1 /* $NetBSD: svc_dg.c,v 1.4 2000/07/06 03:10:35 christos Exp $ */ 2 3 /* 4 * Sun RPC is a product of Sun Microsystems, Inc. and is provided for 5 * unrestricted use provided that this legend is included on all tape 6 * media and as a part of the software program in whole or part. Users 7 * may copy or modify Sun RPC without charge, but are not authorized 8 * to license or distribute it to anyone else except as part of a product or 9 * program developed by the user. 10 * 11 * SUN RPC IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING THE 12 * WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR 13 * PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE. 14 * 15 * Sun RPC is provided with no support and without any obligation on the 16 * part of Sun Microsystems, Inc. to assist in its use, correction, 17 * modification or enhancement. 18 * 19 * SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE 20 * INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY SUN RPC 21 * OR ANY PART THEREOF. 22 * 23 * In no event will Sun Microsystems, Inc. be liable for any lost revenue 24 * or profits or other special, indirect and consequential damages, even if 25 * Sun has been advised of the possibility of such damages. 26 * 27 * Sun Microsystems, Inc. 28 * 2550 Garcia Avenue 29 * Mountain View, California 94043 30 */ 31 32 /* 33 * Copyright (c) 1986-1991 by Sun Microsystems Inc. 34 */ 35 36 #if defined(LIBC_SCCS) && !defined(lint) 37 #ident "@(#)svc_dg.c 1.17 94/04/24 SMI" 38 #endif 39 #include <sys/cdefs.h> 40 __FBSDID("$FreeBSD$"); 41 42 /* 43 * svc_dg.c, Server side for connectionless RPC. 44 * 45 * Does some caching in the hopes of achieving execute-at-most-once semantics. 46 */ 47 48 #include "namespace.h" 49 #include "reentrant.h" 50 #include <sys/types.h> 51 #include <sys/socket.h> 52 #include <rpc/rpc.h> 53 #include <rpc/svc_dg.h> 54 #include <assert.h> 55 #include <errno.h> 56 #include <unistd.h> 57 #include <stdio.h> 58 #include <stdlib.h> 59 #include <string.h> 60 #ifdef RPC_CACHE_DEBUG 61 #include <netconfig.h> 62 #include <netdir.h> 63 #endif 64 #include <err.h> 65 #include "un-namespace.h" 66 67 #include "rpc_com.h" 68 #include "mt_misc.h" 69 70 #define su_data(xprt) ((struct svc_dg_data *)(xprt->xp_p2)) 71 #define rpc_buffer(xprt) ((xprt)->xp_p1) 72 73 #ifndef MAX 74 #define MAX(a, b) (((a) > (b)) ? (a) : (b)) 75 #endif 76 77 static void svc_dg_ops(SVCXPRT *); 78 static enum xprt_stat svc_dg_stat(SVCXPRT *); 79 static bool_t svc_dg_recv(SVCXPRT *, struct rpc_msg *); 80 static bool_t svc_dg_reply(SVCXPRT *, struct rpc_msg *); 81 static bool_t svc_dg_getargs(SVCXPRT *, xdrproc_t, void *); 82 static bool_t svc_dg_freeargs(SVCXPRT *, xdrproc_t, void *); 83 static void svc_dg_destroy(SVCXPRT *); 84 static bool_t svc_dg_control(SVCXPRT *, const u_int, void *); 85 static int cache_get(SVCXPRT *, struct rpc_msg *, char **, size_t *); 86 static void cache_set(SVCXPRT *, size_t); 87 int svc_dg_enablecache(SVCXPRT *, u_int); 88 89 /* 90 * Usage: 91 * xprt = svc_dg_create(sock, sendsize, recvsize); 92 * Does other connectionless specific initializations. 