xref: /freebsd/lib/libc/stdlib/random.c (revision b52b9d56d4e96089873a75f9e29062eec19fabba)
1 /*
2  * Copyright (c) 1983, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 #if defined(LIBC_SCCS) && !defined(lint)
35 static char sccsid[] = "@(#)random.c	8.2 (Berkeley) 5/19/95";
36 #endif /* LIBC_SCCS and not lint */
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include "namespace.h"
41 #include <sys/time.h>          /* for srandomdev() */
42 #include <fcntl.h>             /* for srandomdev() */
43 #include <stdio.h>
44 #include <stdlib.h>
45 #include <unistd.h>            /* for srandomdev() */
46 #include "un-namespace.h"
47 
48 /*
49  * random.c:
50  *
51  * An improved random number generation package.  In addition to the standard
52  * rand()/srand() like interface, this package also has a special state info
53  * interface.  The initstate() routine is called with a seed, an array of
54  * bytes, and a count of how many bytes are being passed in; this array is
55  * then initialized to contain information for random number generation with
56  * that much state information.  Good sizes for the amount of state
57  * information are 32, 64, 128, and 256 bytes.  The state can be switched by
58  * calling the setstate() routine with the same array as was initiallized
59  * with initstate().  By default, the package runs with 128 bytes of state
60  * information and generates far better random numbers than a linear
61  * congruential generator.  If the amount of state information is less than
62  * 32 bytes, a simple linear congruential R.N.G. is used.
63  *
64  * Internally, the state information is treated as an array of longs; the
65  * zeroeth element of the array is the type of R.N.G. being used (small
66  * integer); the remainder of the array is the state information for the
67  * R.N.G.  Thus, 32 bytes of state information will give 7 longs worth of
68  * state information, which will allow a degree seven polynomial.  (Note:
69  * the zeroeth word of state information also has some other information
70  * stored in it -- see setstate() for details).
71  *
72  * The random number generation technique is a linear feedback shift register
73  * approach, employing trinomials (since there are fewer terms to sum up that
74  * way).  In this approach, the least significant bit of all the numbers in
75  * the state table will act as a linear feedback shift register, and will
76  * have period 2^deg - 1 (where deg is the degree of the polynomial being
77  * used, assuming that the polynomial is irreducible and primitive).  The
78  * higher order bits will have longer periods, since their values are also
79  * influenced by pseudo-random carries out of the lower bits.  The total
80  * period of the generator is approximately deg*(2**deg - 1); thus doubling
81  * the amount of state information has a vast influence on the period of the
82  * generator.  Note: the deg*(2**deg - 1) is an approximation only good for
83  * large deg, when the period of the shift is the dominant factor.
84  * With deg equal to seven, the period is actually much longer than the
85  * 7*(2**7 - 1) predicted by this formula.
86  *
87  * Modified 28 December 1994 by Jacob S. Rosenberg.
88  * The following changes have been made:
89  * All references to the type u_int have been changed to unsigned long.
90  * All references to type int have been changed to type long.  Other
91  * cleanups have been made as well.  A warning for both initstate and
92  * setstate has been inserted to the effect that on Sparc platforms
93  * the 'arg_state' variable must be forced to begin on word boundaries.
94  * This can be easily done by casting a long integer array to char *.
95  * The overall logic has been left STRICTLY alone.  This software was
96  * tested on both a VAX and Sun SpacsStation with exactly the same
97  * results.  The new version and the original give IDENTICAL results.
98  * The new version is somewhat faster than the original.  As the
99  * documentation says:  "By default, the package runs with 128 bytes of
100  * state information and generates far better random numbers than a linear
101  * congruential generator.  If the amount of state information is less than
102  * 32 bytes, a simple linear congruential R.N.G. is used."  For a buffer of
103  * 128 bytes, this new version runs about 19 percent faster and for a 16
104  * byte buffer it is about 5 percent faster.
