 * final result will be added to the first context. */
111 	SHA256_Init(&alt_ctx);
112 
113 	/* Add key. */
114 	SHA256_Update(&alt_ctx, key, key_len);
115 
116 	/* Add salt. */
117 	SHA256_Update(&alt_ctx, salt, salt_len);
118 
119 	/* Add key again. */
120 	SHA256_Update(&alt_ctx, key, key_len);
121 
122 	/* Now get result of this (32 bytes) and add it to the other context. */
123 	SHA256_Final(alt_result, &alt_ctx);
124 
125 	/* Add for any character in the key one byte of the alternate sum. */
126 	for (cnt = key_len; cnt > 32; cnt -= 32)
127 		SHA256_Update(&ctx, alt_result, 32);
128 	SHA256_Update(&ctx, alt_result, cnt);
129 
130 	/* Take the binary representation of the length of the key and for
131 	 * every 1 add the alternate sum, for every 0 the key. */
132 	for (cnt = key_len; cnt > 0; cnt >>= 1)
133 		if ((cnt & 1) != 0)
134 			SHA256_Update(&ctx, alt_result, 32);
135 		else
136 			SHA256_Update(&ctx, key, key_len);
137 
138 	/* Create intermediate result. */
139 	SHA256_Final(alt_result, &ctx);
140 
141 	/* Start computation of P byte sequence. */
142 	SHA256_Init(&alt_ctx);
143 
144 	/* For every character in the password add the entire password. */
145 	for (cnt = 0; cnt < key_len; ++cnt)
146 		SHA256_Update(&alt_ctx, key, key_len);
147 
148 	/* Finish the digest. */
149 	SHA256_Final(temp_result, &alt_ctx);
150 
151 	/* Create byte sequence P. */
152 	cp = p_bytes = alloca(key_len);
153 	for (cnt = key_len; cnt >= 32; cnt -= 32) {
154 		memcpy(cp, temp_result, 32);
155 		cp += 32;
156 	}
157 	memcpy(cp, temp_result, cnt);
158 
159 	/* Start computation of S byte sequence. */
160 	SHA256_Init(&alt_ctx);
161 
162 	/* For every character in the password add the entire password. */
163 	for (cnt = 0; cnt < 16 + alt_result[0]; ++cnt)
164 		SHA256_Update(&alt_ctx, salt, salt_len);
165 
166 	/* Finish the digest. */
167 	SHA256_Final(temp_result, &alt_ctx);
168 
169 	/* Create byte sequence S. */
170 	cp = s_bytes = alloca(salt_len);
171 	for (cnt = salt_len; cnt >= 32; cnt -= 32) {
172 		memcpy(cp, temp_result, 32);
173 		cp += 32;
174 	}
175 	memcpy(cp, temp_result, cnt);
176 
177 	/* Repeatedly run the collected hash value through SHA256 to burn CPU
178 	 * cycles. */
179 	for (cnt = 0; cnt < rounds; ++cnt) {
180 		/* New context. */
181 		SHA256_Init(&ctx);
182 
183 		/* Add key or last result. */
184 		if ((cnt & 1) != 0)
185 			SHA256_Update(&ctx, p_bytes, key_len);
186 		else
187 			SHA256_Update(&ctx, alt_result, 32);
188 
189 		/* Add salt for numbers not divisible by 3. */
190 		if (cnt % 3 != 0)
191 			SHA256_Update(&ctx, s_bytes, salt_len);
192 
193 		/* Add key for numbers not divisible by 7. */
194 		if (cnt % 7 != 0)
195 			SHA256_Update(&ctx, p_bytes, key_len);
196 
197 		/* Add key or last result. */
198 		if ((cnt & 1) != 0)
199 			SHA256_Update(&ctx, alt_result, 32);
200 		else
201 			SHA256_Update(&ctx, p_bytes, key_len);
202 
203 		/* Create intermediate result. */
204 		SHA256_Final(alt_result, &ctx);
205 	}
206 
207 	/* Now we can construct the result string. It consists of three
208 	 * parts. */
209 	cp = stpcpy(buffer, sha256_salt_prefix);
210 
211 	if (rounds_custom)
212 		cp += sprintf(cp, "%s%zu$", sha256_rounds_prefix, rounds);
213 
214 	cp = stpncpy(cp, salt, salt_len);
215 
216 	*cp++ = '$';
217 
218 	b64_from_24bit(alt_result[0], alt_result[10], alt_result[20], 4, &cp);
219 	b64_from_24bit(alt_result[21], alt_result[1], alt_result[11], 4, &cp);
220 	b64_from_24bit(alt_result[12], alt_result[22], alt_result[2], 4, &cp);
221 	b64_from_24bit(alt_result[3], alt_result[13], alt_result[23], 4, &cp);
