xref: /freebsd/lib/libcrypt/crypt-sha256.c (revision 076ad2f836d5f49dc1375f1677335a48fe0d4b82)
1 /*
2  * Copyright (c) 2011 The FreeBSD Project. All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  *
13  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23  * SUCH DAMAGE.
24  */
25 
26 /* Based on:
27  * SHA256-based Unix crypt implementation. Released into the Public Domain by
28  * Ulrich Drepper <drepper@redhat.com>. */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <sys/endian.h>
34 #include <sys/param.h>
35 
36 #include <errno.h>
37 #include <limits.h>
38 #include <sha256.h>
39 #include <stdbool.h>
40 #include <stdint.h>
41 #include <stdio.h>
42 #include <stdlib.h>
43 #include <string.h>
44 
45 #include "crypt.h"
46 
47 /* Define our magic string to mark salt for SHA256 "encryption" replacement. */
48 static const char sha256_salt_prefix[] = "$5$";
49 
50 /* Prefix for optional rounds specification. */
51 static const char sha256_rounds_prefix[] = "rounds=";
52 
53 /* Maximum salt string length. */
54 #define SALT_LEN_MAX 16
55 /* Default number of rounds if not explicitly specified. */
56 #define ROUNDS_DEFAULT 5000
57 /* Minimum number of rounds. */
58 #define ROUNDS_MIN 1000
59 /* Maximum number of rounds. */
60 #define ROUNDS_MAX 999999999
61 
62 int
63 crypt_sha256(const char *key, const char *salt, char *buffer)
64 {
65 	u_long srounds;
66 	uint8_t alt_result[32], temp_result[32];
67 	SHA256_CTX ctx, alt_ctx;
68 	size_t salt_len, key_len, cnt, rounds;
69 	char *cp, *copied_key, *copied_salt, *p_bytes, *s_bytes, *endp;
70 	const char *num;
71 	bool rounds_custom;
72 
73 	copied_key = NULL;
74 	copied_salt = NULL;
75 
76 	/* Default number of rounds. */
77 	rounds = ROUNDS_DEFAULT;
78 	rounds_custom = false;
79 
80 	/* Find beginning of salt string. The prefix should normally always
81 	 * be present. Just in case it is not. */
82 	if (strncmp(sha256_salt_prefix, salt, sizeof(sha256_salt_prefix) - 1) == 0)
83 		/* Skip salt prefix. */
84 		salt += sizeof(sha256_salt_prefix) - 1;
85 
86 	if (strncmp(salt, sha256_rounds_prefix, sizeof(sha256_rounds_prefix) - 1)
87 	    == 0) {
88 		num = salt + sizeof(sha256_rounds_prefix) - 1;
89 		srounds = strtoul(num, &endp, 10);
90 
91 		if (*endp == '$') {
92 			salt = endp + 1;
93 			rounds = MAX(ROUNDS_MIN, MIN(srounds, ROUNDS_MAX));
94 			rounds_custom = true;
95 		}
96 	}
97 
98 	salt_len = MIN(strcspn(salt, "$"), SALT_LEN_MAX);
99 	key_len = strlen(key);
100 
101 	/* Prepare for the real work. */
102 	SHA256_Init(&ctx);
103 
104 	/* Add the key string. */
105 	SHA256_Update(&ctx, key, key_len);
106 
107 	/* The last part is the salt string. This must be at most 8
108 	 * characters and it ends at the first `$' character (for
109 	 * compatibility with existing implementations). */
110 	SHA256_Update(&ctx, salt, salt_len);
111 
112 	/* Compute alternate SHA256 sum with input KEY, SALT, and KEY. The
113 	 * final result will be added to the first context. */
114 	SHA256_Init(&alt_ctx);
115 
116 	/* Add key. */
117 	SHA256_Update(&alt_ctx, key, key_len);
118 
119 	/* Add salt. */
120 	SHA256_Update(&alt_ctx, salt, salt_len);
121 
122 	/* Add key again. */
123 	SHA256_Update(&alt_ctx, key, key_len);
124 
125 	/* Now get result of this (32 bytes) and add it to the other context. */
126 	SHA256_Final(alt_result, &alt_ctx);
127 
128 	/* Add for any character in the key one byte of the alternate sum. */
129 	for (cnt = key_len; cnt > 32; cnt -= 32)