105  */
106 
107 /*
108  * For each of the currently supported random number generators, we have a
109  * break value on the amount of state information (you need at least this
110  * many bytes of state info to support this random number generator), a degree
111  * for the polynomial (actually a trinomial) that the R.N.G. is based on, and
112  * the separation between the two lower order coefficients of the trinomial.
113  */
114 #define	TYPE_0		0		/* linear congruential */
115 #define	BREAK_0		8
116 #define	DEG_0		0
117 #define	SEP_0		0
118 
119 #define	TYPE_1		1		/* x**7 + x**3 + 1 */
120 #define	BREAK_1		32
121 #define	DEG_1		7
122 #define	SEP_1		3
123 
124 #define	TYPE_2		2		/* x**15 + x + 1 */
125 #define	BREAK_2		64
126 #define	DEG_2		15
127 #define	SEP_2		1
128 
129 #define	TYPE_3		3		/* x**31 + x**3 + 1 */
130 #define	BREAK_3		128
131 #define	DEG_3		31
132 #define	SEP_3		3
133 
134 #define	TYPE_4		4		/* x**63 + x + 1 */
135 #define	BREAK_4		256
136 #define	DEG_4		63
137 #define	SEP_4		1
138 
139 /*
140  * Array versions of the above information to make code run faster --
141  * relies on fact that TYPE_i == i.
142  */
143 #define	MAX_TYPES	5		/* max number of types above */
144 
145 static long degrees[MAX_TYPES] =	{ DEG_0, DEG_1, DEG_2, DEG_3, DEG_4 };
146 static long seps [MAX_TYPES] =	{ SEP_0, SEP_1, SEP_2, SEP_3, SEP_4 };
147 
148 /*
149  * Initially, everything is set up as if from:
150  *
151  *	initstate(1, randtbl, 128);
152  *
153  * Note that this initialization takes advantage of the fact that srandom()
154  * advances the front and rear pointers 10*rand_deg times, and hence the
155  * rear pointer which starts at 0 will also end up at zero; thus the zeroeth
156  * element of the state information, which contains info about the current
157  * position of the rear pointer is just
158  *
159  *	MAX_TYPES * (rptr - state) + TYPE_3 == TYPE_3.
160  */
161 
162 static long randtbl[DEG_3 + 1] = {
163 	TYPE_3,
164 #ifdef  USE_WEAK_SEEDING
165 /* Historic implementation compatibility */
166 /* The random sequences do not vary much with the seed */
167 	0x9a319039, 0x32d9c024, 0x9b663182, 0x5da1f342, 0xde3b81e0, 0xdf0a6fb5,
168 	0xf103bc02, 0x48f340fb, 0x7449e56b, 0xbeb1dbb0, 0xab5c5918, 0x946554fd,
169 	0x8c2e680f, 0xeb3d799f, 0xb11ee0b7, 0x2d436b86, 0xda672e2a, 0x1588ca88,
170 	0xe369735d, 0x904f35f7, 0xd7158fd6, 0x6fa6f051, 0x616e6b96, 0xac94efdc,
171 	0x36413f93, 0xc622c298, 0xf5a42ab8, 0x8a88d77b, 0xf5ad9d0e, 0x8999220b,
172 	0x27fb47b9,
173 #else   /* !USE_WEAK_SEEDING */
174 	0x991539b1, 0x16a5bce3, 0x6774a4cd, 0x3e01511e, 0x4e508aaa, 0x61048c05,
175 	0xf5500617, 0x846b7115, 0x6a19892c, 0x896a97af, 0xdb48f936, 0x14898454,
176 	0x37ffd106, 0xb58bff9c, 0x59e17104, 0xcf918a49, 0x09378c83, 0x52c7a471,
177 	0x8d293ea9, 0x1f4fc301, 0xc3db71be, 0x39b44e1c, 0xf8a44ef9, 0x4c8b80b1,
178 	0x19edc328, 0x87bf4bdd, 0xc9b240e5, 0xe9ee4b1b, 0x4382aee7, 0x535b6b41,
179 	0xf3bec5da
180 #endif  /* !USE_WEAK_SEEDING */
181 };
182 
183 /*
184  * fptr and rptr are two pointers into the state info, a front and a rear
185  * pointer.  These two pointers are always rand_sep places aparts, as they
186  * cycle cyclically through the state information.  (Yes, this does mean we
187  * could get away with just one pointer, but the code for random() is more
188  * efficient this way).  The pointers are left positioned as they would be
189  * from the call
190  *
191  *	initstate(1, randtbl, 128);
192  *
193  * (The position of the rear pointer, rptr, is really 0 (as explained above
194  * in the initialization of randtbl) because the state table pointer is set
195  * to point to randtbl[1] (as explained below).
