xref: /freebsd/lib/libc/stdlib/random.c (revision a10cee30c94cf5944826d2a495e9cdf339dfbcc8)
1 /*
2  * Copyright (c) 1983, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #if defined(LIBC_SCCS) && !defined(lint)
31 static char sccsid[] = "@(#)random.c	8.2 (Berkeley) 5/19/95";
32 #endif /* LIBC_SCCS and not lint */
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 #include "namespace.h"
37 #include <sys/time.h>          /* for srandomdev() */
38 #include <fcntl.h>             /* for srandomdev() */
39 #include <stdint.h>
40 #include <stdio.h>
41 #include <stdlib.h>
42 #include <unistd.h>            /* for srandomdev() */
43 #include "un-namespace.h"
44 
45 /*
46  * random.c:
47  *
48  * An improved random number generation package.  In addition to the standard
49  * rand()/srand() like interface, this package also has a special state info
50  * interface.  The initstate() routine is called with a seed, an array of
51  * bytes, and a count of how many bytes are being passed in; this array is
52  * then initialized to contain information for random number generation with
53  * that much state information.  Good sizes for the amount of state
54  * information are 32, 64, 128, and 256 bytes.  The state can be switched by
55  * calling the setstate() routine with the same array as was initiallized
56  * with initstate().  By default, the package runs with 128 bytes of state
57  * information and generates far better random numbers than a linear
58  * congruential generator.  If the amount of state information is less than
59  * 32 bytes, a simple linear congruential R.N.G. is used.
60  *
61  * Internally, the state information is treated as an array of uint32_t's; the
62  * zeroeth element of the array is the type of R.N.G. being used (small
63  * integer); the remainder of the array is the state information for the
64  * R.N.G.  Thus, 32 bytes of state information will give 7 ints worth of
65  * state information, which will allow a degree seven polynomial.  (Note:
66  * the zeroeth word of state information also has some other information
67  * stored in it -- see setstate() for details).
68  *
69  * The random number generation technique is a linear feedback shift register
70  * approach, employing trinomials (since there are fewer terms to sum up that
71  * way).  In this approach, the least significant bit of all the numbers in
72  * the state table will act as a linear feedback shift register, and will
73  * have period 2^deg - 1 (where deg is the degree of the polynomial being
74  * used, assuming that the polynomial is irreducible and primitive).  The
75  * higher order bits will have longer periods, since their values are also
76  * influenced by pseudo-random carries out of the lower bits.  The total
77  * period of the generator is approximately deg*(2**deg - 1); thus doubling
78  * the amount of state information has a vast influence on the period of the
79  * generator.  Note: the deg*(2**deg - 1) is an approximation only good for
80  * large deg, when the period of the shift is the dominant factor.
81  * With deg equal to seven, the period is actually much longer than the
82  * 7*(2**7 - 1) predicted by this formula.
83  *
84  * Modified 28 December 1994 by Jacob S. Rosenberg.
85  * The following changes have been made:
86  * All references to the type u_int have been changed to unsigned long.
87  * All references to type int have been changed to type long.  Other
88  * cleanups have been made as well.  A warning for both initstate and
89  * setstate has been inserted to the effect that on Sparc platforms
90  * the 'arg_state' variable must be forced to begin on word boundaries.
91  * This can be easily done by casting a long integer array to char *.
92  * The overall logic has been left STRICTLY alone.  This software was
93  * tested on both a VAX and Sun SpacsStation with exactly the same
94  * results.  The new version and the original give IDENTICAL results.
95  * The new version is somewhat faster than the original.  As the
96  * documentation says:  "By default, the package runs with 128 bytes of
97  * state information and generates far better random numbers than a linear
98  * congruential generator.  If the amount of state information is less than
99  * 32 bytes, a simple linear congruential R.N.G. is used."  For a buffer of
100  * 128 bytes, this new version runs about 19 percent faster and for a 16
101  * byte buffer it is about 5 percent faster.
