xref: /freebsd/lib/libcrypt/crypt-sha256.c (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2011 The FreeBSD Project. All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 /* Based on:
29  * SHA256-based Unix crypt implementation. Released into the Public Domain by
30  * Ulrich Drepper <drepper@redhat.com>. */
31 
32 #include <sys/cdefs.h>
33 #include <sys/endian.h>
34 #include <sys/param.h>
35 
36 #include <errno.h>
37 #include <limits.h>
38 #include <sha256.h>
39 #include <stdbool.h>
40 #include <stdint.h>
41 #include <stdio.h>
42 #include <stdlib.h>
43 #include <string.h>
44 #include <strings.h>
45 
46 #include "crypt.h"
47 
48 /* Define our magic string to mark salt for SHA256 "encryption" replacement. */
49 static const char sha256_salt_prefix[] = "$5$";
50 
51 /* Prefix for optional rounds specification. */
52 static const char sha256_rounds_prefix[] = "rounds=";
53 
54 /* Maximum salt string length. */
55 #define SALT_LEN_MAX 16
56 /* Default number of rounds if not explicitly specified. */
57 #define ROUNDS_DEFAULT 5000
58 /* Minimum number of rounds. */
59 #define ROUNDS_MIN 1000
60 /* Maximum number of rounds. */
61 #define ROUNDS_MAX 999999999
62 
63 int
64 crypt_sha256(const char *key, const char *salt, char *buffer)
65 {
66 	u_long srounds;
67 	uint8_t alt_result[32], temp_result[32];
68 	SHA256_CTX ctx, alt_ctx;
69 	size_t salt_len, key_len, cnt, rounds;
70 	char *cp, *p_bytes, *s_bytes, *endp;
71 	const char *num;
72 	bool rounds_custom;
73 
74 	/* Default number of rounds. */
75 	rounds = ROUNDS_DEFAULT;
76 	rounds_custom = false;
77 
78 	/* Find beginning of salt string. The prefix should normally always
79 	 * be present. Just in case it is not. */
80 	if (strncmp(sha256_salt_prefix, salt, sizeof(sha256_salt_prefix) - 1) == 0)
81 		/* Skip salt prefix. */
82 		salt += sizeof(sha256_salt_prefix) - 1;
83 
84 	if (strncmp(salt, sha256_rounds_prefix, sizeof(sha256_rounds_prefix) - 1)
85 	    == 0) {
86 		num = salt + sizeof(sha256_rounds_prefix) - 1;
87 		srounds = strtoul(num, &endp, 10);
88 
89 		if (*endp == '$') {
90 			salt = endp + 1;
91 			rounds = MAX(ROUNDS_MIN, MIN(srounds, ROUNDS_MAX));
92 			rounds_custom = true;
93 		}
94 	}
95 
96 	salt_len = MIN(strcspn(salt, "$"), SALT_LEN_MAX);
97 	key_len = strlen(key);
98 
99 	/* Prepare for the real work. */
100 	SHA256_Init(&ctx);
101 
102 	/* Add the key string. */
103 	SHA256_Update(&ctx, key, key_len);
104 
105 	/* The last part is the salt string. This must be at most 8
106 	 * characters and it ends at the first `$' character (for
107 	 * compatibility with existing implementations). */
108 	SHA256_Update(&ctx, salt, salt_len);
109 
110 	/* Compute alternate SHA256 sum with input KEY, SALT, and KEY. The
111 	 * final result will be added to the first context. */
112 	SHA256_Init(&alt_ctx);
113 
114 	/* Add key. */
115 	SHA256_Update(&alt_ctx, key, key_len);
116 
117 	/* Add salt. */
118 	SHA256_Update(&alt_ctx, salt, salt_len);
119 
120 	/* Add key again. */
121 	SHA256_Update(&alt_ctx, key, key_len);
122 
123 	/* Now get result of this (32 bytes) and add it to the other context. */
124 	SHA256_Final(alt_result, &alt_ctx);
125 
126 	/* Add for any character in the key one byte of the alternate sum. */
127 	for (cnt = key_len; cnt > 32; cnt -= 32)
128 		SHA256_Update(&ctx, alt_result, 32);
