xref: /freebsd/lib/libcrypt/crypt-sha256.c (revision 56e53cb8ef000c3ef72337a4095987a932cdedef)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2011 The FreeBSD Project. All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 /* Based on:
29  * SHA256-based Unix crypt implementation. Released into the Public Domain by
30  * Ulrich Drepper <drepper@redhat.com>. */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include <sys/endian.h>
36 #include <sys/param.h>
37 
38 #include <errno.h>
39 #include <limits.h>
40 #include <sha256.h>
41 #include <stdbool.h>
42 #include <stdint.h>
43 #include <stdio.h>
44 #include <stdlib.h>
45 #include <string.h>
46 
47 #include "crypt.h"
48 
49 /* Define our magic string to mark salt for SHA256 "encryption" replacement. */
50 static const char sha256_salt_prefix[] = "$5$";
51 
52 /* Prefix for optional rounds specification. */
53 static const char sha256_rounds_prefix[] = "rounds=";
54 
55 /* Maximum salt string length. */
56 #define SALT_LEN_MAX 16
57 /* Default number of rounds if not explicitly specified. */
58 #define ROUNDS_DEFAULT 5000
59 /* Minimum number of rounds. */
60 #define ROUNDS_MIN 1000
61 /* Maximum number of rounds. */
62 #define ROUNDS_MAX 999999999
63 
64 int
65 crypt_sha256(const char *key, const char *salt, char *buffer)
66 {
67 	u_long srounds;
68 	uint8_t alt_result[32], temp_result[32];
69 	SHA256_CTX ctx, alt_ctx;
70 	size_t salt_len, key_len, cnt, rounds;
71 	char *cp, *copied_key, *copied_salt, *p_bytes, *s_bytes, *endp;
72 	const char *num;
73 	bool rounds_custom;
74 
75 	copied_key = NULL;
76 	copied_salt = NULL;
77 
78 	/* Default number of rounds. */
79 	rounds = ROUNDS_DEFAULT;
80 	rounds_custom = false;
81 
82 	/* Find beginning of salt string. The prefix should normally always
83 	 * be present. Just in case it is not. */
84 	if (strncmp(sha256_salt_prefix, salt, sizeof(sha256_salt_prefix) - 1) == 0)
85 		/* Skip salt prefix. */
86 		salt += sizeof(sha256_salt_prefix) - 1;
87 
88 	if (strncmp(salt, sha256_rounds_prefix, sizeof(sha256_rounds_prefix) - 1)
89 	    == 0) {
90 		num = salt + sizeof(sha256_rounds_prefix) - 1;
91 		srounds = strtoul(num, &endp, 10);
92 
93 		if (*endp == '$') {
94 			salt = endp + 1;
95 			rounds = MAX(ROUNDS_MIN, MIN(srounds, ROUNDS_MAX));
96 			rounds_custom = true;
97 		}
98 	}
99 
100 	salt_len = MIN(strcspn(salt, "$"), SALT_LEN_MAX);
101 	key_len = strlen(key);
102 
103 	/* Prepare for the real work. */
104 	SHA256_Init(&ctx);
105 
106 	/* Add the key string. */
107 	SHA256_Update(&ctx, key, key_len);
108 
109 	/* The last part is the salt string. This must be at most 8
110 	 * characters and it ends at the first `$' character (for
111 	 * compatibility with existing implementations). */
112 	SHA256_Update(&ctx, salt, salt_len);
113 
114 	/* Compute alternate SHA256 sum with input KEY, SALT, and KEY. The
115 	 * final result will be added to the first context. */
116 	SHA256_Init(&alt_ctx);
117 
118 	/* Add key. */
119 	SHA256_Update(&alt_ctx, key, key_len);
120 
121 	/* Add salt. */
122 	SHA256_Update(&alt_ctx, salt, salt_len);
123 
124 	/* Add key again. */
125 	SHA256_Update(&alt_ctx, key, key_len);
126 
127 	/* Now get result of this (32 bytes) and add it to the other context. */
128 	SHA256_Final(alt_result, &alt_ctx);
129 
130 	/* Add for any character in the key one byte of the alternate sum. */
131 	for (cnt = key_len; cnt > 32; cnt -= 32)
132 		SHA256_Update(&ctx, alt_result, 32);
