xref: /freebsd/lib/libcalendar/calendar.c (revision fa1837702339667092ca19afec47972849aa88fb)
1 /*-
2  * Copyright (c) 1997 Wolfgang Helbig
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  *	$Id: calendar.c,v 1.1.1.1 1997/12/04 10:41:49 helbig Exp $
27  */
28 
29 #include "calendar.h"
30 
31 #ifndef NULL
32 #define NULL 0
33 #endif
34 
35 /*
36  * For each month tabulate the number of days elapsed in a year before the
37  * month. This assumes the internal date representation, where a year
38  * starts on March 1st. So we don't need a special table for leap years.
39  * But we do need a special table for the year 1582, since 10 days are
40  * deleted in October. This is month1s for the switch from Julian to
41  * Gregorian calendar.
42  */
43 static int const month1[] =
44     {0, 31, 61, 92, 122, 153, 184, 214, 245, 275, 306, 337};
45    /*  M   A   M   J    J    A    S    O    N    D    J */
46 static int const month1s[]=
47     {0, 31, 61, 92, 122, 153, 184, 214, 235, 265, 296, 327};
48 
49 typedef struct date date;
50 
51 /* The last day of Julian calendar, in internal and ndays representation */
52 static int nswitch;	/* The last day of Julian calendar */
53 static date jiswitch = {1582, 7, 3};
54 
55 static date	*date2idt(date *idt, date *dt);
56 static date	*idt2date(date *dt, date *idt);
57 static int	 ndaysji(date *idt);
58 static int	 ndaysgi(date *idt);
59 static int	 firstweek(int year);
60 
61 /*
62  * Compute the Julian date from the number of days elapsed since
63  * March 1st of year zero.
64  */
65 date *
66 jdate(int ndays, date *dt)
67 {
68 	date    idt;		/* Internal date representation */
69 	int     r;		/* hold the rest of days */
70 
71 	/*
72 	 * Compute the year by starting with an approximation not smaller
73 	 * than the answer and using linear search for the greatest
74 	 * year which does not begin after ndays.
75 	 */
76 	idt.y = ndays / 365;
77 	idt.m = 0;
78 	idt.d = 0;
79 	while ((r = ndaysji(&idt)) > ndays)
80 		idt.y--;
81 
82 	/*
83 	 * Set r to the days left in the year and compute the month by
84 	 * linear search as the largest month that does not begin after r
85 	 * days.
86 	 */
87 	r = ndays - r;
88 	for (idt.m = 11; month1[idt.m] > r; idt.m--)
89 		;
90 
91 	/* Compute the days left in the month */
92 	idt.d = r - month1[idt.m];
93 
94 	/* return external representation of the date */
95 	return (idt2date(dt, &idt));
96 }
97 
98 /*
99  * Return the number of days since March 1st of the year zero.
100  * The date is given according to Julian calendar.
101  */
102 int
103 ndaysj(date *dt)
104 {
105 	date    idt;		/* Internal date representation */
106 
107 	if (date2idt(&idt, dt) == NULL)
108 		return (-1);
109 	else
110 		return (ndaysji(&idt));
111 }
112 
113 /*
114  * Same as above, where the Julian date is given in internal notation.
115  * This formula shows the beauty of this notation.
116  */
117 static int
118 ndaysji(date * idt)
119 {
120 
121 	return (idt->d + month1[idt->m] + idt->y * 365 + idt->y / 4);
122 }
123 
124 /*
125  * Compute the date according to the Gregorian calendar from the number of
126  * days since March 1st, year zero. The date computed will be Julian if it
127  * is older than 1582-10-05. This is the reverse of the function ndaysg().
128  */
129 date   *
130 gdate(int ndays, date *dt)
131 {
132 	int const *montht;	/* month-table */
133 	date    idt;		/* for internal date representation */
134 	int     r;		/* holds the rest of days */
135 
136 	/*
137 	 * Compute the year by starting with an approximation not smaller
138 	 * than the answer and search linearly for the greatest year not
139 	 * starting after ndays.
140 	 */
141 	idt.y = ndays / 365;
142 	idt.m = 0;
143 	idt.d = 0;
144 	while ((r = ndaysgi(&idt)) > ndays)
145 		idt.y--;
146 
147 	/*
148 	 * Set ndays to the number of days left and compute by linear
149 	 * search the greatest month which does not start after ndays. We
150 	 * use the table month1 which provides for each month the number
151 	 * of days that elapsed in the year before that month. Here the
152 	 * year 1582 is special, as 10 days are left out in October to
153 	 * resynchronize the calendar with the earth's orbit. October 4th
154 	 * 1582 is followed by October 15th 1582. We use the "switch"
155 	 * table month1s for this year.
156 	 */
157 	ndays = ndays - r;
158 	if (idt.y == 1582)
159 		montht = month1s;
160 	else
161 		montht = month1;
162 
163 	for (idt.m = 11; montht[idt.m] > ndays; idt.m--)
164 		;
165 
166 	idt.d = ndays - montht[idt.m]; /* the rest is the day in month */
167 
168 	/* Advance ten days deleted from October if after switch in Oct 1582 */
169 	if (idt.y == jiswitch.y && idt.m == jiswitch.m && jiswitch.d < idt.d)
170 		idt.d += 10;
171 
172 	/* return external representation of found date */
173 	return (idt2date(dt, &idt));
174 }
175 
176 /*
177  * Return the number of days since March 1st of the year zero. The date is
178  * assumed Gregorian if younger than 1582-10-04 and Julian otherwise. This
179  * is the reverse of gdate.