129 	SHA256_Update(&ctx, alt_result, cnt);
130 
131 	/* Take the binary representation of the length of the key and for
132 	 * every 1 add the alternate sum, for every 0 the key. */
133 	for (cnt = key_len; cnt > 0; cnt >>= 1)
134 		if ((cnt & 1) != 0)
135 			SHA256_Update(&ctx, alt_result, 32);
136 		else
137 			SHA256_Update(&ctx, key, key_len);
138 
139 	/* Create intermediate result. */
140 	SHA256_Final(alt_result, &ctx);
141 
142 	/* Start computation of P byte sequence. */
143 	SHA256_Init(&alt_ctx);
144 
145 	/* For every character in the password add the entire password. */
146 	for (cnt = 0; cnt < key_len; ++cnt)
147 		SHA256_Update(&alt_ctx, key, key_len);
148 
149 	/* Finish the digest. */
150 	SHA256_Final(temp_result, &alt_ctx);
151 
152 	/* Create byte sequence P. */
153 	cp = p_bytes = alloca(key_len);
154 	for (cnt = key_len; cnt >= 32; cnt -= 32) {
155 		memcpy(cp, temp_result, 32);
156 		cp += 32;
157 	}
158 	memcpy(cp, temp_result, cnt);
159 
160 	/* Start computation of S byte sequence. */
161 	SHA256_Init(&alt_ctx);
162 
163 	/* For every character in the password add the entire password. */
164 	for (cnt = 0; cnt < 16 + alt_result[0]; ++cnt)
165 		SHA256_Update(&alt_ctx, salt, salt_len);
166 
167 	/* Finish the digest. */
168 	SHA256_Final(temp_result, &alt_ctx);
169 
170 	/* Create byte sequence S. */
171 	cp = s_bytes = alloca(salt_len);
172 	for (cnt = salt_len; cnt >= 32; cnt -= 32) {
173 		memcpy(cp, temp_result, 32);
174 		cp += 32;
175 	}
176 	memcpy(cp, temp_result, cnt);
177 
178 	/* Repeatedly run the collected hash value through SHA256 to burn CPU
179 	 * cycles. */
180 	for (cnt = 0; cnt < rounds; ++cnt) {
181 		/* New context. */
182 		SHA256_Init(&ctx);
183 
184 		/* Add key or last result. */
185 		if ((cnt & 1) != 0)
186 			SHA256_Update(&ctx, p_bytes, key_len);
187 		else
188 			SHA256_Update(&ctx, alt_result, 32);
189 
190 		/* Add salt for numbers not divisible by 3. */
191 		if (cnt % 3 != 0)
192 			SHA256_Update(&ctx, s_bytes, salt_len);
193 
194 		/* Add key for numbers not divisible by 7. */
195 		if (cnt % 7 != 0)
196 			SHA256_Update(&ctx, p_bytes, key_len);
197 
198 		/* Add key or last result. */
199 		if ((cnt & 1) != 0)
200 			SHA256_Update(&ctx, alt_result, 32);
201 		else
202 			SHA256_Update(&ctx, p_bytes, key_len);
203 
204 		/* Create intermediate result. */
205 		SHA256_Final(alt_result, &ctx);
206 	}
207 
208 	/* Now we can construct the result string. It consists of three
209 	 * parts. */
210 	cp = stpcpy(buffer, sha256_salt_prefix);
211 
212 	if (rounds_custom)
213 		cp += sprintf(cp, "%s%zu$", sha256_rounds_prefix, rounds);
214 
215 	cp = stpncpy(cp, salt, salt_len);
216 
217 	*cp++ = '$';
218 
219 	b64_from_24bit(alt_result[0], alt_result[10], alt_result[20], 4, &cp);
220 	b64_from_24bit(alt_result[21], alt_result[1], alt_result[11], 4, &cp);
221 	b64_from_24bit(alt_result[12], alt_result[22], alt_result[2], 4, &cp);
222 	b64_from_24bit(alt_result[3], alt_result[13], alt_result[23], 4, &cp);
223 	b64_from_24bit(alt_result[24], alt_result[4], alt_result[14], 4, &cp);
224 	b64_from_24bit(alt_result[15], alt_result[25], alt_result[5], 4, &cp);
225 	b64_from_24bit(alt_result[6], alt_result[16], alt_result[26], 4, &cp);
226 	b64_from_24bit(alt_result[27], alt_result[7], alt_result[17], 4, &cp);