102  */
103 
104 /*
105  * For each of the currently supported random number generators, we have a
106  * break value on the amount of state information (you need at least this
107  * many bytes of state info to support this random number generator), a degree
108  * for the polynomial (actually a trinomial) that the R.N.G. is based on, and
109  * the separation between the two lower order coefficients of the trinomial.
110  */
111 #define	TYPE_0		0		/* linear congruential */
112 #define	BREAK_0		8
113 #define	DEG_0		0
114 #define	SEP_0		0
115 
116 #define	TYPE_1		1		/* x**7 + x**3 + 1 */
117 #define	BREAK_1		32
118 #define	DEG_1		7
119 #define	SEP_1		3
120 
121 #define	TYPE_2		2		/* x**15 + x + 1 */
122 #define	BREAK_2		64
123 #define	DEG_2		15
124 #define	SEP_2		1
125 
126 #define	TYPE_3		3		/* x**31 + x**3 + 1 */
127 #define	BREAK_3		128
128 #define	DEG_3		31
129 #define	SEP_3		3
130 
131 #define	TYPE_4		4		/* x**63 + x + 1 */
132 #define	BREAK_4		256
133 #define	DEG_4		63
134 #define	SEP_4		1
135 
136 /*
137  * Array versions of the above information to make code run faster --
138  * relies on fact that TYPE_i == i.
139  */
140 #define	MAX_TYPES	5		/* max number of types above */
141 
142 #ifdef  USE_WEAK_SEEDING
143 #define NSHUFF 0
144 #else   /* !USE_WEAK_SEEDING */
145 #define NSHUFF 50       /* to drop some "seed -> 1st value" linearity */
146 #endif  /* !USE_WEAK_SEEDING */
147 
148 static const int degrees[MAX_TYPES] =	{ DEG_0, DEG_1, DEG_2, DEG_3, DEG_4 };
149 static const int seps [MAX_TYPES] =	{ SEP_0, SEP_1, SEP_2, SEP_3, SEP_4 };
150 
151 /*
152  * Initially, everything is set up as if from:
153  *
154  *	initstate(1, randtbl, 128);
155  *
156  * Note that this initialization takes advantage of the fact that srandom()
157  * advances the front and rear pointers 10*rand_deg times, and hence the
158  * rear pointer which starts at 0 will also end up at zero; thus the zeroeth
159  * element of the state information, which contains info about the current
160  * position of the rear pointer is just
161  *
162  *	MAX_TYPES * (rptr - state) + TYPE_3 == TYPE_3.
163  */
164 
165 static uint32_t randtbl[DEG_3 + 1] = {
166 	TYPE_3,
167 #ifdef  USE_WEAK_SEEDING
168 /* Historic implementation compatibility */
169 /* The random sequences do not vary much with the seed */
170 	0x9a319039, 0x32d9c024, 0x9b663182, 0x5da1f342, 0xde3b81e0, 0xdf0a6fb5,
171 	0xf103bc02, 0x48f340fb, 0x7449e56b, 0xbeb1dbb0, 0xab5c5918, 0x946554fd,
172 	0x8c2e680f, 0xeb3d799f, 0xb11ee0b7, 0x2d436b86, 0xda672e2a, 0x1588ca88,
173 	0xe369735d, 0x904f35f7, 0xd7158fd6, 0x6fa6f051, 0x616e6b96, 0xac94efdc,
174 	0x36413f93, 0xc622c298, 0xf5a42ab8, 0x8a88d77b, 0xf5ad9d0e, 0x8999220b,
175 	0x27fb47b9,
176 #else   /* !USE_WEAK_SEEDING */
177 	0x991539b1, 0x16a5bce3, 0x6774a4cd, 0x3e01511e, 0x4e508aaa, 0x61048c05,
178 	0xf5500617, 0x846b7115, 0x6a19892c, 0x896a97af, 0xdb48f936, 0x14898454,
179 	0x37ffd106, 0xb58bff9c, 0x59e17104, 0xcf918a49, 0x09378c83, 0x52c7a471,
180 	0x8d293ea9, 0x1f4fc301, 0xc3db71be, 0x39b44e1c, 0xf8a44ef9, 0x4c8b80b1,
181 	0x19edc328, 0x87bf4bdd, 0xc9b240e5, 0xe9ee4b1b, 0x4382aee7, 0x535b6b41,
182 	0xf3bec5da
183 #endif  /* !USE_WEAK_SEEDING */
184 };
185 
186 /*
187  * fptr and rptr are two pointers into the state info, a front and a rear
188  * pointer.  These two pointers are always rand_sep places aparts, as they
189  * cycle cyclically through the state information.  (Yes, this does mean we
190  * could get away with just one pointer, but the code for random() is more
191  * efficient this way).  The pointers are left positioned as they would be
192  * from the call
193  *
194  *	initstate(1, randtbl, 128);
195  *
196  * (The position of the rear pointer, rptr, is really 0 (as explained above
197  * in the initialization of randtbl) because the state table pointer is set
198  * to point to randtbl[1] (as explained below).