93 * Once *xprt is initialized, it is registered. 94 * see (svc.h, xprt_register). If recvsize or sendsize are 0 suitable 95 * system defaults are chosen. 96 * The routines returns NULL if a problem occurred. 97 */ 98 static const char svc_dg_str[] = "svc_dg_create: %s"; 99 static const char svc_dg_err1[] = "could not get transport information"; 100 static const char svc_dg_err2[] = "transport does not support data transfer"; 101 static const char svc_dg_err3[] = "getsockname failed"; 102 static const char svc_dg_err4[] = "cannot set IP_RECVDSTADDR"; 103 static const char __no_mem_str[] = "out of memory"; 104 105 SVCXPRT * 106 svc_dg_create(fd, sendsize, recvsize) 107 int fd; 108 u_int sendsize; 109 u_int recvsize; 110 { 111 SVCXPRT *xprt; 112 struct svc_dg_data *su = NULL; 113 struct __rpc_sockinfo si; 114 struct sockaddr_storage ss; 115 socklen_t slen; 116 117 if (!__rpc_fd2sockinfo(fd, &si)) { 118 warnx(svc_dg_str, svc_dg_err1); 119 return (NULL); 120 } 121 /* 122 * Find the receive and the send size 123 */ 124 sendsize = __rpc_get_t_size(si.si_af, si.si_proto, (int)sendsize); 125 recvsize = __rpc_get_t_size(si.si_af, si.si_proto, (int)recvsize); 126 if ((sendsize == 0) || (recvsize == 0)) { 127 warnx(svc_dg_str, svc_dg_err2); 128 return (NULL); 129 } 130 131 xprt = svc_xprt_alloc(); 132 if (xprt == NULL) 133 goto freedata; 134 135 su = mem_alloc(sizeof (*su)); 136 if (su == NULL) 137 goto freedata; 138 su->su_iosz = ((MAX(sendsize, recvsize) + 3) / 4) * 4; 139 if ((rpc_buffer(xprt) = mem_alloc(su->su_iosz)) == NULL) 140 goto freedata; 141 xdrmem_create(&(su->su_xdrs), rpc_buffer(xprt), su->su_iosz, 142 XDR_DECODE); 143 su->su_cache = NULL; 144 xprt->xp_fd = fd; 145 xprt->xp_p2 = su; 146 xprt->xp_verf.oa_base = su->su_verfbody; 147 svc_dg_ops(xprt); 148 xprt->xp_rtaddr.maxlen = sizeof (struct sockaddr_storage); 149 150 slen = sizeof ss; 151 if (_getsockname(fd, (struct sockaddr *)(void *)&ss, &slen) < 0) { 152 warnx(svc_dg_str, svc_dg_err3); 153 goto freedata_nowarn; 154 } 155 xprt->xp_ltaddr.buf = mem_alloc(sizeof (struct sockaddr_storage)); 156 xprt->xp_ltaddr.maxlen = sizeof (struct sockaddr_storage); 157 xprt->xp_ltaddr.len = slen; 158 memcpy(xprt->xp_ltaddr.buf, &ss, slen); 159 160 if (ss.ss_family == AF_INET) { 161 struct sockaddr_in *sin; 162 static const int true_value = 1; 163 164 sin = (struct sockaddr_in *)(void *)&ss; 165 if (sin->sin_addr.s_addr == INADDR_ANY) { 166 su->su_srcaddr.buf = mem_alloc(sizeof (ss)); 167 su->su_srcaddr.maxlen = sizeof (ss); 168 169 if (_setsockopt(fd, IPPROTO_IP, IP_RECVDSTADDR, 170 &true_value, sizeof(true_value))) { 171 warnx(svc_dg_str, svc_dg_err4); 172 goto freedata_nowarn; 173 } 174 } 175 } 176 177 xprt_register(xprt); 178 return (xprt); 179 freedata: 180 (void) warnx(svc_dg_str, __no_mem_str); 181 freedata_nowarn: 182 if (xprt) { 183 if (su) 184 (void) mem_free(su, sizeof (*su)); 185 svc_xprt_free(xprt); 186 } 187 return (NULL); 188 } 189 190 /*ARGSUSED*/ 191 static enum xprt_stat 192 svc_dg_stat(xprt) 193 SVCXPRT *xprt; 194 { 195 return (XPRT_IDLE); 196 } 197 198 