227 	b64_from_24bit(alt_result[18], alt_result[28], alt_result[8], 4, &cp);
228 	b64_from_24bit(alt_result[9], alt_result[19], alt_result[29], 4, &cp);
229 	b64_from_24bit(0, alt_result[31], alt_result[30], 3, &cp);
230 	*cp = '\0';	/* Terminate the string. */
231 
232 	/* Clear the buffer for the intermediate result so that people
233 	 * attaching to processes or reading core dumps cannot get any
234 	 * information. We do it in this way to clear correct_words[] inside
235 	 * the SHA256 implementation as well. */
236 	SHA256_Init(&ctx);
237 	SHA256_Final(alt_result, &ctx);
238 	explicit_bzero(temp_result, sizeof(temp_result));
239 	explicit_bzero(p_bytes, key_len);
240 	explicit_bzero(s_bytes,  salt_len);
241 
242 	return (0);
243 }
244 
245 #ifdef TEST
246 
247 static const struct {
248 	const char *input;
249 	const char result[32];
250 } tests[] =
251 {
252 	/* Test vectors from FIPS 180-2: appendix B.1. */
253 	{
254 		"abc",
255 		"\xba\x78\x16\xbf\x8f\x01\xcf\xea\x41\x41\x40\xde\x5d\xae\x22\x23"
256 		"\xb0\x03\x61\xa3\x96\x17\x7a\x9c\xb4\x10\xff\x61\xf2\x00\x15\xad"
257 	},
258 	/* Test vectors from FIPS 180-2: appendix B.2. */
259 	{
260 		"abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq",
261 		"\x24\x8d\x6a\x61\xd2\x06\x38\xb8\xe5\xc0\x26\x93\x0c\x3e\x60\x39"
262 		"\xa3\x3c\xe4\x59\x64\xff\x21\x67\xf6\xec\xed\xd4\x19\xdb\x06\xc1"
263 	},
264 	/* Test vectors from the NESSIE project. */
265 	{
266 		"",
267 		"\xe3\xb0\xc4\x42\x98\xfc\x1c\x14\x9a\xfb\xf4\xc8\x99\x6f\xb9\x24"
268 		"\x27\xae\x41\xe4\x64\x9b\x93\x4c\xa4\x95\x99\x1b\x78\x52\xb8\x55"
269 	},
270 	{
271 		"a",
272 		"\xca\x97\x81\x12\xca\x1b\xbd\xca\xfa\xc2\x31\xb3\x9a\x23\xdc\x4d"
273 		"\xa7\x86\xef\xf8\x14\x7c\x4e\x72\xb9\x80\x77\x85\xaf\xee\x48\xbb"
274 	},
275 	{
276 		"message digest",
277 		"\xf7\x84\x6f\x55\xcf\x23\xe1\x4e\xeb\xea\xb5\xb4\xe1\x55\x0c\xad"
278 		"\x5b\x50\x9e\x33\x48\xfb\xc4\xef\xa3\xa1\x41\x3d\x39\x3c\xb6\x50"
279 	},
280 	{
281 		"abcdefghijklmnopqrstuvwxyz",
282 		"\x71\xc4\x80\xdf\x93\xd6\xae\x2f\x1e\xfa\xd1\x44\x7c\x66\xc9\x52"
283 		"\x5e\x31\x62\x18\xcf\x51\xfc\x8d\x9e\xd8\x32\xf2\xda\xf1\x8b\x73"
284 	},
285 	{
286 		"abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq",
287 		"\x24\x8d\x6a\x61\xd2\x06\x38\xb8\xe5\xc0\x26\x93\x0c\x3e\x60\x39"
288 		"\xa3\x3c\xe4\x59\x64\xff\x21\x67\xf6\xec\xed\xd4\x19\xdb\x06\xc1"
289 	},
290 	{
291 		"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789",
292 		"\xdb\x4b\xfc\xbd\x4d\xa0\xcd\x85\xa6\x0c\x3c\x37\xd3\xfb\xd8\x80"
293 		"\x5c\x77\xf1\x5f\xc6\xb1\xfd\xfe\x61\x4e\xe0\xa7\xc8\xfd\xb4\xc0"
294 	},
295 	{
296 		"123456789012345678901234567890123456789012345678901234567890"
297 		"12345678901234567890",
298 		"\xf3\x71\xbc\x4a\x31\x1f\x2b\x00\x9e\xef\x95\x2d\xd8\x3c\xa8\x0e"
299 		"\x2b\x60\x02\x6c\x8e\x93\x55\x92\xd0\xf9\xc3\x08\x45\x3c\x81\x3e"
300 	}
301 };
302 
303 #define ntests (sizeof (tests) / sizeof (tests[0]))
304 
305 static const struct {
306 	const char *salt;
307 	const char *input;
308 	const char *expected;
309 } tests2[] =
310 {
311 	{
312 		"$5$saltstring", "Hello world!",
313 		"$5$saltstring$5B8vYYiY.CVt1RlTTf8KbXBH3hsxY/GNooZaBBGWEc5"
314 	},
315 	{
316 		"$5$rounds=10000$saltstringsaltstring", "Hello world!",
317 		"$5$rounds=10000$saltstringsaltst$3xv.VbSHBb41AL9AvLeujZkZRBAwqFMz2."
