xref: /freebsd/lib/libcrypt/crypt-sha256.c (revision 5c1d97100348ef19878fa14671a9b70f3d963ed4)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2011 The FreeBSD Project. All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 /* Based on:
29  * SHA256-based Unix crypt implementation. Released into the Public Domain by
30  * Ulrich Drepper <drepper@redhat.com>. */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include <sys/endian.h>
36 #include <sys/param.h>
37 
38 #include <errno.h>
39 #include <limits.h>
40 #include <sha256.h>
41 #include <stdbool.h>
42 #include <stdint.h>
43 #include <stdio.h>
44 #include <stdlib.h>
45 #include <string.h>
46 
47 #include "crypt.h"
48 
49 /* Define our magic string to mark salt for SHA256 "encryption" replacement. */
50 static const char sha256_salt_prefix[] = "$5$";
51 
52 /* Prefix for optional rounds specification. */
53 static const char sha256_rounds_prefix[] = "rounds=";
54 
55 /* Maximum salt string length. */
56 #define SALT_LEN_MAX 16
57 /* Default number of rounds if not explicitly specified. */
58 #define ROUNDS_DEFAULT 5000
59 /* Minimum number of rounds. */
60 #define ROUNDS_MIN 1000
61 /* Maximum number of rounds. */
62 #define ROUNDS_MAX 999999999
63 
64 int
65 crypt_sha256(const char *key, const char *salt, char *buffer)
66 {
67 	u_long srounds;
68 	uint8_t alt_result[32], temp_result[32];
69 	SHA256_CTX ctx, alt_ctx;
70 	size_t salt_len, key_len, cnt, rounds;
71 	char *cp, *p_bytes, *s_bytes, *endp;
72 	const char *num;
73 	bool rounds_custom;
74 
75 	/* Default number of rounds. */
76 	rounds = ROUNDS_DEFAULT;
77 	rounds_custom = false;
78 
79 	/* Find beginning of salt string. The prefix should normally always
80 	 * be present. Just in case it is not. */
81 	if (strncmp(sha256_salt_prefix, salt, sizeof(sha256_salt_prefix) - 1) == 0)
82 		/* Skip salt prefix. */
83 		salt += sizeof(sha256_salt_prefix) - 1;
84 
85 	if (strncmp(salt, sha256_rounds_prefix, sizeof(sha256_rounds_prefix) - 1)
86 	    == 0) {
87 		num = salt + sizeof(sha256_rounds_prefix) - 1;
88 		srounds = strtoul(num, &endp, 10);
89 
90 		if (*endp == '$') {
91 			salt = endp + 1;
92 			rounds = MAX(ROUNDS_MIN, MIN(srounds, ROUNDS_MAX));
93 			rounds_custom = true;
94 		}
95 	}
96 
97 	salt_len = MIN(strcspn(salt, "$"), SALT_LEN_MAX);
98 	key_len = strlen(key);
99 
100 	/* Prepare for the real work. */
101 	SHA256_Init(&ctx);
102 
103 	/* Add the key string. */
104 	SHA256_Update(&ctx, key, key_len);
105 
106 	/* The last part is the salt string. This must be at most 8
107 	 * characters and it ends at the first `$' character (for
108 	 * compatibility with existing implementations). */
109 	SHA256_Update(&ctx, salt, salt_len);
110 
111 	/* Compute alternate SHA256 sum with input KEY, SALT, and KEY. The
112 	 * final result will be added to the first context. */
113 	SHA256_Init(&alt_ctx);
114 
115 	/* Add key. */
116 	SHA256_Update(&alt_ctx, key, key_len);
117 
118 	/* Add salt. */
119 	SHA256_Update(&alt_ctx, salt, salt_len);
120 
121 	/* Add key again. */
122 	SHA256_Update(&alt_ctx, key, key_len);
123 
124 	/* Now get result of this (32 bytes) and add it to the other context. */
125 	SHA256_Final(alt_result, &alt_ctx);
126 
127 	/* Add for any character in the key one byte of the alternate sum. */
128 	for (cnt = key_len; cnt > 32; cnt -= 32)