196  */
197 static long *fptr = &randtbl[SEP_3 + 1];
198 static long *rptr = &randtbl[1];
199 
200 /*
201  * The following things are the pointer to the state information table, the
202  * type of the current generator, the degree of the current polynomial being
203  * used, and the separation between the two pointers.  Note that for efficiency
204  * of random(), we remember the first location of the state information, not
205  * the zeroeth.  Hence it is valid to access state[-1], which is used to
206  * store the type of the R.N.G.  Also, we remember the last location, since
207  * this is more efficient than indexing every time to find the address of
208  * the last element to see if the front and rear pointers have wrapped.
209  */
210 static long *state = &randtbl[1];
211 static long rand_type = TYPE_3;
212 static long rand_deg = DEG_3;
213 static long rand_sep = SEP_3;
214 static long *end_ptr = &randtbl[DEG_3 + 1];
215 
216 static inline long good_rand(long);
217 
218 static inline long good_rand (x)
219 	long x;
220 {
221 #ifdef  USE_WEAK_SEEDING
222 /*
223  * Historic implementation compatibility.
224  * The random sequences do not vary much with the seed,
225  * even with overflowing.
226  */
227 	return (1103515245 * x + 12345);
228 #else   /* !USE_WEAK_SEEDING */
229 /*
230  * Compute x = (7^5 * x) mod (2^31 - 1)
231  * wihout overflowing 31 bits:
232  *      (2^31 - 1) = 127773 * (7^5) + 2836
233  * From "Random number generators: good ones are hard to find",
234  * Park and Miller, Communications of the ACM, vol. 31, no. 10,
235  * October 1988, p. 1195.
236  */
237 	long hi, lo;
238 
239 	hi = x / 127773;
240 	lo = x % 127773;
241 	x = 16807 * lo - 2836 * hi;
242 	if (x <= 0)
243 		x += 0x7fffffff;
244 	return (x);
245 #endif  /* !USE_WEAK_SEEDING */
246 }
247 
248 /*
249  * srandom:
250  *
251  * Initialize the random number generator based on the given seed.  If the
252  * type is the trivial no-state-information type, just remember the seed.
253  * Otherwise, initializes state[] based on the given "seed" via a linear
254  * congruential generator.  Then, the pointers are set to known locations
255  * that are exactly rand_sep places apart.  Lastly, it cycles the state
256  * information a given number of times to get rid of any initial dependencies
257  * introduced by the L.C.R.N.G.  Note that the initialization of randtbl[]
258  * for default usage relies on values produced by this routine.
259  */
260 void
261 srandom(x)
262 	unsigned long x;
263 {
264 	long i;
265 
266 	if (rand_type == TYPE_0)
267 		state[0] = x;
268 	else {
269 		state[0] = x;
270 		for (i = 1; i < rand_deg; i++)
271 			state[i] = good_rand(state[i - 1]);
272 		fptr = &state[rand_sep];
273 		rptr = &state[0];
274 		for (i = 0; i < 10 * rand_deg; i++)
275 			(void)random();
276 	}
277 }
278 
279 /*
280  * srandomdev:
281  *
282  * Many programs choose the seed value in a totally predictable manner.