199  */
200 static uint32_t *fptr = &randtbl[SEP_3 + 1];
201 static uint32_t *rptr = &randtbl[1];
202 
203 /*
204  * The following things are the pointer to the state information table, the
205  * type of the current generator, the degree of the current polynomial being
206  * used, and the separation between the two pointers.  Note that for efficiency
207  * of random(), we remember the first location of the state information, not
208  * the zeroeth.  Hence it is valid to access state[-1], which is used to
209  * store the type of the R.N.G.  Also, we remember the last location, since
210  * this is more efficient than indexing every time to find the address of
211  * the last element to see if the front and rear pointers have wrapped.
212  */
213 static uint32_t *state = &randtbl[1];
214 static int rand_type = TYPE_3;
215 static int rand_deg = DEG_3;
216 static int rand_sep = SEP_3;
217 static uint32_t *end_ptr = &randtbl[DEG_3 + 1];
218 
219 static inline uint32_t
220 good_rand(int32_t x)
221 {
222 #ifdef  USE_WEAK_SEEDING
223 /*
224  * Historic implementation compatibility.
225  * The random sequences do not vary much with the seed,
226  * even with overflowing.
227  */
228 	return (1103515245 * x + 12345);
229 #else   /* !USE_WEAK_SEEDING */
230 /*
231  * Compute x = (7^5 * x) mod (2^31 - 1)
232  * wihout overflowing 31 bits:
233  *      (2^31 - 1) = 127773 * (7^5) + 2836
234  * From "Random number generators: good ones are hard to find",
235  * Park and Miller, Communications of the ACM, vol. 31, no. 10,
236  * October 1988, p. 1195.
237  */
238 	int32_t hi, lo;
239 
240 	/* Can't be initialized with 0, so use another value. */
241 	if (x == 0)
242 		x = 123459876;
243 	hi = x / 127773;
244 	lo = x % 127773;
245 	x = 16807 * lo - 2836 * hi;
246 	if (x < 0)
247 		x += 0x7fffffff;
248 	return (x);
249 #endif  /* !USE_WEAK_SEEDING */
250 }
251 
252 /*
253  * srandom:
254  *
255  * Initialize the random number generator based on the given seed.  If the
256  * type is the trivial no-state-information type, just remember the seed.
257  * Otherwise, initializes state[] based on the given "seed" via a linear
258  * congruential generator.  Then, the pointers are set to known locations
259  * that are exactly rand_sep places apart.  Lastly, it cycles the state
260  * information a given number of times to get rid of any initial dependencies
261  * introduced by the L.C.R.N.G.  Note that the initialization of randtbl[]
262  * for default usage relies on values produced by this routine.