222 	b64_from_24bit(alt_result[24], alt_result[4], alt_result[14], 4, &cp);
223 	b64_from_24bit(alt_result[15], alt_result[25], alt_result[5], 4, &cp);
224 	b64_from_24bit(alt_result[6], alt_result[16], alt_result[26], 4, &cp);
225 	b64_from_24bit(alt_result[27], alt_result[7], alt_result[17], 4, &cp);
226 	b64_from_24bit(alt_result[18], alt_result[28], alt_result[8], 4, &cp);
227 	b64_from_24bit(alt_result[9], alt_result[19], alt_result[29], 4, &cp);
228 	b64_from_24bit(0, alt_result[31], alt_result[30], 3, &cp);
229 	*cp = '\0';	/* Terminate the string. */
230 
231 	/* Clear the buffer for the intermediate result so that people
232 	 * attaching to processes or reading core dumps cannot get any
233 	 * information. We do it in this way to clear correct_words[] inside
234 	 * the SHA256 implementation as well. */
235 	SHA256_Init(&ctx);
236 	SHA256_Final(alt_result, &ctx);
237 	memset(temp_result, '\0', sizeof(temp_result));
238 	memset(p_bytes, '\0', key_len);
239 	memset(s_bytes, '\0', salt_len);
240 
241 	return (0);
242 }
243 
244 #ifdef TEST
245 
246 static const struct {
247 	const char *input;
248 	const char result[32];
249 } tests[] =
250 {
251 	/* Test vectors from FIPS 180-2: appendix B.1. */
252 	{
253 		"abc",
254 		"\xba\x78\x16\xbf\x8f\x01\xcf\xea\x41\x41\x40\xde\x5d\xae\x22\x23"
255 		"\xb0\x03\x61\xa3\x96\x17\x7a\x9c\xb4\x10\xff\x61\xf2\x00\x15\xad"
256 	},
257 	/* Test vectors from FIPS 180-2: appendix B.2. */
258 	{
259 		"abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq",
260 		"\x24\x8d\x6a\x61\xd2\x06\x38\xb8\xe5\xc0\x26\x93\x0c\x3e\x60\x39"
261 		"\xa3\x3c\xe4\x59\x64\xff\x21\x67\xf6\xec\xed\xd4\x19\xdb\x06\xc1"
262 	},
263 	/* Test vectors from the NESSIE project. */
264 	{
265 		"",
266 		"\xe3\xb0\xc4\x42\x98\xfc\x1c\x14\x9a\xfb\xf4\xc8\x99\x6f\xb9\x24"
267 		"\x27\xae\x41\xe4\x64\x9b\x93\x4c\xa4\x95\x99\x1b\x78\x52\xb8\x55"
268 	},
269 	{
270 		"a",
271 		"\xca\x97\x81\x12\xca\x1b\xbd\xca\xfa\xc2\x31\xb3\x9a\x23\xdc\x4d"
272 		"\xa7\x86\xef\xf8\x14\x7c\x4e\x72\xb9\x80\x77\x85\xaf\xee\x48\xbb"
273 	},
274 	{
275 		"message digest",
276 		"\xf7\x84\x6f\x55\xcf\x23\xe1\x4e\xeb\xea\xb5\xb4\xe1\x55\x0c\xad"
277 		"\x5b\x50\x9e\x33\x48\xfb\xc4\xef\xa3\xa1\x41\x3d\x39\x3c\xb6\x50"
278 	},
279 	{
280 		"abcdefghijklmnopqrstuvwxyz",
281 		"\x71\xc4\x80\xdf\x93\xd6\xae\x2f\x1e\xfa\xd1\x44\x7c\x66\xc9\x52"
282 		"\x5e\x31\x62\x18\xcf\x51\xfc\x8d\x9e\xd8\x32\xf2\xda\xf1\x8b\x73"
283 	},
284 	{
285 		"abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq",
286 		"\x24\x8d\x6a\x61\xd2\x06\x38\xb8\xe5\xc0\x26\x93\x0c\x3e\x60\x39"
287 		"\xa3\x3c\xe4\x59\x64\xff\x21\x67\xf6\xec\xed\xd4\x19\xdb\x06\xc1"
288 	},
289 	{
290 		"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789",
291 		"\xdb\x4b\xfc\xbd\x4d\xa0\xcd\x85\xa6\x0c\x3c\x37\xd3\xfb\xd8\x80"
292 		"\x5c\x77\xf1\x5f\xc6\xb1\xfd\xfe\x61\x4e\xe0\xa7\xc8\xfd\xb4\xc0"
293 	},
294 	{
295 		"123456789012345678901234567890123456789012345678901234567890"
296 		"12345678901234567890",
297 		"\xf3\x71\xbc\x4a\x31\x1f\x2b\x00\x9e\xef\x95\x2d\xd8\x3c\xa8\x0e"
298 		"\x2b\x60\x02\x6c\x8e\x93\x55\x92\xd0\xf9\xc3\x08\x45\x3c\x81\x3e"
299 	}
300 };
301 
302 #define ntests (sizeof (tests) / sizeof (tests[0]))
303 
304 static const struct {
305 	const char *salt;
306 	const char *input;
307 	const char *expected;
308 } tests2[] =
309 {
310 	{
311 		"$5$saltstring", "Hello world!",
312 		"$5$saltstring$5B8vYYiY.CVt1RlTTf8KbXBH3hsxY/GNooZaBBGWEc5"
313 	},
314 	{
315 		"$5$rounds=10000$saltstringsaltstring", "Hello world!",
316 		"$5$rounds=10000$saltstringsaltst$3xv.VbSHBb41AL9AvLeujZkZRBAwqFMz2."