130 		SHA256_Update(&ctx, alt_result, 32);
131 	SHA256_Update(&ctx, alt_result, cnt);
132 
133 	/* Take the binary representation of the length of the key and for
134 	 * every 1 add the alternate sum, for every 0 the key. */
135 	for (cnt = key_len; cnt > 0; cnt >>= 1)
136 		if ((cnt & 1) != 0)
137 			SHA256_Update(&ctx, alt_result, 32);
138 		else
139 			SHA256_Update(&ctx, key, key_len);
140 
141 	/* Create intermediate result. */
142 	SHA256_Final(alt_result, &ctx);
143 
144 	/* Start computation of P byte sequence. */
145 	SHA256_Init(&alt_ctx);
146 
147 	/* For every character in the password add the entire password. */
148 	for (cnt = 0; cnt < key_len; ++cnt)
149 		SHA256_Update(&alt_ctx, key, key_len);
150 
151 	/* Finish the digest. */
152 	SHA256_Final(temp_result, &alt_ctx);
153 
154 	/* Create byte sequence P. */
155 	cp = p_bytes = alloca(key_len);
156 	for (cnt = key_len; cnt >= 32; cnt -= 32) {
157 		memcpy(cp, temp_result, 32);
158 		cp += 32;
159 	}
160 	memcpy(cp, temp_result, cnt);
161 
162 	/* Start computation of S byte sequence. */
163 	SHA256_Init(&alt_ctx);
164 
165 	/* For every character in the password add the entire password. */
166 	for (cnt = 0; cnt < 16 + alt_result[0]; ++cnt)
167 		SHA256_Update(&alt_ctx, salt, salt_len);
168 
169 	/* Finish the digest. */
170 	SHA256_Final(temp_result, &alt_ctx);
171 
172 	/* Create byte sequence S. */
173 	cp = s_bytes = alloca(salt_len);
174 	for (cnt = salt_len; cnt >= 32; cnt -= 32) {
175 		memcpy(cp, temp_result, 32);
176 		cp += 32;
177 	}
178 	memcpy(cp, temp_result, cnt);
179 
180 	/* Repeatedly run the collected hash value through SHA256 to burn CPU
181 	 * cycles. */
182 	for (cnt = 0; cnt < rounds; ++cnt) {
183 		/* New context. */
184 		SHA256_Init(&ctx);
185 
186 		/* Add key or last result. */
187 		if ((cnt & 1) != 0)
188 			SHA256_Update(&ctx, p_bytes, key_len);
189 		else
190 			SHA256_Update(&ctx, alt_result, 32);
191 
192 		/* Add salt for numbers not divisible by 3. */
193 		if (cnt % 3 != 0)
194 			SHA256_Update(&ctx, s_bytes, salt_len);
195 
196 		/* Add key for numbers not divisible by 7. */
197 		if (cnt % 7 != 0)
198 			SHA256_Update(&ctx, p_bytes, key_len);
199 
200 		/* Add key or last result. */
201 		if ((cnt & 1) != 0)
202 			SHA256_Update(&ctx, alt_result, 32);
203 		else
204 			SHA256_Update(&ctx, p_bytes, key_len);
205 
206 		/* Create intermediate result. */
207 		SHA256_Final(alt_result, &ctx);
208 	}
209 
210 	/* Now we can construct the result string. It consists of three
211 	 * parts. */
212 	cp = stpcpy(buffer, sha256_salt_prefix);
213 
214 	if (rounds_custom)
215 		cp += sprintf(cp, "%s%zu$", sha256_rounds_prefix, rounds);
216 
217 	cp = stpncpy(cp, salt, salt_len);
218 
219 	*cp++ = '$';
220 
221 	b64_from_24bit(alt_result[0], alt_result[10], alt_result[20], 4, &cp);
222 	b64_from_24bit(alt_result[21], alt_result[1], alt_result[11], 4, &cp);
223 	b64_from_24bit(alt_result[12], alt_result[22], alt_result[2], 4, &cp);
224 	b64_from_24bit(alt_result[3], alt_result[13], alt_result[23], 4, &cp);
225 	b64_from_24bit(alt_result[24], alt_result[4], alt_result[14], 4, &cp);
226 	b64_from_24bit(alt_result[15], alt_result[25], alt_result[5], 4, &cp);
227 	b64_from_24bit(alt_result[6], alt_result[16], alt_result[26], 4, &cp);
228 	b64_from_24bit(alt_result[27], alt_result[7], alt_result[17], 4, &cp);
229 	b64_from_24bit(alt_result[18], alt_result[28], alt_result[8], 4, &cp);