263  */
264 void
265 srandom(unsigned long x)
266 {
267 	int i, lim;
268 
269 	state[0] = (uint32_t)x;
270 	if (rand_type == TYPE_0)
271 		lim = NSHUFF;
272 	else {
273 		for (i = 1; i < rand_deg; i++)
274 			state[i] = good_rand(state[i - 1]);
275 		fptr = &state[rand_sep];
276 		rptr = &state[0];
277 		lim = 10 * rand_deg;
278 	}
279 	for (i = 0; i < lim; i++)
280 		(void)random();
281 }
282 
283 /*
284  * srandomdev:
285  *
286  * Many programs choose the seed value in a totally predictable manner.
287  * This often causes problems.  We seed the generator using the much more
288  * secure random(4) interface.  Note that this particular seeding
289  * procedure can generate states which are impossible to reproduce by
290  * calling srandom() with any value, since the succeeding terms in the
291  * state buffer are no longer derived from the LC algorithm applied to
292  * a fixed seed.
293  */
294 void
295 srandomdev(void)
296 {
297 	int fd, done;
298 	size_t len;
299 
300 	if (rand_type == TYPE_0)
301 		len = sizeof state[0];
302 	else
303 		len = rand_deg * sizeof state[0];
304 
305 	done = 0;
306 	fd = _open("/dev/random", O_RDONLY | O_CLOEXEC, 0);
307 	if (fd >= 0) {
308 		if (_read(fd, (void *) state, len) == (ssize_t) len)
309 			done = 1;
310 		_close(fd);
311 	}
312 
313 	if (!done) {
314 		struct timeval tv;
315 		volatile unsigned long junk;
316 
317 		gettimeofday(&tv, NULL);
318 		srandom((getpid() << 16) ^ tv.tv_sec ^ tv.tv_usec ^ junk);
319 		return;
320 	}
321 
322 	if (rand_type != TYPE_0) {
323 		fptr = &state[rand_sep];
324 		rptr = &state[0];
325 	}
326 }
327 
328 /*
329  * initstate:
330  *
331  * Initialize the state information in the given array of n bytes for future
332  * random number generation.  Based on the number of bytes we are given, and
333  * the break values for the different R.N.G.'s, we choose the best (largest)
334  * one we can and set things up for it.  srandom() is then called to
335  * initialize the state information.
336  *
337  * Note that on return from srandom(), we set state[-1] to be the type
338  * multiplexed with the current value of the rear pointer; this is so
339  * successive calls to initstate() won't lose this information and will be
340  * able to restart with setstate().
341  *
342  * Note: the first thing we do is save the current state, if any, just like
343  * setstate() so that it doesn't matter when initstate is called.
344  *
345  * Returns a pointer to the old state.
346  *
347  * Note: The Sparc platform requires that arg_state begin on an int
348  * word boundary; otherwise a bus error will occur. Even so, lint will
349  * complain about mis-alignment, but you should disregard these messages.
350  */
351 char *
352 initstate(unsigned long seed, char *arg_state, long n)
353 {
354 	char *ostate = (char *)(&state[-1]);
355 	uint32_t *int_arg_state = (uint32_t *)arg_state;
356 
357 	if (rand_type == TYPE_0)
358 		state[-1] = rand_type;
359 	else
360 		state[-1] = MAX_TYPES * (rptr - state) + rand_type;
361 	if (n < BREAK_0) {
362 		(void)fprintf(stderr,
363 		    "random: not enough state (%ld bytes); ignored.\n", n);
364 		return (0);
365 	}
366 	if (n < BREAK_1) {
367 		rand_type = TYPE_0;
368 		rand_deg = DEG_0;
369 		rand_sep = SEP_0;
370 	} else if (n < BREAK_2) {
371 		rand_type = TYPE_1;
372 		rand_deg = DEG_1;
373 		rand_sep = SEP_1;
374 	} else if (n < BREAK_3) {
375 		rand_type = TYPE_2;
376 		rand_deg = DEG_2;
377 		rand_sep = SEP_2;
378 	} else if (n < BREAK_4) {
379 		rand_type = TYPE_3;
380 		rand_deg = DEG_3;
381 		rand_sep = SEP_3;
382 	} else {
383 		rand_type = TYPE_4;
384 		rand_deg = DEG_4;
385 		rand_sep = SEP_4;
386 	}
387 	state = int_arg_state + 1; /* first location */
388 	end_ptr = &state[rand_deg];	/* must set end_ptr before srandom */
389 	srandom(seed);
390 	if (rand_type == TYPE_0)
391 		int_arg_state[0] = rand_type;
392 	else
393 		int_arg_state[0] = MAX_TYPES * (rptr - state) + rand_type;
394 	return (ostate);
395 }
396 
397 /*
398  * setstate:
399  *
400  * Restore the state from the given state array.