static int 199 svc_dg_recvfrom(int fd, char *buf, int buflen, 200 struct sockaddr *raddr, socklen_t *raddrlen, 201 struct sockaddr *laddr, socklen_t *laddrlen) 202 { 203 struct msghdr msg; 204 struct iovec msg_iov[1]; 205 struct sockaddr_in *lin = (struct sockaddr_in *)laddr; 206 int rlen; 207 bool_t have_lin = FALSE; 208 char tmp[CMSG_LEN(sizeof(*lin))]; 209 struct cmsghdr *cmsg; 210 211 memset((char *)&msg, 0, sizeof(msg)); 212 msg_iov[0].iov_base = buf; 213 msg_iov[0].iov_len = buflen; 214 msg.msg_iov = msg_iov; 215 msg.msg_iovlen = 1; 216 msg.msg_namelen = *raddrlen; 217 msg.msg_name = (char *)raddr; 218 if (laddr != NULL) { 219 msg.msg_control = (caddr_t)tmp; 220 msg.msg_controllen = CMSG_LEN(sizeof(*lin)); 221 } 222 rlen = _recvmsg(fd, &msg, 0); 223 if (rlen >= 0) 224 *raddrlen = msg.msg_namelen; 225 226 if (rlen == -1 || laddr == NULL || 227 msg.msg_controllen < sizeof(struct cmsghdr) || 228 msg.msg_flags & MSG_CTRUNC) 229 return rlen; 230 231 for (cmsg = CMSG_FIRSTHDR(&msg); cmsg != NULL; 232 cmsg = CMSG_NXTHDR(&msg, cmsg)) { 233 if (cmsg->cmsg_level == IPPROTO_IP && 234 cmsg->cmsg_type == IP_RECVDSTADDR) { 235 have_lin = TRUE; 236 memcpy(&lin->sin_addr, 237 (struct in_addr *)CMSG_DATA(cmsg), 238 sizeof(struct in_addr)); 239 break; 240 } 241 } 242 243 lin->sin_family = AF_INET; 244 lin->sin_port = 0; 245 *laddrlen = sizeof(struct sockaddr_in); 246 247 if (!have_lin) 248 lin->sin_addr.s_addr = INADDR_ANY; 249 250 return rlen; 251 } 252 253 static bool_t 254 svc_dg_recv(xprt, msg) 255 SVCXPRT *xprt; 256 struct rpc_msg *msg; 257 { 258 struct svc_dg_data *su = su_data(xprt); 259 XDR *xdrs = &(su->su_xdrs); 260 char *reply; 261 struct sockaddr_storage ss; 262 socklen_t alen; 263 size_t replylen; 264 ssize_t rlen; 265 266 again: 267 alen = sizeof (struct sockaddr_storage); 268 rlen = svc_dg_recvfrom(xprt->xp_fd, rpc_buffer(xprt), su->su_iosz, 269 (struct sockaddr *)(void *)&ss, &alen, 270 (struct sockaddr *)su->su_srcaddr.buf, &su->su_srcaddr.len); 271 if (rlen == -1 && errno == EINTR) 272 goto again; 273 if (rlen == -1 || (rlen < (ssize_t)(4 * sizeof (u_int32_t)))) 274 return (FALSE); 275 if (xprt->xp_rtaddr.len < alen) { 276 if (xprt->xp_rtaddr.len != 0) 277 mem_free(xprt->xp_rtaddr.buf, xprt->xp_rtaddr.len); 278 xprt->xp_rtaddr.buf = mem_alloc(alen); 279 xprt->xp_rtaddr.len = alen; 280 } 281 memcpy(xprt->xp_rtaddr.buf, &ss, alen); 282 #ifdef PORTMAP 283 if (ss.ss_family == AF_INET) { 284 xprt->xp_raddr = *(struct sockaddr_in *)xprt->xp_rtaddr.buf; 285 xprt->xp_addrlen = sizeof (struct sockaddr_in); 286 } 287 #endif /* PORTMAP */ 288 xdrs->x_op = XDR_DECODE; 289 XDR_SETPOS(xdrs, 0); 290 if (! xdr_callmsg(xdrs, msg)) { 291 return (FALSE); 292 } 293 su->su_xid = msg->rm_xid; 294 if (su->su_cache != NULL) { 295 if (cache_get(xprt, msg, &reply, &replylen)) { 296 (void)_sendto(xprt->xp_fd, reply, replylen, 0, 297 (struct sockaddr *)(void *)&ss, alen); 298 return (FALSE); 299 } 300 } 301 return (TRUE); 302 } 303 304 static int 305 svc_dg_sendto(int fd, char *buf, int buflen, 306 const struct sockaddr *raddr, socklen_t raddrlen, 307 const struct