230 	b64_from_24bit(alt_result[9], alt_result[19], alt_result[29], 4, &cp);
231 	b64_from_24bit(0, alt_result[31], alt_result[30], 3, &cp);
232 	*cp = '\0';	/* Terminate the string. */
233 
234 	/* Clear the buffer for the intermediate result so that people
235 	 * attaching to processes or reading core dumps cannot get any
236 	 * information. We do it in this way to clear correct_words[] inside
237 	 * the SHA256 implementation as well. */
238 	SHA256_Init(&ctx);
239 	SHA256_Final(alt_result, &ctx);
240 	memset(temp_result, '\0', sizeof(temp_result));
241 	memset(p_bytes, '\0', key_len);
242 	memset(s_bytes, '\0', salt_len);
243 	memset(&ctx, '\0', sizeof(ctx));
244 	memset(&alt_ctx, '\0', sizeof(alt_ctx));
245 	if (copied_key != NULL)
246 		memset(copied_key, '\0', key_len);
247 	if (copied_salt != NULL)
248 		memset(copied_salt, '\0', salt_len);
249 
250 	return (0);
251 }
252 
253 #ifdef TEST
254 
255 static const struct {
256 	const char *input;
257 	const char result[32];
258 } tests[] =
259 {
260 	/* Test vectors from FIPS 180-2: appendix B.1. */
261 	{
262 		"abc",
263 		"\xba\x78\x16\xbf\x8f\x01\xcf\xea\x41\x41\x40\xde\x5d\xae\x22\x23"
264 		"\xb0\x03\x61\xa3\x96\x17\x7a\x9c\xb4\x10\xff\x61\xf2\x00\x15\xad"
265 	},
266 	/* Test vectors from FIPS 180-2: appendix B.2. */
267 	{
268 		"abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq",
269 		"\x24\x8d\x6a\x61\xd2\x06\x38\xb8\xe5\xc0\x26\x93\x0c\x3e\x60\x39"
270 		"\xa3\x3c\xe4\x59\x64\xff\x21\x67\xf6\xec\xed\xd4\x19\xdb\x06\xc1"
271 	},
272 	/* Test vectors from the NESSIE project. */
273 	{
274 		"",
275 		"\xe3\xb0\xc4\x42\x98\xfc\x1c\x14\x9a\xfb\xf4\xc8\x99\x6f\xb9\x24"
276 		"\x27\xae\x41\xe4\x64\x9b\x93\x4c\xa4\x95\x99\x1b\x78\x52\xb8\x55"
277 	},
278 	{
279 		"a",
280 		"\xca\x97\x81\x12\xca\x1b\xbd\xca\xfa\xc2\x31\xb3\x9a\x23\xdc\x4d"
281 		"\xa7\x86\xef\xf8\x14\x7c\x4e\x72\xb9\x80\x77\x85\xaf\xee\x48\xbb"
282 	},
283 	{
284 		"message digest",
285 		"\xf7\x84\x6f\x55\xcf\x23\xe1\x4e\xeb\xea\xb5\xb4\xe1\x55\x0c\xad"
286 		"\x5b\x50\x9e\x33\x48\xfb\xc4\xef\xa3\xa1\x41\x3d\x39\x3c\xb6\x50"
287 	},
288 	{
289 		"abcdefghijklmnopqrstuvwxyz",
290 		"\x71\xc4\x80\xdf\x93\xd6\xae\x2f\x1e\xfa\xd1\x44\x7c\x66\xc9\x52"
291 		"\x5e\x31\x62\x18\xcf\x51\xfc\x8d\x9e\xd8\x32\xf2\xda\xf1\x8b\x73"
292 	},
293 	{
294 		"abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq",
295 		"\x24\x8d\x6a\x61\xd2\x06\x38\xb8\xe5\xc0\x26\x93\x0c\x3e\x60\x39"
296 		"\xa3\x3c\xe4\x59\x64\xff\x21\x67\xf6\xec\xed\xd4\x19\xdb\x06\xc1"
297 	},
298 	{
299 		"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789",
300 		"\xdb\x4b\xfc\xbd\x4d\xa0\xcd\x85\xa6\x0c\x3c\x37\xd3\xfb\xd8\x80"
301 		"\x5c\x77\xf1\x5f\xc6\xb1\xfd\xfe\x61\x4e\xe0\xa7\xc8\xfd\xb4\xc0"
302 	},
303 	{
304 		"123456789012345678901234567890123456789012345678901234567890"
305 		"12345678901234567890",
306 		"\xf3\x71\xbc\x4a\x31\x1f\x2b\x00\x9e\xef\x95\x2d\xd8\x3c\xa8\x0e"
307 		"\x2b\x60\x02\x6c\x8e\x93\x55\x92\xd0\xf9\xc3\x08\x45\x3c\x81\x3e"
308 	}
309 };
310 
311 #define ntests (sizeof (tests) / sizeof (tests[0]))
312 
313 static const struct {
314 	const char *salt;
315 	const char *input;
316 	const char *expected;
317 } tests2[] =
318 {
319 	{
320 		"$5$saltstring", "Hello world!",
321 		"$5$saltstring$5B8vYYiY.CVt1RlTTf8KbXBH3hsxY/GNooZaBBGWEc5"
322 	},
323 	{
324 		"$5$rounds=10000$saltstringsaltstring", "Hello world!",
325 		"$5$rounds=10000$saltstringsaltst$3xv.VbSHBb41AL9AvLeujZkZRBAwqFMz2."