129 		SHA256_Update(&ctx, alt_result, 32);
130 	SHA256_Update(&ctx, alt_result, cnt);
131 
132 	/* Take the binary representation of the length of the key and for
133 	 * every 1 add the alternate sum, for every 0 the key. */
134 	for (cnt = key_len; cnt > 0; cnt >>= 1)
135 		if ((cnt & 1) != 0)
136 			SHA256_Update(&ctx, alt_result, 32);
137 		else
138 			SHA256_Update(&ctx, key, key_len);
139 
140 	/* Create intermediate result. */
141 	SHA256_Final(alt_result, &ctx);
142 
143 	/* Start computation of P byte sequence. */
144 	SHA256_Init(&alt_ctx);
145 
146 	/* For every character in the password add the entire password. */
147 	for (cnt = 0; cnt < key_len; ++cnt)
148 		SHA256_Update(&alt_ctx, key, key_len);
149 
150 	/* Finish the digest. */
151 	SHA256_Final(temp_result, &alt_ctx);
152 
153 	/* Create byte sequence P. */
154 	cp = p_bytes = alloca(key_len);
155 	for (cnt = key_len; cnt >= 32; cnt -= 32) {
156 		memcpy(cp, temp_result, 32);
157 		cp += 32;
158 	}
159 	memcpy(cp, temp_result, cnt);
160 
161 	/* Start computation of S byte sequence. */
162 	SHA256_Init(&alt_ctx);
163 
164 	/* For every character in the password add the entire password. */
165 	for (cnt = 0; cnt < 16 + alt_result[0]; ++cnt)
166 		SHA256_Update(&alt_ctx, salt, salt_len);
167 
168 	/* Finish the digest. */
169 	SHA256_Final(temp_result, &alt_ctx);
170 
171 	/* Create byte sequence S. */
172 	cp = s_bytes = alloca(salt_len);
173 	for (cnt = salt_len; cnt >= 32; cnt -= 32) {
174 		memcpy(cp, temp_result, 32);
175 		cp += 32;
176 	}
177 	memcpy(cp, temp_result, cnt);
178 
179 	/* Repeatedly run the collected hash value through SHA256 to burn CPU
180 	 * cycles. */
181 	for (cnt = 0; cnt < rounds; ++cnt) {
182 		/* New context. */
183 		SHA256_Init(&ctx);
184 
185 		/* Add key or last result. */
186 		if ((cnt & 1) != 0)
187 			SHA256_Update(&ctx, p_bytes, key_len);
188 		else
189 			SHA256_Update(&ctx, alt_result, 32);
190 
191 		/* Add salt for numbers not divisible by 3. */
192 		if (cnt % 3 != 0)
193 			SHA256_Update(&ctx, s_bytes, salt_len);
194 
195 		/* Add key for numbers not divisible by 7. */
196 		if (cnt % 7 != 0)
197 			SHA256_Update(&ctx, p_bytes, key_len);
198 
199 		/* Add key or last result. */
200 		if ((cnt & 1) != 0)
201 			SHA256_Update(&ctx, alt_result, 32);
202 		else
203 			SHA256_Update(&ctx, p_bytes, key_len);
204 
205 		/* Create intermediate result. */
206 		SHA256_Final(alt_result, &ctx);
207 	}
208 
209 	/* Now we can construct the result string. It consists of three
210 	 * parts. */
211 	cp = stpcpy(buffer, sha256_salt_prefix);
212 
213 	if (rounds_custom)
214 		cp += sprintf(cp, "%s%zu$", sha256_rounds_prefix, rounds);
215 
216 	cp = stpncpy(cp, salt, salt_len);
217 
218 	*cp++ = '$';
219 
220 	b64_from_24bit(alt_result[0], alt_result[10], alt_result[20], 4, &cp);
221 	b64_from_24bit(alt_result[21], alt_result[1], alt_result[11], 4, &cp);
222 	b64_from_24bit(alt_result[12], alt_result[22], alt_result[2], 4, &cp);
223 	b64_from_24bit(alt_result[3], alt_result[13], alt_result[23], 4, &cp);
224 	b64_from_24bit(alt_result[24], alt_result[4], alt_result[14], 4, &cp);
225 	b64_from_24bit(alt_result[15], alt_result[25], alt_result[5], 4, &cp);
226 	b64_from_24bit(alt_result[6], alt_result[16], alt_result[26], 4, &cp);
227 	b64_from_24bit(alt_result[27], alt_result[7], alt_result[17], 4, &cp);