sockaddr *laddr, socklen_t laddrlen) 308 { 309 struct msghdr msg; 310 struct iovec msg_iov[1]; 311 struct sockaddr_in *laddr_in = (struct sockaddr_in *)laddr; 312 struct in_addr *lin = &laddr_in->sin_addr; 313 char tmp[CMSG_SPACE(sizeof(*lin))]; 314 struct cmsghdr *cmsg; 315 316 memset((char *)&msg, 0, sizeof(msg)); 317 msg_iov[0].iov_base = buf; 318 msg_iov[0].iov_len = buflen; 319 msg.msg_iov = msg_iov; 320 msg.msg_iovlen = 1; 321 msg.msg_namelen = raddrlen; 322 msg.msg_name = (char *)raddr; 323 324 if (laddr != NULL && laddr->sa_family == AF_INET && 325 lin->s_addr != INADDR_ANY) { 326 msg.msg_control = (caddr_t)tmp; 327 msg.msg_controllen = CMSG_LEN(sizeof(*lin)); 328 cmsg = CMSG_FIRSTHDR(&msg); 329 cmsg->cmsg_len = CMSG_LEN(sizeof(*lin)); 330 cmsg->cmsg_level = IPPROTO_IP; 331 cmsg->cmsg_type = IP_SENDSRCADDR; 332 memcpy(CMSG_DATA(cmsg), lin, sizeof(*lin)); 333 } 334 335 return _sendmsg(fd, &msg, 0); 336 } 337 338 static bool_t 339 svc_dg_reply(xprt, msg) 340 SVCXPRT *xprt; 341 struct rpc_msg *msg; 342 { 343 struct svc_dg_data *su = su_data(xprt); 344 XDR *xdrs = &(su->su_xdrs); 345 bool_t stat = TRUE; 346 size_t slen; 347 xdrproc_t xdr_proc; 348 caddr_t xdr_where; 349 350 xdrs->x_op = XDR_ENCODE; 351 XDR_SETPOS(xdrs, 0); 352 msg->rm_xid = su->su_xid; 353 if (msg->rm_reply.rp_stat == MSG_ACCEPTED && 354 msg->rm_reply.rp_acpt.ar_stat == SUCCESS) { 355 xdr_proc = msg->acpted_rply.ar_results.proc; 356 xdr_where = msg->acpted_rply.ar_results.where; 357 msg->acpted_rply.ar_results.proc = (xdrproc_t) xdr_void; 358 msg->acpted_rply.ar_results.where = NULL; 359 360 if (!xdr_replymsg(xdrs, msg) || 361 !SVCAUTH_WRAP(&SVC_AUTH(xprt), xdrs, xdr_proc, xdr_where)) 362 stat = FALSE; 363 } else { 364 stat = xdr_replymsg(xdrs, msg); 365 } 366 if (stat) { 367 slen = XDR_GETPOS(xdrs); 368 if (svc_dg_sendto(xprt->xp_fd, rpc_buffer(xprt), slen, 369 (struct sockaddr *)xprt->xp_rtaddr.buf, 370 (socklen_t)xprt->xp_rtaddr.len, 371 (struct sockaddr *)su->su_srcaddr.buf, 372 (socklen_t)su->su_srcaddr.len) == (ssize_t) slen) { 373 stat = TRUE; 374 if (su->su_cache) 375 cache_set(xprt, slen); 376 } 377 } 378 return (stat); 379 } 380 381 static bool_t 382 svc_dg_getargs(xprt, xdr_args, args_ptr) 383 SVCXPRT *xprt; 384 xdrproc_t xdr_args; 385 void *args_ptr; 386 { 387 struct svc_dg_data *su; 388 389 assert(xprt != NULL); 390 su = su_data(xprt); 391 return (SVCAUTH_UNWRAP(&SVC_AUTH(xprt), 392 &su->su_xdrs, xdr_args, args_ptr)); 393 } 394 395 static bool_t 396 svc_dg_freeargs(xprt, xdr_args, args_ptr) 397 SVCXPRT *xprt; 398 xdrproc_t xdr_args; 399 void *args_ptr; 400 { 401 XDR *xdrs = &(su_data(xprt)->su_xdrs); 402 403 xdrs->x_op = XDR_FREE; 404 return (*xdr_args)(xdrs, args_ptr); 405 } 406 407 static void 408 svc_dg_destroy(xprt) 409 SVCXPRT *xprt; 410 { 411 struct svc_dg_data *su = su_data(xprt); 412 413 xprt_unregister(xprt); 414 if (xprt->xp_fd != -1) 415 (void)_close(xprt->xp_fd); 416 XDR_DESTROY(&(su->su_xdrs)); 417 (void) mem_free(rpc_buffer(xprt), su->su_iosz); 418 if (su->su_srcaddr.buf) 419 (void) mem_free(su->su_srcaddr.buf, su->su_srcaddr.maxlen); 420 (void) mem_free(su, sizeof (*su)); 421 if (xprt->xp_rtaddr.buf) 422 (void) mem_free(xprt->xp_rtaddr.buf, xprt->xp_rtaddr.maxlen); 423 if (xprt->xp_ltaddr.buf) 424 (void) mem_free(xprt->xp_ltaddr.buf, xprt->xp_ltaddr.maxlen); 425 if (xprt->xp_tp) 426 (void) free(xprt->xp_tp); 427 svc_xprt_free(xprt); 428 } 429 430 static bool_t 431 /*ARGSUSED*/ 432 svc_dg_control(xprt, rq, in) 433 SVCXPRT *xprt; 434 const u_int rq; 435 void *in; 436 { 437 return (FALSE); 438 } 439 440 static void 441 svc_dg_ops(xprt) 442 SVCXPRT *xprt; 443 { 444 static struct xp_ops ops; 445 static struct xp_ops2 ops2; 446 447 /* VARIABLES PROTECTED BY ops_lock: ops */ 448 449 mutex_lock(&ops_lock); 450 if (ops.xp_recv == NULL) { 451 ops.xp_recv = svc_dg_recv; 452 ops.xp_stat = svc_dg_stat; 453 ops.xp_getargs = svc_dg_getargs; 454 ops.xp_reply = svc_dg_reply; 455 ops.xp_freeargs = svc_dg_freeargs; 456 ops.xp_destroy = svc_dg_destroy; 457 ops2.xp_control = svc_dg_control; 458 } 459 xprt->xp_ops = &ops; 460 xprt->xp_ops2 = &ops2; 461 mutex_unlock(&ops_lock); 462 } 463 464 /* The CACHING COMPONENT */ 465 466 /* 467 * Could have been a separate file, but some part of it depends upon the 468 * private structure of the client handle. 469 * 470 * Fifo cache for cl server 471 * Copies pointers to reply buffers into fifo cache 472 * Buffers are sent again if retransmissions are detected. 473 */ 474 475 #define SPARSENESS 4 /* 75% sparse */ 476 477 #define ALLOC(type, size) \ 478 (type *) mem_alloc((sizeof (type) * (size))) 479 480 #define MEMZERO(addr, type, size) \ 481 (void) memset((void *) (addr), 0, sizeof (type) * (int) (size)) 482 483 #define FREE(addr, type, size) \ 484 mem_free((addr), (sizeof (type) * (size))) 485 486 /* 487 * An entry in the cache 488 */ 489 typedef struct cache_node *cache_ptr; 490 struct cache_node { 491 /* 492 * Index into cache is xid, proc, vers, prog and address 493 */ 494 u_int32_t cache_xid; 495 rpcproc_t cache_proc; 496 rpcvers_t cache_vers; 497 rpcprog_t cache_prog; 498 struct netbuf cache_addr; 499 /* 500 * The cached reply and length 501 */ 502 char *cache_reply; 503 size_t cache_replylen; 504 /* 505 * Next node on the list, if there is a collision 506 */ 507 cache_ptr cache_next; 508 }; 509 510 /* 511 * The entire cache 512 */ 513 struct cl_cache { 514 u_int uc_size; /* size of cache */ 515 cache_ptr *uc_entries; /* hash table of entries in cache */ 516 cache_ptr *uc_fifo; /* fifo list of entries in cache */ 517 u_int uc_nextvictim; /* points to next victim in fifo list */ 518 rpcprog_t uc_prog; /* saved program number */ 519 rpcvers_t uc_vers; /* saved version number */ 520 rpcproc_t uc_proc; /* saved procedure number */ 521 }; 522 523 524 /* 525 * the hashing function 526 */ 527 #define CACHE_LOC(transp, xid) \ 528 (xid % (SPARSENESS * ((struct cl_cache *) \ 529 su_data(transp)->su_cache)->uc_size)) 530 531 /* 532 * Enable use of the cache. Returns 1 on success, 0 on failure. 533 * Note: there is no disable. 