326 		"opqey6IcA"
327 	},
328 	{
329 		"$5$rounds=5000$toolongsaltstring", "This is just a test",
330 		"$5$rounds=5000$toolongsaltstrin$Un/5jzAHMgOGZ5.mWJpuVolil07guHPvOW8"
331 		"mGRcvxa5"
332 	},
333 	{
334 		"$5$rounds=1400$anotherlongsaltstring",
335 		"a very much longer text to encrypt.  This one even stretches over more"
336 		"than one line.",
337 		"$5$rounds=1400$anotherlongsalts$Rx.j8H.h8HjEDGomFU8bDkXm3XIUnzyxf12"
338 		"oP84Bnq1"
339 	},
340 	{
341 		"$5$rounds=77777$short",
342 		"we have a short salt string but not a short password",
343 		"$5$rounds=77777$short$JiO1O3ZpDAxGJeaDIuqCoEFysAe1mZNJRs3pw0KQRd/"
344 	},
345 	{
346 		"$5$rounds=123456$asaltof16chars..", "a short string",
347 		"$5$rounds=123456$asaltof16chars..$gP3VQ/6X7UUEW3HkBn2w1/Ptq2jxPyzV/"
348 		"cZKmF/wJvD"
349 	},
350 	{
351 		"$5$rounds=10$roundstoolow", "the minimum number is still observed",
352 		"$5$rounds=1000$roundstoolow$yfvwcWrQ8l/K0DAWyuPMDNHpIVlTQebY9l/gL97"
353 		"2bIC"
354 	},
355 };
356 
357 #define ntests2 (sizeof (tests2) / sizeof (tests2[0]))
358 
359 int
360 main(void)
361 {
362 	SHA256_CTX ctx;
363 	uint8_t sum[32];
364 	int result = 0;
365 	int i, cnt;
366 
367 	for (cnt = 0; cnt < (int)ntests; ++cnt) {
368 		SHA256_Init(&ctx);
369 		SHA256_Update(&ctx, tests[cnt].input, strlen(tests[cnt].input));
370 		SHA256_Final(sum, &ctx);
371 		if (memcmp(tests[cnt].result, sum, 32) != 0) {
372 			for (i = 0; i < 32; i++)
373 				printf("%02X", tests[cnt].result[i]);
374 			printf("\n");
375 			for (i = 0; i < 32; i++)
376 				printf("%02X", sum[i]);
377 			printf("\n");
378 			printf("test %d run %d failed\n", cnt, 1);
379 			result = 1;
380 		}
381 
382 		SHA256_Init(&ctx);
383 		for (i = 0; tests[cnt].input[i] != '\0'; ++i)
384 			SHA256_Update(&ctx, &tests[cnt].input[i], 1);
385 		SHA256_Final(sum, &ctx);
386 		if (memcmp(tests[cnt].result, sum, 32) != 0) {
387 			for (i = 0; i < 32; i++)
388 				printf("%02X", tests[cnt].result[i]);
389 			printf("\n");
390 			for (i = 0; i < 32; i++)
391 				printf("%02X", sum[i]);
392 			printf("\n");
393 			printf("test %d run %d failed\n", cnt, 2);
394 			result = 1;
395 		}
396 	}
397 
398 	/* Test vector from FIPS 180-2: appendix B.3. */
399 	char buf[1000];
400 
401 	memset(buf, 'a', sizeof(buf));
402 	SHA256_Init(&ctx);
403 	for (i = 0; i < 1000; ++i)
404 		SHA256_Update(&ctx, buf, sizeof(buf));
405 	SHA256_Final(sum, &ctx);
406 	static const char expected[32] =
407 	"\xcd\xc7\x6e\x5c\x99\x14\xfb\x92\x81\xa1\xc7\xe2\x84\xd7\x3e\x67"
408 	"\xf1\x80\x9a\x48\xa4\x97\x20\x0e\x04\x6d\x39\xcc\xc7\x11\x2c\xd0";
409 
410 	if (memcmp(expected, sum, 32) != 0) {
411 		printf("test %d failed\n", cnt);
412 		result = 1;
413 	}
414 
415 	for (cnt = 0; cnt < ntests2; ++cnt) {
416 		char *cp = crypt_sha256(tests2[cnt].input, tests2[cnt].salt);
417 
418 		if (strcmp(cp, tests2[cnt].expected) != 0) {
419 			printf("test %d: expected \"%s\", got \"%s\"\n",
420 			       cnt, tests2[cnt].expected, cp);
421 			result = 1;
422 		}
423 	}
424 
425 	if (result == 0)
426 		puts("all tests OK");
427 
428 	return result;
429 }
430 
431 #endif /* TEST */
432