133 	SHA256_Update(&ctx, alt_result, cnt);
134 
135 	/* Take the binary representation of the length of the key and for
136 	 * every 1 add the alternate sum, for every 0 the key. */
137 	for (cnt = key_len; cnt > 0; cnt >>= 1)
138 		if ((cnt & 1) != 0)
139 			SHA256_Update(&ctx, alt_result, 32);
140 		else
141 			SHA256_Update(&ctx, key, key_len);
142 
143 	/* Create intermediate result. */
144 	SHA256_Final(alt_result, &ctx);
145 
146 	/* Start computation of P byte sequence. */
147 	SHA256_Init(&alt_ctx);
148 
149 	/* For every character in the password add the entire password. */
150 	for (cnt = 0; cnt < key_len; ++cnt)
151 		SHA256_Update(&alt_ctx, key, key_len);
152 
153 	/* Finish the digest. */
154 	SHA256_Final(temp_result, &alt_ctx);
155 
156 	/* Create byte sequence P. */
157 	cp = p_bytes = alloca(key_len);
158 	for (cnt = key_len; cnt >= 32; cnt -= 32) {
159 		memcpy(cp, temp_result, 32);
160 		cp += 32;
161 	}
162 	memcpy(cp, temp_result, cnt);
163 
164 	/* Start computation of S byte sequence. */
165 	SHA256_Init(&alt_ctx);
166 
167 	/* For every character in the password add the entire password. */
168 	for (cnt = 0; cnt < 16 + alt_result[0]; ++cnt)
169 		SHA256_Update(&alt_ctx, salt, salt_len);
170 
171 	/* Finish the digest. */
172 	SHA256_Final(temp_result, &alt_ctx);
173 
174 	/* Create byte sequence S. */
175 	cp = s_bytes = alloca(salt_len);
176 	for (cnt = salt_len; cnt >= 32; cnt -= 32) {
177 		memcpy(cp, temp_result, 32);
178 		cp += 32;
179 	}
180 	memcpy(cp, temp_result, cnt);
181 
182 	/* Repeatedly run the collected hash value through SHA256 to burn CPU
183 	 * cycles. */
184 	for (cnt = 0; cnt < rounds; ++cnt) {
185 		/* New context. */
186 		SHA256_Init(&ctx);
187 
188 		/* Add key or last result. */
189 		if ((cnt & 1) != 0)
190 			SHA256_Update(&ctx, p_bytes, key_len);
191 		else
192 			SHA256_Update(&ctx, alt_result, 32);
193 
194 		/* Add salt for numbers not divisible by 3. */
195 		if (cnt % 3 != 0)
196 			SHA256_Update(&ctx, s_bytes, salt_len);
197 
198 		/* Add key for numbers not divisible by 7. */
199 		if (cnt % 7 != 0)
200 			SHA256_Update(&ctx, p_bytes, key_len);
201 
202 		/* Add key or last result. */
203 		if ((cnt & 1) != 0)
204 			SHA256_Update(&ctx, alt_result, 32);
205 		else
206 			SHA256_Update(&ctx, p_bytes, key_len);
207 
208 		/* Create intermediate result. */
209 		SHA256_Final(alt_result, &ctx);
210 	}
211 
212 	/* Now we can construct the result string. It consists of three
213 	 * parts. */
214 	cp = stpcpy(buffer, sha256_salt_prefix);
215 
216 	if (rounds_custom)
217 		cp += sprintf(cp, "%s%zu$", sha256_rounds_prefix, rounds);
218 
219 	cp = stpncpy(cp, salt, salt_len);
220 
221 	*cp++ = '$';
222 
223 	b64_from_24bit(alt_result[0], alt_result[10], alt_result[20], 4, &cp);
224 	b64_from_24bit(alt_result[21], alt_result[1], alt_result[11], 4, &cp);
225 	b64_from_24bit(alt_result[12], alt_result[22], alt_result[2], 4, &cp);
226 	b64_from_24bit(alt_result[3], alt_result[13], alt_result[23], 4, &cp);
227 	b64_from_24bit(alt_result[24], alt_result[4], alt_result[14], 4, &cp);
228 	b64_from_24bit(alt_result[15], alt_result[25], alt_result[5], 4, &cp);
229 	b64_from_24bit(alt_result[6], alt_result[16], alt_result[26], 4, &cp);
230 	b64_from_24bit(alt_result[27], alt_result[7], alt_result[17], 4, &cp);
231 	b64_from_24bit(alt_result[18], alt_result[28], alt_result[8], 4, &cp);
