xref: /freebsd/lib/libcalendar/calendar.c (revision 306a501f3520479370df138f56bb5ef612944c59)
1 /*-
2  * Copyright (c) 1997 Wolfgang Helbig
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  *	$Id$
27  */
28 
29 #include "calendar.h"
30 
31 #ifndef NULL
32 #define NULL 0
33 #endif
34 
35 /*
36  * For each month tabulate the number of days elapsed in a year before the
37  * month. This assumes the internal date representation, where a year
38  * starts on March 1st. So we don't need a special table for leap years.
39  * But we do need a special table for the year 1582, since 10 days are
40  * deleted in October. This is month1s for the switch from Julian to
41  * Gregorian calendar.
42  */
43 static int const month1[] =
44     {0, 31, 61, 92, 122, 153, 184, 214, 245, 275, 306, 337};
45    /*  M   A   M   J    J    A    S    O    N    D    J */
46 static int const month1s[]=
47     {0, 31, 61, 92, 122, 153, 184, 214, 235, 265, 296, 327};
48 
49 /* The last day of Julian calendar, in internal and ndays representation */
50 static int nswitch;	/* The last day of Julian calendar */
51 static date jiswitch = {1582, 7, 3};
52 
53 static date	*date2idt(date *idt, date *dt);
54 static date	*idt2date(date *dt, date *idt);
55 static int	 ndaysji(date *idt);
56 static int	 ndaysgi(date *idt);
57 static int	 firstweek(int year);
58 
59 /*
60  * Compute the Julian date from the number of days elapsed since
61  * March 1st of year zero.
62  */
63 date *
64 jdate(int ndays, date *dt)
65 {
66 	date    idt;		/* Internal date representation */
67 	int     r;		/* hold the rest of days */
68 
69 	/*
70 	 * Compute the year by starting with an approximation not smaller
71 	 * than the answer and using linear search for the greatest
72 	 * year which does not begin after ndays.
73 	 */
74 	idt.y = ndays / 365;
75 	idt.m = 0;
76 	idt.d = 0;
77 	while ((r = ndaysji(&idt)) > ndays)
78 		idt.y--;
79 
80 	/*
81 	 * Set r to the days left in the year and compute the month by
82 	 * linear search as the largest month that does not begin after r
83 	 * days.
84 	 */
85 	r = ndays - r;
86 	for (idt.m = 11; month1[idt.m] > r; idt.m--)
87 		;
88 
89 	/* Compute the days left in the month */
90 	idt.d = r - month1[idt.m];
91 
92 	/* return external representation of the date */
93 	return (idt2date(dt, &idt));
94 }
95 
96 /*
97  * Return the number of days since March 1st of the year zero.
98  * The date is given according to Julian calendar.
99  */
100 int
101 ndaysj(date *dt)
102 {
103 	date    idt;		/* Internal date representation */
104 
105 	if (date2idt(&idt, dt) == NULL)
106 		return (-1);
107 	else
108 		return (ndaysji(&idt));
109 }
110 
111 /*
112  * Same as above, where the Julian date is given in internal notation.
113  * This formula shows the beauty of this notation.
114  */
115 static int
116 ndaysji(date * idt)
117 {
118 
119 	return (idt->d + month1[idt->m] + idt->y * 365 + idt->y / 4);
120 }
121 
122 /*
123  * Compute the date according to the Gregorian calendar from the number of
124  * days since March 1st, year zero. The date computed will be Julian if it
125  * is older than 1582-10-05. This is the reverse of the function ndaysg().
126  */
127 date   *
128 gdate(int ndays, date *dt)
129 {
130 	int const *montht;	/* month-table */
131 	date    idt;		/* for internal date representation */
132 	int     r;		/* holds the rest of days */
133 
134 	/*
135 	 * Compute the year by starting with an approximation not smaller
136 	 * than the answer and search linearly for the greatest year not
137 	 * starting after ndays.
138 	 */
139 	idt.y = ndays / 365;
140 	idt.m = 0;
141 	idt.d = 0;
142 	while ((r = ndaysgi(&idt)) > ndays)
143 		idt.y--;
144 
145 	/*
146 	 * Set ndays to the number of days left and compute by linear
147 	 * search the greatest month which does not start after ndays. We
148 	 * use the table month1 which provides for each month the number
149 	 * of days that elapsed in the year before that month. Here the
150 	 * year 1582 is special, as 10 days are left out in October to
151 	 * resynchronize the calendar with the earth's orbit. October 4th
152 	 * 1582 is followed by October 15th 1582. We use the "switch"
153 	 * table month1s for this year.
154 	 */
155 	ndays = ndays - r;
156 	if (idt.y == 1582)
157 		montht = month1s;
158 	else
159 		montht = month1;
160 
161 	for (idt.m = 11; montht[idt.m] > ndays; idt.m--)
162 		;
163 
164 	idt.d = ndays - montht[idt.m]; /* the rest is the day in month */
165 
166 	/* Advance ten days deleted from October if after switch in Oct 1582 */
167 	if (idt.y == jiswitch.y && idt.m == jiswitch.m && jiswitch.d < idt.d)
168 		idt.d += 10;
169 
170 	/* return external representation of found date */
171 	return (idt2date(dt, &idt));
172 }
173 
174 /*
175  * Return the number of days since March 1st of the year zero. The date is
176  * assumed Gregorian if younger than 1582-10-04 and Julian otherwise. This
177  * is the reverse of gdate.