534 */ 535 static const char cache_enable_str[] = "svc_enablecache: %s %s"; 536 static const char alloc_err[] = "could not allocate cache "; 537 static const char enable_err[] = "cache already enabled"; 538 539 int 540 svc_dg_enablecache(transp, size) 541 SVCXPRT *transp; 542 u_int size; 543 { 544 struct svc_dg_data *su = su_data(transp); 545 struct cl_cache *uc; 546 547 mutex_lock(&dupreq_lock); 548 if (su->su_cache != NULL) { 549 (void) warnx(cache_enable_str, enable_err, " "); 550 mutex_unlock(&dupreq_lock); 551 return (0); 552 } 553 uc = ALLOC(struct cl_cache, 1); 554 if (uc == NULL) { 555 warnx(cache_enable_str, alloc_err, " "); 556 mutex_unlock(&dupreq_lock); 557 return (0); 558 } 559 uc->uc_size = size; 560 uc->uc_nextvictim = 0; 561 uc->uc_entries = ALLOC(cache_ptr, size * SPARSENESS); 562 if (uc->uc_entries == NULL) { 563 warnx(cache_enable_str, alloc_err, "data"); 564 FREE(uc, struct cl_cache, 1); 565 mutex_unlock(&dupreq_lock); 566 return (0); 567 } 568 MEMZERO(uc->uc_entries, cache_ptr, size * SPARSENESS); 569 uc->uc_fifo = ALLOC(cache_ptr, size); 570 if (uc->uc_fifo == NULL) { 571 warnx(cache_enable_str, alloc_err, "fifo"); 572 FREE(uc->uc_entries, cache_ptr, size * SPARSENESS); 573 FREE(uc, struct cl_cache, 1); 574 mutex_unlock(&dupreq_lock); 575 return (0); 576 } 577 MEMZERO(uc->uc_fifo, cache_ptr, size); 578 su->su_cache = (char *)(void *)uc; 579 mutex_unlock(&dupreq_lock); 580 return (1); 581 } 582 583 /* 584 * Set an entry in the cache. It assumes that the uc entry is set from 585 * the earlier call to cache_get() for the same procedure. This will always 586 * happen because cache_get() is calle by svc_dg_recv and cache_set() is called 587 * by svc_dg_reply(). All this hoopla because the right RPC parameters are 588 * not available at svc_dg_reply time. 589 */ 590 591 static const char cache_set_str[] = "cache_set: %s"; 592 static const char cache_set_err1[] = "victim not found"; 593 static const char cache_set_err2[] = "victim alloc failed"; 594 static const char cache_set_err3[] = "could not allocate new rpc buffer"; 595 596 static void 597 cache_set(xprt, replylen) 598 SVCXPRT *xprt; 599 size_t replylen; 600 { 601 cache_ptr victim; 602 cache_ptr *vicp; 603 struct svc_dg_data *su = su_data(xprt); 604 struct cl_cache *uc = (struct cl_cache *) su->su_cache; 605 u_int loc; 606 char *newbuf; 607 #ifdef RPC_CACHE_DEBUG 608 struct netconfig *nconf; 609 char *uaddr; 610 #endif 611 612 mutex_lock(&dupreq_lock); 613 /* 614 * Find space for the new entry, either by 615 * reusing an old entry, or by mallocing a new one 616 */ 617 victim = uc->uc_fifo[uc->uc_nextvictim]; 618 if (victim != NULL) { 619 loc = CACHE_LOC(xprt, victim->cache_xid); 620 for (vicp = &uc->uc_entries[loc]; 621 *vicp != NULL && *vicp != victim; 622 vicp = &(*vicp)->cache_next) 623 ; 624 if (*vicp == NULL) { 625 warnx(cache_set_str, cache_set_err1); 626 mutex_unlock(&dupreq_lock); 627 return; 628 } 629 *vicp = victim->cache_next; /* remove from cache */ 630 newbuf = victim->cache_reply; 631 } else { 632 victim = ALLOC(struct cache_node, 1); 633 if (victim == NULL) { 634 warnx(cache_set_str, cache_set_err2); 635 mutex_unlock(&dupreq_lock); 636 return; 637 } 638 newbuf = mem_alloc(su->su_iosz); 