1 /* $NetBSD: svc_dg.c,v 1.4 2000/07/06 03:10:35 christos Exp $ */ 2 3 /* 4 * Sun RPC is a product of Sun Microsystems, Inc. and is provided for 5 * unrestricted use provided that this legend is included on all tape 6 * media and as a part of the software program in whole or part. Users 7 * may copy or modify Sun RPC without charge, but are not authorized 8 * to license or distribute it to anyone else except as part of a product or 9 * program developed by the user. 10 * 11 * SUN RPC IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING THE 12 * WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR 13 * PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE. 14 * 15 * Sun RPC is provided with no support and without any obligation on the 16 * part of Sun Microsystems, Inc. to assist in its use, correction, 17 * modification or enhancement. 18 * 19 * SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE 20 * INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY SUN RPC 21 * OR ANY PART THEREOF. 22 * 23 * In no event will Sun Microsystems, Inc. be liable for any lost revenue 24 * or profits or other special, indirect and consequential damages, even if 25 * Sun has been advised of the possibility of such damages. 26 * 27 * Sun Microsystems, Inc. 28 * 2550 Garcia Avenue 29 * Mountain View, California 94043 30 */ 31 32 /* 33 * Copyright (c) 1986-1991 by Sun Microsystems Inc. 34 */ 35 36 #if defined(LIBC_SCCS) && !defined(lint) 37 #ident "@(#)svc_dg.c 1.17 94/04/24 SMI" 38 #endif 39 #include <sys/cdefs.h> 40 __FBSDID("$FreeBSD$"); 41 42 /* 43 * svc_dg.c, Server side for connectionless RPC. 44 * 45 * Does some caching in the hopes of achieving execute-at-most-once semantics. 46 */ 47 48 #include "namespace.h" 49 #include "reentrant.h" 50 #include <sys/types.h> 51 #include <sys/socket.h> 52 #include <rpc/rpc.h> 53 #include <rpc/svc_dg.h> 54 #include <errno.h> 55 #include <unistd.h> 56 #include <stdio.h> 57 #include <stdlib.h> 58 #include <string.h> 59 #ifdef RPC_CACHE_DEBUG 60 #include <netconfig.h> 61 #include <netdir.h> 62 #endif 63 #include <err.h> 64 #include "un-namespace.h" 65 66 #include "rpc_com.h" 67 68 #define su_data(xprt) ((struct svc_dg_data *)(xprt->xp_p2)) 69 #define rpc_buffer(xprt) ((xprt)->xp_p1) 70 71 #ifndef MAX 72 #define MAX(a, b) (((a) > (b)) ? (a) : (b)) 73 #endif 74 75 static void svc_dg_ops(SVCXPRT *); 76 static enum xprt_stat svc_dg_stat(SVCXPRT *); 77 static bool_t svc_dg_recv(SVCXPRT *, struct rpc_msg *); 78 static bool_t svc_dg_reply(SVCXPRT *, struct rpc_msg *); 79 static bool_t svc_dg_getargs(SVCXPRT *, xdrproc_t, void *); 80 static bool_t svc_dg_freeargs(SVCXPRT *, xdrproc_t, void *); 81 static void svc_dg_destroy(SVCXPRT *); 82 static bool_t svc_dg_control(SVCXPRT *, const u_int, void *); 83 static int cache_get(SVCXPRT *, struct rpc_msg *, char **, size_t *); 84 static void cache_set(SVCXPRT *, size_t); 85 int svc_dg_enablecache(SVCXPRT *, u_int); 86 87 /* 88 * Usage: 89 * xprt = svc_dg_create(sock, sendsize, recvsize); 90 * Does other connectionless specific initializations. 91 * Once *xprt is initialized, it is registered. 92 * see (svc.h, xprt_register). If recvsize or sendsize are 0 suitable 93 * system defaults are chosen. 94 * The routines returns NULL if a problem occurred. 