178  */
179 int
180 ndaysg(date *dt)
181 {
182 	date    idt;		/* Internal date representation */
183 
184 	if (date2idt(&idt, dt) == NULL)
185 		return (-1);
186 	return (ndaysgi(&idt));
187 }
188 
189 /*
190  * Same as above, but with the Gregorian date given in internal
191  * representation.
192  */
193 static int
194 ndaysgi(date *idt)
195 {
196 	int     nd;		/* Number of days--return value */
197 
198 	/* Cache nswitch if not already done */
199 	if (nswitch == 0)
200 		nswitch = ndaysji(&jiswitch);
201 
202 	/*
203 	 * Assume Julian calendar and adapt to Gregorian if necessary, i. e.
204 	 * younger than nswitch. Gregori deleted
205 	 * the ten days from Oct 5th to Oct 14th 1582.
206 	 * Thereafter years which are multiples of 100 and not multiples
207 	 * of 400 were not leap years anymore.
208 	 * This makes the average length of a year
209 	 * 365d +.25d - .01d + .0025d = 365.2425d. But the tropical
210 	 * year measures 365.2422d. So in 10000/3 years we are
211 	 * again one day ahead of the earth. Sigh :-)
212 	 * (d is the average length of a day and tropical year is the
213 	 * time from one spring point to the next.)
214 	 */
215 	if ((nd = ndaysji(idt)) == -1)
216 		return (-1);
217 	if (idt->y >= 1600)
218 		nd = (nd - 10 - (idt->y - 1600) / 100 + (idt->y - 1600) / 400);
219 	else if (nd > nswitch)
220 		nd -= 10;
221 	return (nd);
222 }
223 
224 /*
225  * Compute the week number from the number of days since March 1st year 0.
226  * The weeks are numbered per year starting with 1. If the first
227  * week of a year includes at least four days of that year it is week 1,
228  * otherwise it gets the number of the last week of the previous year.
229  * The variable y will be filled with the year that contains the greater
230  * part of the week.
231  */
232 int
233 week(int nd, int *y)
234 {
235 	date    dt;
236 	int     fw;		/* 1st day of week 1 of previous, this and
237 				 * next year */
238 	gdate(nd, &dt);
239 	for (*y = dt.y + 1; nd < (fw = firstweek(*y)); (*y)--)
240 		;
241 	return ((nd - fw) / 7 + 1);
242 }
243 
244 /* return the first day of week 1 of year y */
245 static int
246 firstweek(int y)
247 {
248 	date idt;
249 	int nd, wd;
250 
251 	idt.y = y - 1;   /* internal representation of y-1-1 */
252 	idt.m = 10;
253 	idt.d = 0;
254 
255 	nd = ndaysgi(&idt);
256 	/*
257 	 * If more than 3 days of this week are in the preceding year, the
258 	 * next week is week 1 (and the next monday is the answer),
259 	 * otherwise this week is week 1 and the last monday is the
260 	 * answer.
261 	 */
262 	if ((wd = weekday(nd)) > 3)
263 		return (nd - wd + 7);
264 	else
265 		return (nd - wd);
266 }
267 
268 /* return the weekday (Mo = 0 .. Su = 6) */
269 int
270 weekday(int nd)
271 {
272 	date dmondaygi = {1997, 8, 16}; /* Internal repr. of 1997-11-17 */
273 	static int nmonday;             /* ... which is a monday        */
274 
275 	/* Cache the daynumber of one monday */
276 	if (nmonday == 0)
277 		nmonday = ndaysgi(&dmondaygi);
278 
279 	/* return (nd - nmonday) modulo 7 which is the weekday */
280 	nd = (nd - nmonday) % 7;
281 	if (nd < 0)
282 		return (nd + 7);
283 	else
284 		return (nd);
285 }
286 
287 /*
288  * Convert a date to internal date representation: The year starts on
289  * March 1st, month and day numbering start at zero. E. g. March 1st of
290  * year zero is written as y=0, m=0, d=0.
291  */
292 static date *
293 date2idt(date *idt, date *dt)
294 {
295 
296 	idt->d = dt->d - 1;
297 	if (dt->m > 2) {
298 		idt->m = dt->m - 3;
299 		idt->y = dt->y;
300 	} else {
301 		idt->m = dt->m + 9;
302 		idt->y = dt->y - 1;
303 	}
304 	if (idt->m < 0 || idt->m > 11 || idt->y < 0)
305 		return (NULL);
306 	else
307 		return idt;
308 }
309 
310 /* Reverse of date2idt */
311 static date *
312 idt2date(date *dt, date *idt)
313 {
314 
315 	dt->d = idt->d + 1;
316 	if (idt->m < 10) {
317 		dt->m = idt->m + 3;
318 		dt->y = idt->y;
319 	} else {
320 		dt->m = idt->m - 9;
321 		dt->y = idt->y + 1;
322 	}
323 	if (dt->m < 1)
324 		return (NULL);
325 	else
326 		return (dt);
327 }
328