639 if (newbuf == NULL) { 640 warnx(cache_set_str, cache_set_err3); 641 FREE(victim, struct cache_node, 1); 642 mutex_unlock(&dupreq_lock); 643 return; 644 } 645 } 646 647 /* 648 * Store it away 649 */ 650 #ifdef RPC_CACHE_DEBUG 651 if (nconf = getnetconfigent(xprt->xp_netid)) { 652 uaddr = taddr2uaddr(nconf, &xprt->xp_rtaddr); 653 freenetconfigent(nconf); 654 printf( 655 "cache set for xid= %x prog=%d vers=%d proc=%d for rmtaddr=%s\n", 656 su->su_xid, uc->uc_prog, uc->uc_vers, 657 uc->uc_proc, uaddr); 658 free(uaddr); 659 } 660 #endif 661 victim->cache_replylen = replylen; 662 victim->cache_reply = rpc_buffer(xprt); 663 rpc_buffer(xprt) = newbuf; 664 xdrmem_create(&(su->su_xdrs), rpc_buffer(xprt), 665 su->su_iosz, XDR_ENCODE); 666 victim->cache_xid = su->su_xid; 667 victim->cache_proc = uc->uc_proc; 668 victim->cache_vers = uc->uc_vers; 669 victim->cache_prog = uc->uc_prog; 670 victim->cache_addr = xprt->xp_rtaddr; 671 victim->cache_addr.buf = ALLOC(char, xprt->xp_rtaddr.len); 672 (void) memcpy(victim->cache_addr.buf, xprt->xp_rtaddr.buf, 673 (size_t)xprt->xp_rtaddr.len); 674 loc = CACHE_LOC(xprt, victim->cache_xid); 675 victim->cache_next = uc->uc_entries[loc]; 676 uc->uc_entries[loc] = victim; 677 uc->uc_fifo[uc->uc_nextvictim++] = victim; 678 uc->uc_nextvictim %= uc->uc_size; 679 mutex_unlock(&dupreq_lock); 680 } 681 682 /* 683 * Try to get an entry from the cache 684 * return 1 if found, 0 if not found and set the stage for cache_set() 685 */ 686 static int 687 cache_get(xprt, msg, replyp, replylenp) 688 SVCXPRT *xprt; 689 struct rpc_msg *msg; 690 char **replyp; 691 size_t *replylenp; 692 { 693 u_int loc; 694 cache_ptr ent; 695 struct svc_dg_data *su = su_data(xprt); 696 struct cl_cache *uc = (struct cl_cache *) su->su_cache; 697 #ifdef RPC_CACHE_DEBUG 698 struct netconfig *nconf; 699 char *uaddr; 700 #endif 701 702 mutex_lock(&dupreq_lock); 703 loc = CACHE_LOC(xprt, su->su_xid); 704 for (ent = uc->uc_entries[loc]; ent != NULL; ent = ent->cache_next) { 705 if (ent->cache_xid == su->su_xid && 706 ent->cache_proc == msg->rm_call.cb_proc && 707 ent->cache_vers == msg->rm_call.cb_vers && 708 ent->cache_prog == msg->rm_call.cb_prog && 709 ent->cache_addr.len == xprt->xp_rtaddr.len && 710 (memcmp(ent->cache_addr.buf, xprt->xp_rtaddr.buf, 711 xprt->xp_rtaddr.len) == 0)) { 712 #ifdef RPC_CACHE_DEBUG 713 if (nconf = getnetconfigent(xprt->xp_netid)) { 714 uaddr = taddr2uaddr(nconf, &xprt->xp_rtaddr); 715 freenetconfigent(nconf); 716 printf( 717 "cache entry found for xid=%x prog=%d vers=%d proc=%d for rmtaddr=%s\n", 718 su->su_xid, msg->rm_call.cb_prog, 719 msg->rm_call.cb_vers, 720 msg->rm_call.cb_proc, uaddr); 721 free(uaddr); 722 } 723 #endif 724 *replyp = ent->cache_reply; 725 *replylenp = ent->cache_replylen; 726 mutex_unlock(&dupreq_lock); 727 return (1); 728 } 729 } 730 /* 731 * Failed to find entry 732 * Remember a few things so we can do a set later 733 */ 734 uc->uc_proc = msg->rm_call.cb_proc; 735 uc->uc_vers = msg->rm_call.cb_vers; 736 uc->uc_prog = msg->rm_call.cb_prog; 737 mutex_unlock(&dupreq_lock); 738 return (0); 739 } 740