228 	b64_from_24bit(alt_result[18], alt_result[28], alt_result[8], 4, &cp);
229 	b64_from_24bit(alt_result[9], alt_result[19], alt_result[29], 4, &cp);
230 	b64_from_24bit(0, alt_result[31], alt_result[30], 3, &cp);
231 	*cp = '\0';	/* Terminate the string. */
232 
233 	/* Clear the buffer for the intermediate result so that people
234 	 * attaching to processes or reading core dumps cannot get any
235 	 * information. We do it in this way to clear correct_words[] inside
236 	 * the SHA256 implementation as well. */
237 	SHA256_Init(&ctx);
238 	SHA256_Final(alt_result, &ctx);
239 	memset(temp_result, '\0', sizeof(temp_result));
240 	memset(p_bytes, '\0', key_len);
241 	memset(s_bytes, '\0', salt_len);
242 
243 	return (0);
244 }
245 
246 #ifdef TEST
247 
248 static const struct {
249 	const char *input;
250 	const char result[32];
251 } tests[] =
252 {
253 	/* Test vectors from FIPS 180-2: appendix B.1. */
254 	{
255 		"abc",
256 		"\xba\x78\x16\xbf\x8f\x01\xcf\xea\x41\x41\x40\xde\x5d\xae\x22\x23"
257 		"\xb0\x03\x61\xa3\x96\x17\x7a\x9c\xb4\x10\xff\x61\xf2\x00\x15\xad"
258 	},
259 	/* Test vectors from FIPS 180-2: appendix B.2. */
260 	{
261 		"abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq",
262 		"\x24\x8d\x6a\x61\xd2\x06\x38\xb8\xe5\xc0\x26\x93\x0c\x3e\x60\x39"
263 		"\xa3\x3c\xe4\x59\x64\xff\x21\x67\xf6\xec\xed\xd4\x19\xdb\x06\xc1"
264 	},
265 	/* Test vectors from the NESSIE project. */
266 	{
267 		"",
268 		"\xe3\xb0\xc4\x42\x98\xfc\x1c\x14\x9a\xfb\xf4\xc8\x99\x6f\xb9\x24"
269 		"\x27\xae\x41\xe4\x64\x9b\x93\x4c\xa4\x95\x99\x1b\x78\x52\xb8\x55"
270 	},
271 	{
272 		"a",
273 		"\xca\x97\x81\x12\xca\x1b\xbd\xca\xfa\xc2\x31\xb3\x9a\x23\xdc\x4d"
274 		"\xa7\x86\xef\xf8\x14\x7c\x4e\x72\xb9\x80\x77\x85\xaf\xee\x48\xbb"
275 	},
276 	{
277 		"message digest",
278 		"\xf7\x84\x6f\x55\xcf\x23\xe1\x4e\xeb\xea\xb5\xb4\xe1\x55\x0c\xad"
279 		"\x5b\x50\x9e\x33\x48\xfb\xc4\xef\xa3\xa1\x41\x3d\x39\x3c\xb6\x50"
280 	},
281 	{
282 		"abcdefghijklmnopqrstuvwxyz",
283 		"\x71\xc4\x80\xdf\x93\xd6\xae\x2f\x1e\xfa\xd1\x44\x7c\x66\xc9\x52"
284 		"\x5e\x31\x62\x18\xcf\x51\xfc\x8d\x9e\xd8\x32\xf2\xda\xf1\x8b\x73"
285 	},
286 	{
287 		"abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq",
288 		"\x24\x8d\x6a\x61\xd2\x06\x38\xb8\xe5\xc0\x26\x93\x0c\x3e\x60\x39"
289 		"\xa3\x3c\xe4\x59\x64\xff\x21\x67\xf6\xec\xed\xd4\x19\xdb\x06\xc1"
290 	},
291 	{
292 		"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789",
293 		"\xdb\x4b\xfc\xbd\x4d\xa0\xcd\x85\xa6\x0c\x3c\x37\xd3\xfb\xd8\x80"
294 		"\x5c\x77\xf1\x5f\xc6\xb1\xfd\xfe\x61\x4e\xe0\xa7\xc8\xfd\xb4\xc0"
295 	},
296 	{
297 		"123456789012345678901234567890123456789012345678901234567890"
298 		"12345678901234567890",
299 		"\xf3\x71\xbc\x4a\x31\x1f\x2b\x00\x9e\xef\x95\x2d\xd8\x3c\xa8\x0e"
300 		"\x2b\x60\x02\x6c\x8e\x93\x55\x92\xd0\xf9\xc3\x08\x45\x3c\x81\x3e"
301 	}
302 };
303 
304 #define ntests (sizeof (tests) / sizeof (tests[0]))
305 
306 static const struct {
307 	const char *salt;
308 	const char *input;
309 	const char *expected;
310 } tests2[] =
311 {
312 	{
313 		"$5$saltstring", "Hello world!",
314 		"$5$saltstring$5B8vYYiY.CVt1RlTTf8KbXBH3hsxY/GNooZaBBGWEc5"
315 	},
316 	{
317 		"$5$rounds=10000$saltstringsaltstring", "Hello world!",
318 		"$5$rounds=10000$saltstringsaltst$3xv.VbSHBb41AL9AvLeujZkZRBAwqFMz2."