232 	b64_from_24bit(alt_result[9], alt_result[19], alt_result[29], 4, &cp);
233 	b64_from_24bit(0, alt_result[31], alt_result[30], 3, &cp);
234 	*cp = '\0';	/* Terminate the string. */
235 
236 	/* Clear the buffer for the intermediate result so that people
237 	 * attaching to processes or reading core dumps cannot get any
238 	 * information. We do it in this way to clear correct_words[] inside
239 	 * the SHA256 implementation as well. */
240 	SHA256_Init(&ctx);
241 	SHA256_Final(alt_result, &ctx);
242 	memset(temp_result, '\0', sizeof(temp_result));
243 	memset(p_bytes, '\0', key_len);
244 	memset(s_bytes, '\0', salt_len);
245 	memset(&ctx, '\0', sizeof(ctx));
246 	memset(&alt_ctx, '\0', sizeof(alt_ctx));
247 	if (copied_key != NULL)
248 		memset(copied_key, '\0', key_len);
249 	if (copied_salt != NULL)
250 		memset(copied_salt, '\0', salt_len);
251 
252 	return (0);
253 }
254 
255 #ifdef TEST
256 
257 static const struct {
258 	const char *input;
259 	const char result[32];
260 } tests[] =
261 {
262 	/* Test vectors from FIPS 180-2: appendix B.1. */
263 	{
264 		"abc",
265 		"\xba\x78\x16\xbf\x8f\x01\xcf\xea\x41\x41\x40\xde\x5d\xae\x22\x23"
266 		"\xb0\x03\x61\xa3\x96\x17\x7a\x9c\xb4\x10\xff\x61\xf2\x00\x15\xad"
267 	},
268 	/* Test vectors from FIPS 180-2: appendix B.2. */
269 	{
270 		"abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq",
271 		"\x24\x8d\x6a\x61\xd2\x06\x38\xb8\xe5\xc0\x26\x93\x0c\x3e\x60\x39"
272 		"\xa3\x3c\xe4\x59\x64\xff\x21\x67\xf6\xec\xed\xd4\x19\xdb\x06\xc1"
273 	},
274 	/* Test vectors from the NESSIE project. */
275 	{
276 		"",
277 		"\xe3\xb0\xc4\x42\x98\xfc\x1c\x14\x9a\xfb\xf4\xc8\x99\x6f\xb9\x24"
278 		"\x27\xae\x41\xe4\x64\x9b\x93\x4c\xa4\x95\x99\x1b\x78\x52\xb8\x55"
279 	},
280 	{
281 		"a",
282 		"\xca\x97\x81\x12\xca\x1b\xbd\xca\xfa\xc2\x31\xb3\x9a\x23\xdc\x4d"
283 		"\xa7\x86\xef\xf8\x14\x7c\x4e\x72\xb9\x80\x77\x85\xaf\xee\x48\xbb"
284 	},
285 	{
286 		"message digest",
287 		"\xf7\x84\x6f\x55\xcf\x23\xe1\x4e\xeb\xea\xb5\xb4\xe1\x55\x0c\xad"
288 		"\x5b\x50\x9e\x33\x48\xfb\xc4\xef\xa3\xa1\x41\x3d\x39\x3c\xb6\x50"
289 	},
290 	{
291 		"abcdefghijklmnopqrstuvwxyz",
292 		"\x71\xc4\x80\xdf\x93\xd6\xae\x2f\x1e\xfa\xd1\x44\x7c\x66\xc9\x52"
293 		"\x5e\x31\x62\x18\xcf\x51\xfc\x8d\x9e\xd8\x32\xf2\xda\xf1\x8b\x73"
294 	},
295 	{
296 		"abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq",
297 		"\x24\x8d\x6a\x61\xd2\x06\x38\xb8\xe5\xc0\x26\x93\x0c\x3e\x60\x39"
298 		"\xa3\x3c\xe4\x59\x64\xff\x21\x67\xf6\xec\xed\xd4\x19\xdb\x06\xc1"
299 	},
300 	{
301 		"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789",
302 		"\xdb\x4b\xfc\xbd\x4d\xa0\xcd\x85\xa6\x0c\x3c\x37\xd3\xfb\xd8\x80"
303 		"\x5c\x77\xf1\x5f\xc6\xb1\xfd\xfe\x61\x4e\xe0\xa7\xc8\xfd\xb4\xc0"
304 	},
305 	{
306 		"123456789012345678901234567890123456789012345678901234567890"
307 		"12345678901234567890",
308 		"\xf3\x71\xbc\x4a\x31\x1f\x2b\x00\x9e\xef\x95\x2d\xd8\x3c\xa8\x0e"
309 		"\x2b\x60\x02\x6c\x8e\x93\x55\x92\xd0\xf9\xc3\x08\x45\x3c\x81\x3e"
310 	}
311 };
312 
313 #define ntests (sizeof (tests) / sizeof (tests[0]))
314 
315 static const struct {
316 	const char *salt;
317 	const char *input;
318 	const char *expected;
319 } tests2[] =
320 {
321 	{
322 		"$5$saltstring", "Hello world!",
323 		"$5$saltstring$5B8vYYiY.CVt1RlTTf8KbXBH3hsxY/GNooZaBBGWEc5"
324 	},
325 	{
326 		"$5$rounds=10000$saltstringsaltstring", "Hello world!",
327 		"$5$rounds=10000$saltstringsaltst$3xv.VbSHBb41AL9AvLeujZkZRBAwqFMz2."