180  */
181 int
182 ndaysg(date *dt)
183 {
184 	date    idt;		/* Internal date representation */
185 
186 	if (date2idt(&idt, dt) == NULL)
187 		return (-1);
188 	return (ndaysgi(&idt));
189 }
190 
191 /*
192  * Same as above, but with the Gregorian date given in internal
193  * representation.
194  */
195 static int
196 ndaysgi(date *idt)
197 {
198 	int     nd;		/* Number of days--return value */
199 
200 	/* Cache nswitch if not already done */
201 	if (nswitch == 0)
202 		nswitch = ndaysji(&jiswitch);
203 
204 	/*
205 	 * Assume Julian calendar and adapt to Gregorian if necessary, i. e.
206 	 * younger than nswitch. Gregori deleted
207 	 * the ten days from Oct 5th to Oct 14th 1582.
208 	 * Thereafter years which are multiples of 100 and not multiples
209 	 * of 400 were not leap years anymore.
210 	 * This makes the average length of a year
211 	 * 365d +.25d - .01d + .0025d = 365.2425d. But the tropical
212 	 * year measures 365.2422d. So in 10000/3 years we are
213 	 * again one day ahead of the earth. Sigh :-)
214 	 * (d is the average length of a day and tropical year is the
215 	 * time from one spring point to the next.)
216 	 */
217 	if ((nd = ndaysji(idt)) == -1)
218 		return (-1);
219 	if (idt->y >= 1600)
220 		nd = (nd - 10 - (idt->y - 1600) / 100 + (idt->y - 1600) / 400);
221 	else if (nd > nswitch)
222 		nd -= 10;
223 	return (nd);
224 }
225 
226 /*
227  * Compute the week number from the number of days since March 1st year 0.
228  * The weeks are numbered per year starting with 1. If the first
229  * week of a year includes at least four days of that year it is week 1,
230  * otherwise it gets the number of the last week of the previous year.
231  * The variable y will be filled with the year that contains the greater
232  * part of the week.
233  */
234 int
235 week(int nd, int *y)
236 {
237 	date    dt;
238 	int     fw;		/* 1st day of week 1 of previous, this and
239 				 * next year */
240 	gdate(nd, &dt);
241 	for (*y = dt.y + 1; nd < (fw = firstweek(*y)); (*y)--)
242 		;
243 	return ((nd - fw) / 7 + 1);
244 }
245 
246 /* return the first day of week 1 of year y */
247 static int
248 firstweek(int y)
249 {
250 	date idt;
251 	int nd, wd;
252 
253 	idt.y = y - 1;   /* internal representation of y-1-1 */
254 	idt.m = 10;
255 	idt.d = 0;
256 
257 	nd = ndaysgi(&idt);
258 	/*
259 	 * If more than 3 days of this week are in the preceding year, the
260 	 * next week is week 1 (and the next monday is the answer),
261 	 * otherwise this week is week 1 and the last monday is the
262 	 * answer.
263 	 */
264 	if ((wd = weekday(nd)) > 3)
265 		return (nd - wd + 7);
266 	else
267 		return (nd - wd);
268 }
269 
270 /* return the weekday (Mo = 0 .. Su = 6) */
271 int
272 weekday(int nd)
273 {
274 	date dmondaygi = {1997, 8, 16}; /* Internal repr. of 1997-11-17 */
275 	static int nmonday;             /* ... which is a monday        */
276 
277 	/* Cache the daynumber of one monday */
278 	if (nmonday == 0)
279 		nmonday = ndaysgi(&dmondaygi);
280 
281 	/* return (nd - nmonday) modulo 7 which is the weekday */
282 	nd = (nd - nmonday) % 7;
283 	if (nd < 0)
284 		return (nd + 7);
285 	else
286 		return (nd);
287 }
288 
289 /*
290  * Convert a date to internal date representation: The year starts on
291  * March 1st, month and day numbering start at zero. E. g. March 1st of
292  * year zero is written as y=0, m=0, d=0.
293  */
294 static date *
295 date2idt(date *idt, date *dt)
296 {
297 
298 	idt->d = dt->d - 1;
299 	if (dt->m > 2) {
300 		idt->m = dt->m - 3;
301 		idt->y = dt->y;
302 	} else {
303 		idt->m = dt->m + 9;
304 		idt->y = dt->y - 1;
305 	}
306 	if (idt->m < 0 || idt->m > 11 || idt->y < 0)
307 		return (NULL);
308 	else
309 		return idt;
310 }
311 
312 /* Reverse of date2idt */
313 static date *
314 idt2date(date *dt, date *idt)
315 {
316 
317 	dt->d = idt->d + 1;
318 	if (idt->m < 10) {
319 		dt->m = idt->m + 3;
320 		dt->y = idt->y;
321 	} else {
322 		dt->m = idt->m - 9;
323 		dt->y = idt->y + 1;
324 	}
325 	if (dt->m < 1)
326 		return (NULL);
327 	else
328 		return (dt);
329 }
330