319 		"opqey6IcA"
320 	},
321 	{
322 		"$5$rounds=5000$toolongsaltstring", "This is just a test",
323 		"$5$rounds=5000$toolongsaltstrin$Un/5jzAHMgOGZ5.mWJpuVolil07guHPvOW8"
324 		"mGRcvxa5"
325 	},
326 	{
327 		"$5$rounds=1400$anotherlongsaltstring",
328 		"a very much longer text to encrypt.  This one even stretches over more"
329 		"than one line.",
330 		"$5$rounds=1400$anotherlongsalts$Rx.j8H.h8HjEDGomFU8bDkXm3XIUnzyxf12"
331 		"oP84Bnq1"
332 	},
333 	{
334 		"$5$rounds=77777$short",
335 		"we have a short salt string but not a short password",
336 		"$5$rounds=77777$short$JiO1O3ZpDAxGJeaDIuqCoEFysAe1mZNJRs3pw0KQRd/"
337 	},
338 	{
339 		"$5$rounds=123456$asaltof16chars..", "a short string",
340 		"$5$rounds=123456$asaltof16chars..$gP3VQ/6X7UUEW3HkBn2w1/Ptq2jxPyzV/"
341 		"cZKmF/wJvD"
342 	},
343 	{
344 		"$5$rounds=10$roundstoolow", "the minimum number is still observed",
345 		"$5$rounds=1000$roundstoolow$yfvwcWrQ8l/K0DAWyuPMDNHpIVlTQebY9l/gL97"
346 		"2bIC"
347 	},
348 };
349 
350 #define ntests2 (sizeof (tests2) / sizeof (tests2[0]))
351 
352 int
353 main(void)
354 {
355 	SHA256_CTX ctx;
356 	uint8_t sum[32];
357 	int result = 0;
358 	int i, cnt;
359 
360 	for (cnt = 0; cnt < (int)ntests; ++cnt) {
361 		SHA256_Init(&ctx);
362 		SHA256_Update(&ctx, tests[cnt].input, strlen(tests[cnt].input));
363 		SHA256_Final(sum, &ctx);
364 		if (memcmp(tests[cnt].result, sum, 32) != 0) {
365 			for (i = 0; i < 32; i++)
366 				printf("%02X", tests[cnt].result[i]);
367 			printf("\n");
368 			for (i = 0; i < 32; i++)
369 				printf("%02X", sum[i]);
370 			printf("\n");
371 			printf("test %d run %d failed\n", cnt, 1);
372 			result = 1;
373 		}
374 
375 		SHA256_Init(&ctx);
376 		for (i = 0; tests[cnt].input[i] != '\0'; ++i)
377 			SHA256_Update(&ctx, &tests[cnt].input[i], 1);
378 		SHA256_Final(sum, &ctx);
379 		if (memcmp(tests[cnt].result, sum, 32) != 0) {
380 			for (i = 0; i < 32; i++)
381 				printf("%02X", tests[cnt].result[i]);
382 			printf("\n");
383 			for (i = 0; i < 32; i++)
384 				printf("%02X", sum[i]);
385 			printf("\n");
386 			printf("test %d run %d failed\n", cnt, 2);
387 			result = 1;
388 		}
389 	}
390 
391 	/* Test vector from FIPS 180-2: appendix B.3. */
392 	char buf[1000];
393 
394 	memset(buf, 'a', sizeof(buf));
395 	SHA256_Init(&ctx);
396 	for (i = 0; i < 1000; ++i)
397 		SHA256_Update(&ctx, buf, sizeof(buf));
398 	SHA256_Final(sum, &ctx);
399 	static const char expected[32] =
400 	"\xcd\xc7\x6e\x5c\x99\x14\xfb\x92\x81\xa1\xc7\xe2\x84\xd7\x3e\x67"
401 	"\xf1\x80\x9a\x48\xa4\x97\x20\x0e\x04\x6d\x39\xcc\xc7\x11\x2c\xd0";
402 
403 	if (memcmp(expected, sum, 32) != 0) {
404 		printf("test %d failed\n", cnt);
405 		result = 1;
406 	}
407 
408 	for (cnt = 0; cnt < ntests2; ++cnt) {
409 		char *cp = crypt_sha256(tests2[cnt].input, tests2[cnt].salt);
410 
411 		if (strcmp(cp, tests2[cnt].expected) != 0) {
412 			printf("test %d: expected \"%s\", got \"%s\"\n",
413 			       cnt, tests2[cnt].expected, cp);
414 			result = 1;
415 		}
416 	}
417 
418 	if (result == 0)
419 		puts("all tests OK");
420 
421 	return result;
422 }
423 
424 #endif /* TEST */
425