283  * This often causes problems.  We seed the generator using the much more
284  * secure random(4) interface.  Note that this particular seeding
285  * procedure can generate states which are impossible to reproduce by
286  * calling srandom() with any value, since the succeeding terms in the
287  * state buffer are no longer derived from the LC algorithm applied to
288  * a fixed seed.
289  */
290 void
291 srandomdev()
292 {
293 	int fd, done;
294 	size_t len;
295 
296 	if (rand_type == TYPE_0)
297 		len = sizeof state[0];
298 	else
299 		len = rand_deg * sizeof state[0];
300 
301 	done = 0;
302 	fd = _open("/dev/random", O_RDONLY, 0);
303 	if (fd >= 0) {
304 		if (_read(fd, (void *) state, len) == (ssize_t) len)
305 			done = 1;
306 		_close(fd);
307 	}
308 
309 	if (!done) {
310 		struct timeval tv;
311 		unsigned long junk;
312 
313 		gettimeofday(&tv, NULL);
314 		srandom((getpid() << 16) ^ tv.tv_sec ^ tv.tv_usec ^ junk);
315 		return;
316 	}
317 
318 	if (rand_type != TYPE_0) {
319 		fptr = &state[rand_sep];
320 		rptr = &state[0];
321 	}
322 }
323 
324 /*
325  * initstate:
326  *
327  * Initialize the state information in the given array of n bytes for future
328  * random number generation.  Based on the number of bytes we are given, and
329  * the break values for the different R.N.G.'s, we choose the best (largest)
330  * one we can and set things up for it.  srandom() is then called to
331  * initialize the state information.
332  *
333  * Note that on return from srandom(), we set state[-1] to be the type
334  * multiplexed with the current value of the rear pointer; this is so
335  * successive calls to initstate() won't lose this information and will be
336  * able to restart with setstate().
337  *
338  * Note: the first thing we do is save the current state, if any, just like
339  * setstate() so that it doesn't matter when initstate is called.
340  *
341  * Returns a pointer to the old state.
342  *
343  * Note: The Sparc platform requires that arg_state begin on a long
344  * word boundary; otherwise a bus error will occur. Even so, lint will
345  * complain about mis-alignment, but you should disregard these messages.
346  */
347 char *
348 initstate(seed, arg_state, n)
349 	unsigned long seed;		/* seed for R.N.G. */
350 	char *arg_state;		/* pointer to state array */
351 	long n;				/* # bytes of state info */
352 {
353 	char *ostate = (char *)(&state[-1]);
354 	long *long_arg_state = (long *) arg_state;
355 
356 	if (rand_type == TYPE_0)
357 		state[-1] = rand_type;
358 	else
359 		state[-1] = MAX_TYPES * (rptr - state) + rand_type;
360 	if (n < BREAK_0) {
361 		(void)fprintf(stderr,
362 		    "random: not enough state (%ld bytes); ignored.\n", n);
363 		return(0);
364 	}
365 	if (n < BREAK_1) {
366 		rand_type = TYPE_0;
367 		rand_deg = DEG_0;
368 		rand_sep = SEP_0;
369 	} else if (n < BREAK_2) {
370 		rand_type = TYPE_1;
371 		rand_deg = DEG_1;
372 		rand_sep = SEP_1;
373 	} else if (n < BREAK_3) {
374 		rand_type = TYPE_2;
375 		rand_deg = DEG_2;
376 		rand_sep = SEP_2;
377 	} else if (n < BREAK_4) {
378 		rand_type = TYPE_3;
379 		rand_deg = DEG_3;
380 		rand_sep = SEP_3;
381 	} else {
382 		rand_type = TYPE_4;
383 		rand_deg = DEG_4;
384 		rand_sep = SEP_4;
385 	}
386 	state = (long *) (long_arg_state + 1); /* first location */
387 	end_ptr = &state[rand_deg];	/* must set end_ptr before srandom */
388 	srandom(seed);
389 	if (rand_type == TYPE_0)
390 		long_arg_state[0] = rand_type;
391 	else
392 		long_arg_state[0] = MAX_TYPES * (rptr - state) + rand_type;
393 	return(ostate);
394 }
395 
396 /*
397  * setstate:
398  *
399  * Restore the state from the given state array.