328 		"opqey6IcA"
329 	},
330 	{
331 		"$5$rounds=5000$toolongsaltstring", "This is just a test",
332 		"$5$rounds=5000$toolongsaltstrin$Un/5jzAHMgOGZ5.mWJpuVolil07guHPvOW8"
333 		"mGRcvxa5"
334 	},
335 	{
336 		"$5$rounds=1400$anotherlongsaltstring",
337 		"a very much longer text to encrypt.  This one even stretches over more"
338 		"than one line.",
339 		"$5$rounds=1400$anotherlongsalts$Rx.j8H.h8HjEDGomFU8bDkXm3XIUnzyxf12"
340 		"oP84Bnq1"
341 	},
342 	{
343 		"$5$rounds=77777$short",
344 		"we have a short salt string but not a short password",
345 		"$5$rounds=77777$short$JiO1O3ZpDAxGJeaDIuqCoEFysAe1mZNJRs3pw0KQRd/"
346 	},
347 	{
348 		"$5$rounds=123456$asaltof16chars..", "a short string",
349 		"$5$rounds=123456$asaltof16chars..$gP3VQ/6X7UUEW3HkBn2w1/Ptq2jxPyzV/"
350 		"cZKmF/wJvD"
351 	},
352 	{
353 		"$5$rounds=10$roundstoolow", "the minimum number is still observed",
354 		"$5$rounds=1000$roundstoolow$yfvwcWrQ8l/K0DAWyuPMDNHpIVlTQebY9l/gL97"
355 		"2bIC"
356 	},
357 };
358 
359 #define ntests2 (sizeof (tests2) / sizeof (tests2[0]))
360 
361 int
362 main(void)
363 {
364 	SHA256_CTX ctx;
365 	uint8_t sum[32];
366 	int result = 0;
367 	int i, cnt;
368 
369 	for (cnt = 0; cnt < (int)ntests; ++cnt) {
370 		SHA256_Init(&ctx);
371 		SHA256_Update(&ctx, tests[cnt].input, strlen(tests[cnt].input));
372 		SHA256_Final(sum, &ctx);
373 		if (memcmp(tests[cnt].result, sum, 32) != 0) {
374 			for (i = 0; i < 32; i++)
375 				printf("%02X", tests[cnt].result[i]);
376 			printf("\n");
377 			for (i = 0; i < 32; i++)
378 				printf("%02X", sum[i]);
379 			printf("\n");
380 			printf("test %d run %d failed\n", cnt, 1);
381 			result = 1;
382 		}
383 
384 		SHA256_Init(&ctx);
385 		for (i = 0; tests[cnt].input[i] != '\0'; ++i)
386 			SHA256_Update(&ctx, &tests[cnt].input[i], 1);
387 		SHA256_Final(sum, &ctx);
388 		if (memcmp(tests[cnt].result, sum, 32) != 0) {
389 			for (i = 0; i < 32; i++)
390 				printf("%02X", tests[cnt].result[i]);
391 			printf("\n");
392 			for (i = 0; i < 32; i++)
393 				printf("%02X", sum[i]);
394 			printf("\n");
395 			printf("test %d run %d failed\n", cnt, 2);
396 			result = 1;
397 		}
398 	}
399 
400 	/* Test vector from FIPS 180-2: appendix B.3. */
401 	char buf[1000];
402 
403 	memset(buf, 'a', sizeof(buf));
404 	SHA256_Init(&ctx);
405 	for (i = 0; i < 1000; ++i)
406 		SHA256_Update(&ctx, buf, sizeof(buf));
407 	SHA256_Final(sum, &ctx);
408 	static const char expected[32] =
409 	"\xcd\xc7\x6e\x5c\x99\x14\xfb\x92\x81\xa1\xc7\xe2\x84\xd7\x3e\x67"
410 	"\xf1\x80\x9a\x48\xa4\x97\x20\x0e\x04\x6d\x39\xcc\xc7\x11\x2c\xd0";
411 
412 	if (memcmp(expected, sum, 32) != 0) {
413 		printf("test %d failed\n", cnt);
414 		result = 1;
415 	}
416 
417 	for (cnt = 0; cnt < ntests2; ++cnt) {
418 		char *cp = crypt_sha256(tests2[cnt].input, tests2[cnt].salt);
419 
420 		if (strcmp(cp, tests2[cnt].expected) != 0) {
421 			printf("test %d: expected \"%s\", got \"%s\"\n",
422 			       cnt, tests2[cnt].expected, cp);
423 			result = 1;
424 		}
425 	}
426 
427 	if (result == 0)
428 		puts("all tests OK");
429 
430 	return result;
431 }
432 
433 #endif /* TEST */
434