317 		"opqey6IcA"
318 	},
319 	{
320 		"$5$rounds=5000$toolongsaltstring", "This is just a test",
321 		"$5$rounds=5000$toolongsaltstrin$Un/5jzAHMgOGZ5.mWJpuVolil07guHPvOW8"
322 		"mGRcvxa5"
323 	},
324 	{
325 		"$5$rounds=1400$anotherlongsaltstring",
326 		"a very much longer text to encrypt.  This one even stretches over more"
327 		"than one line.",
328 		"$5$rounds=1400$anotherlongsalts$Rx.j8H.h8HjEDGomFU8bDkXm3XIUnzyxf12"
329 		"oP84Bnq1"
330 	},
331 	{
332 		"$5$rounds=77777$short",
333 		"we have a short salt string but not a short password",
334 		"$5$rounds=77777$short$JiO1O3ZpDAxGJeaDIuqCoEFysAe1mZNJRs3pw0KQRd/"
335 	},
336 	{
337 		"$5$rounds=123456$asaltof16chars..", "a short string",
338 		"$5$rounds=123456$asaltof16chars..$gP3VQ/6X7UUEW3HkBn2w1/Ptq2jxPyzV/"
339 		"cZKmF/wJvD"
340 	},
341 	{
342 		"$5$rounds=10$roundstoolow", "the minimum number is still observed",
343 		"$5$rounds=1000$roundstoolow$yfvwcWrQ8l/K0DAWyuPMDNHpIVlTQebY9l/gL97"
344 		"2bIC"
345 	},
346 };
347 
348 #define ntests2 (sizeof (tests2) / sizeof (tests2[0]))
349 
350 int
351 main(void)
352 {
353 	SHA256_CTX ctx;
354 	uint8_t sum[32];
355 	int result = 0;
356 	int i, cnt;
357 
358 	for (cnt = 0; cnt < (int)ntests; ++cnt) {
359 		SHA256_Init(&ctx);
360 		SHA256_Update(&ctx, tests[cnt].input, strlen(tests[cnt].input));
361 		SHA256_Final(sum, &ctx);
362 		if (memcmp(tests[cnt].result, sum, 32) != 0) {
363 			for (i = 0; i < 32; i++)
364 				printf("%02X", tests[cnt].result[i]);
365 			printf("\n");
366 			for (i = 0; i < 32; i++)
367 				printf("%02X", sum[i]);
368 			printf("\n");
369 			printf("test %d run %d failed\n", cnt, 1);
370 			result = 1;
371 		}
372 
373 		SHA256_Init(&ctx);
374 		for (i = 0; tests[cnt].input[i] != '\0'; ++i)
375 			SHA256_Update(&ctx, &tests[cnt].input[i], 1);
376 		SHA256_Final(sum, &ctx);
377 		if (memcmp(tests[cnt].result, sum, 32) != 0) {
378 			for (i = 0; i < 32; i++)
379 				printf("%02X", tests[cnt].result[i]);
380 			printf("\n");
381 			for (i = 0; i < 32; i++)
382 				printf("%02X", sum[i]);
383 			printf("\n");
384 			printf("test %d run %d failed\n", cnt, 2);
385 			result = 1;
386 		}
387 	}
388 
389 	/* Test vector from FIPS 180-2: appendix B.3. */
390 	char buf[1000];
391 
392 	memset(buf, 'a', sizeof(buf));
393 	SHA256_Init(&ctx);
394 	for (i = 0; i < 1000; ++i)
395 		SHA256_Update(&ctx, buf, sizeof(buf));
396 	SHA256_Final(sum, &ctx);
397 	static const char expected[32] =
398 	"\xcd\xc7\x6e\x5c\x99\x14\xfb\x92\x81\xa1\xc7\xe2\x84\xd7\x3e\x67"
399 	"\xf1\x80\x9a\x48\xa4\x97\x20\x0e\x04\x6d\x39\xcc\xc7\x11\x2c\xd0";
400 
401 	if (memcmp(expected, sum, 32) != 0) {
402 		printf("test %d failed\n", cnt);
403 		result = 1;
404 	}
405 
406 	for (cnt = 0; cnt < ntests2; ++cnt) {
407 		char *cp = crypt_sha256(tests2[cnt].input, tests2[cnt].salt);
408 
409 		if (strcmp(cp, tests2[cnt].expected) != 0) {
410 			printf("test %d: expected \"%s\", got \"%s\"\n",
411 			       cnt, tests2[cnt].expected, cp);
412 			result = 1;
413 		}
414 	}
415 
416 	if (result == 0)
417 		puts("all tests OK");
418 
419 	return result;
420 }
421 
422 #endif /* TEST */
423