400  *
401  * Note: it is important that we also remember the locations of the pointers
402  * in the current state information, and restore the locations of the pointers
403  * from the old state information.  This is done by multiplexing the pointer
404  * location into the zeroeth word of the state information.
405  *
406  * Note that due to the order in which things are done, it is OK to call
407  * setstate() with the same state as the current state.
408  *
409  * Returns a pointer to the old state information.
410  *
411  * Note: The Sparc platform requires that arg_state begin on a long
412  * word boundary; otherwise a bus error will occur. Even so, lint will
413  * complain about mis-alignment, but you should disregard these messages.
414  */
415 char *
416 setstate(arg_state)
417 	char *arg_state;		/* pointer to state array */
418 {
419 	long *new_state = (long *) arg_state;
420 	long type = new_state[0] % MAX_TYPES;
421 	long rear = new_state[0] / MAX_TYPES;
422 	char *ostate = (char *)(&state[-1]);
423 
424 	if (rand_type == TYPE_0)
425 		state[-1] = rand_type;
426 	else
427 		state[-1] = MAX_TYPES * (rptr - state) + rand_type;
428 	switch(type) {
429 	case TYPE_0:
430 	case TYPE_1:
431 	case TYPE_2:
432 	case TYPE_3:
433 	case TYPE_4:
434 		rand_type = type;
435 		rand_deg = degrees[type];
436 		rand_sep = seps[type];
437 		break;
438 	default:
439 		(void)fprintf(stderr,
440 		    "random: state info corrupted; not changed.\n");
441 	}
442 	state = (long *) (new_state + 1);
443 	if (rand_type != TYPE_0) {
444 		rptr = &state[rear];
445 		fptr = &state[(rear + rand_sep) % rand_deg];
446 	}
447 	end_ptr = &state[rand_deg];		/* set end_ptr too */
448 	return(ostate);
449 }
450 
451 /*
452  * random:
453  *
454  * If we are using the trivial TYPE_0 R.N.G., just do the old linear
455  * congruential bit.  Otherwise, we do our fancy trinomial stuff, which is
456  * the same in all the other cases due to all the global variables that have
457  * been set up.  The basic operation is to add the number at the rear pointer
458  * into the one at the front pointer.  Then both pointers are advanced to
459  * the next location cyclically in the table.  The value returned is the sum
460  * generated, reduced to 31 bits by throwing away the "least random" low bit.
461  *
462  * Note: the code takes advantage of the fact that both the front and
463  * rear pointers can't wrap on the same call by not testing the rear
464  * pointer if the front one has wrapped.
465  *
466  * Returns a 31-bit random number.
467  */
468 long
469 random()
470 {
471 	long i;
472 	long *f, *r;
473 
474 	if (rand_type == TYPE_0) {
475 		i = state[0];
476 		state[0] = i = (good_rand(i)) & 0x7fffffff;
477 	} else {
478 		/*
479 		 * Use local variables rather than static variables for speed.
480 		 */
481 		f = fptr; r = rptr;
482 		*f += *r;
483 		i = (*f >> 1) & 0x7fffffff;	/* chucking least random bit */
484 		if (++f >= end_ptr) {
485 			f = state;
486 			++r;
487 		}
488 		else if (++r >= end_ptr) {
489 			r = state;
490 		}
491 
492 		fptr = f; rptr = r;
493 	}
494 	return(i);
495 }
496