401  *
402  * Note: it is important that we also remember the locations of the pointers
403  * in the current state information, and restore the locations of the pointers
404  * from the old state information.  This is done by multiplexing the pointer
405  * location into the zeroeth word of the state information.
406  *
407  * Note that due to the order in which things are done, it is OK to call
408  * setstate() with the same state as the current state.
409  *
410  * Returns a pointer to the old state information.
411  *
412  * Note: The Sparc platform requires that arg_state begin on an int
413  * word boundary; otherwise a bus error will occur. Even so, lint will
414  * complain about mis-alignment, but you should disregard these messages.
415  */
416 char *
417 setstate(char *arg_state)
418 {
419 	uint32_t *new_state = (uint32_t *)arg_state;
420 	uint32_t type = new_state[0] % MAX_TYPES;
421 	uint32_t rear = new_state[0] / MAX_TYPES;
422 	char *ostate = (char *)(&state[-1]);
423 
424 	if (rand_type == TYPE_0)
425 		state[-1] = rand_type;
426 	else
427 		state[-1] = MAX_TYPES * (rptr - state) + rand_type;
428 	switch(type) {
429 	case TYPE_0:
430 	case TYPE_1:
431 	case TYPE_2:
432 	case TYPE_3:
433 	case TYPE_4:
434 		rand_type = type;
435 		rand_deg = degrees[type];
436 		rand_sep = seps[type];
437 		break;
438 	default:
439 		(void)fprintf(stderr,
440 		    "random: state info corrupted; not changed.\n");
441 	}
442 	state = new_state + 1;
443 	if (rand_type != TYPE_0) {
444 		rptr = &state[rear];
445 		fptr = &state[(rear + rand_sep) % rand_deg];
446 	}
447 	end_ptr = &state[rand_deg];		/* set end_ptr too */
448 	return (ostate);
449 }
450 
451 /*
452  * random:
453  *
454  * If we are using the trivial TYPE_0 R.N.G., just do the old linear
455  * congruential bit.  Otherwise, we do our fancy trinomial stuff, which is
456  * the same in all the other cases due to all the global variables that have
457  * been set up.  The basic operation is to add the number at the rear pointer
458  * into the one at the front pointer.  Then both pointers are advanced to
459  * the next location cyclically in the table.  The value returned is the sum
460  * generated, reduced to 31 bits by throwing away the "least random" low bit.
461  *
462  * Note: the code takes advantage of the fact that both the front and
463  * rear pointers can't wrap on the same call by not testing the rear
464  * pointer if the front one has wrapped.
465  *
466  * Returns a 31-bit random number.
467  */
468 long
469 random(void)
470 {
471 	uint32_t i;
472 	uint32_t *f, *r;
473 
474 	if (rand_type == TYPE_0) {
475 		i = state[0];
476 		state[0] = i = (good_rand(i)) & 0x7fffffff;
477 	} else {
478 		/*
479 		 * Use local variables rather than static variables for speed.
480 		 */
481 		f = fptr; r = rptr;
482 		*f += *r;
483 		i = (*f >> 1) & 0x7fffffff;	/* chucking least random bit */
484 		if (++f >= end_ptr) {
485 			f = state;
486 			++r;
487 		}
488 		else if (++r >= end_ptr) {
489 			r = state;
490 		}
491 
492 		fptr = f; rptr = r;
493 	}
494 	return ((long)i);
495 }
496