318 		"opqey6IcA"
319 	},
320 	{
321 		"$5$rounds=5000$toolongsaltstring", "This is just a test",
322 		"$5$rounds=5000$toolongsaltstrin$Un/5jzAHMgOGZ5.mWJpuVolil07guHPvOW8"
323 		"mGRcvxa5"
324 	},
325 	{
326 		"$5$rounds=1400$anotherlongsaltstring",
327 		"a very much longer text to encrypt.  This one even stretches over more"
328 		"than one line.",
329 		"$5$rounds=1400$anotherlongsalts$Rx.j8H.h8HjEDGomFU8bDkXm3XIUnzyxf12"
330 		"oP84Bnq1"
331 	},
332 	{
333 		"$5$rounds=77777$short",
334 		"we have a short salt string but not a short password",
335 		"$5$rounds=77777$short$JiO1O3ZpDAxGJeaDIuqCoEFysAe1mZNJRs3pw0KQRd/"
336 	},
337 	{
338 		"$5$rounds=123456$asaltof16chars..", "a short string",
339 		"$5$rounds=123456$asaltof16chars..$gP3VQ/6X7UUEW3HkBn2w1/Ptq2jxPyzV/"
340 		"cZKmF/wJvD"
341 	},
342 	{
343 		"$5$rounds=10$roundstoolow", "the minimum number is still observed",
344 		"$5$rounds=1000$roundstoolow$yfvwcWrQ8l/K0DAWyuPMDNHpIVlTQebY9l/gL97"
345 		"2bIC"
346 	},
347 };
348 
349 #define ntests2 (sizeof (tests2) / sizeof (tests2[0]))
350 
351 int
352 main(void)
353 {
354 	SHA256_CTX ctx;
355 	uint8_t sum[32];
356 	int result = 0;
357 	int i, cnt;
358 
359 	for (cnt = 0; cnt < (int)ntests; ++cnt) {
360 		SHA256_Init(&ctx);
361 		SHA256_Update(&ctx, tests[cnt].input, strlen(tests[cnt].input));
362 		SHA256_Final(sum, &ctx);
363 		if (memcmp(tests[cnt].result, sum, 32) != 0) {
364 			for (i = 0; i < 32; i++)
365 				printf("%02X", tests[cnt].result[i]);
366 			printf("\n");
367 			for (i = 0; i < 32; i++)
368 				printf("%02X", sum[i]);
369 			printf("\n");
370 			printf("test %d run %d failed\n", cnt, 1);
371 			result = 1;
372 		}
373 
374 		SHA256_Init(&ctx);
375 		for (i = 0; tests[cnt].input[i] != '\0'; ++i)
376 			SHA256_Update(&ctx, &tests[cnt].input[i], 1);
377 		SHA256_Final(sum, &ctx);
378 		if (memcmp(tests[cnt].result, sum, 32) != 0) {
379 			for (i = 0; i < 32; i++)
380 				printf("%02X", tests[cnt].result[i]);
381 			printf("\n");
382 			for (i = 0; i < 32; i++)
383 				printf("%02X", sum[i]);
384 			printf("\n");
385 			printf("test %d run %d failed\n", cnt, 2);
386 			result = 1;
387 		}
388 	}
389 
390 	/* Test vector from FIPS 180-2: appendix B.3. */
391 	char buf[1000];
392 
393 	memset(buf, 'a', sizeof(buf));
394 	SHA256_Init(&ctx);
395 	for (i = 0; i < 1000; ++i)
396 		SHA256_Update(&ctx, buf, sizeof(buf));
397 	SHA256_Final(sum, &ctx);
398 	static const char expected[32] =
399 	"\xcd\xc7\x6e\x5c\x99\x14\xfb\x92\x81\xa1\xc7\xe2\x84\xd7\x3e\x67"
400 	"\xf1\x80\x9a\x48\xa4\x97\x20\x0e\x04\x6d\x39\xcc\xc7\x11\x2c\xd0";
401 
402 	if (memcmp(expected, sum, 32) != 0) {
403 		printf("test %d failed\n", cnt);
404 		result = 1;
405 	}
406 
407 	for (cnt = 0; cnt < ntests2; ++cnt) {
408 		char *cp = crypt_sha256(tests2[cnt].input, tests2[cnt].salt);
409 
410 		if (strcmp(cp, tests2[cnt].expected) != 0) {
411 			printf("test %d: expected \"%s\", got \"%s\"\n",
412 			       cnt, tests2[cnt].expected, cp);
413 			result = 1;
414 		}
415 	}
416 
417 	if (result == 0)
418 		puts("all tests OK");
419 
420 	return result;
421 }
422 
423 #endif /* TEST */
424