95 */ 96 static const char svc_dg_str[] = "svc_dg_create: %s"; 97 static const char svc_dg_err1[] = "could not get transport information"; 98 static const char svc_dg_err2[] = " transport does not support data transfer"; 99 static const char __no_mem_str[] = "out of memory"; 100 101 SVCXPRT * 102 svc_dg_create(fd, sendsize, recvsize) 103 int fd; 104 u_int sendsize; 105 u_int recvsize; 106 { 107 SVCXPRT *xprt; 108 struct svc_dg_data *su = NULL; 109 struct __rpc_sockinfo si; 110 struct sockaddr_storage ss; 111 socklen_t slen; 112 113 if (!__rpc_fd2sockinfo(fd, &si)) { 114 warnx(svc_dg_str, svc_dg_err1); 115 return (NULL); 116 } 117 /* 118 * Find the receive and the send size 119 */ 120 sendsize = __rpc_get_t_size(si.si_af, si.si_proto, (int)sendsize); 121 recvsize = __rpc_get_t_size(si.si_af, si.si_proto, (int)recvsize); 122 if ((sendsize == 0) || (recvsize == 0)) { 123 warnx(svc_dg_str, svc_dg_err2); 124 return (NULL); 125 } 126 127 xprt = mem_alloc(sizeof (SVCXPRT)); 128 if (xprt == NULL) 129 goto freedata; 130 memset(xprt, 0, sizeof (SVCXPRT)); 131 132 su = mem_alloc(sizeof (*su)); 133 if (su == NULL) 134 goto freedata; 135 su->su_iosz = ((MAX(sendsize, recvsize) + 3) / 4) * 4; 136 if ((rpc_buffer(xprt) = mem_alloc(su->su_iosz)) == NULL) 137 goto freedata; 138 xdrmem_create(&(su->su_xdrs), rpc_buffer(xprt), su->su_iosz, 139 XDR_DECODE); 140 su->su_cache = NULL; 141 xprt->xp_fd = fd; 142 xprt->xp_p2 = su; 143 xprt->xp_verf.oa_base = su->su_verfbody; 144 svc_dg_ops(xprt); 145 xprt->xp_rtaddr.maxlen = sizeof (struct sockaddr_storage); 146 147 slen = sizeof ss; 148 if (_getsockname(fd, (struct sockaddr *)(void *)&ss, &slen) < 0) 149 goto freedata; 150 xprt->xp_ltaddr.buf = mem_alloc(sizeof (struct sockaddr_storage)); 151 xprt->xp_ltaddr.maxlen = sizeof (struct sockaddr_storage); 152 xprt->xp_ltaddr.len = slen; 153 memcpy(xprt->xp_ltaddr.buf, &ss, slen); 154 155 xprt_register(xprt); 156 return (xprt); 157 freedata: 158 (void) warnx(svc_dg_str, __no_mem_str); 159 if (xprt) { 160 if (su) 161 (void) mem_free(su, sizeof (*su)); 162 (void) mem_free(xprt, sizeof (SVCXPRT)); 163 } 164 return (NULL); 165 } 166 167 /*ARGSUSED*/ 168 static enum xprt_stat 169 svc_dg_stat(xprt) 170 SVCXPRT *xprt; 171 { 172 return (XPRT_IDLE); 173 } 174 175 static bool_t 176 svc_dg_recv(xprt, msg) 177 SVCXPRT *xprt; 178 struct rpc_msg *msg; 179 { 180 struct svc_dg_data *su = su_data(xprt); 181 XDR *xdrs = &(su->su_xdrs); 182 char *reply; 183 struct sockaddr_storage ss; 184 socklen_t alen; 185 size_t replylen; 186 ssize_t rlen; 187 188 again: 189 alen = sizeof (struct sockaddr_storage); 190 rlen = _recvfrom(xprt->xp_fd, rpc_buffer(xprt), su->su_iosz, 0, 191 (struct sockaddr *)(void *)&ss, &alen); 192 if (rlen == -1 && errno == EINTR) 193 goto again; 194 if (rlen == -1 || (rlen < (ssize_t)(4 * sizeof (u_int32_t)))) 195 return (FALSE); 196 if (xprt->xp_rtaddr.len < alen) { 197 if (xprt->xp_rtaddr.len != 0) 198 mem_free(xprt->xp_rtaddr.buf, xprt->xp_rtaddr.len); 199 xprt->xp_rtaddr.buf = mem_alloc(alen); 200 xprt->xp_rtaddr.len = alen; 201 } 202 memcpy(xprt->xp_rtaddr.buf, &ss, alen); 203 #ifdef PORTMAP 204 if (ss.ss_family == AF_INET) { 205 xprt->xp_raddr = *(struct sockaddr_in *)xprt->xp_rtaddr.buf; 206 xprt->xp_addrlen = sizeof (struct sockaddr_in); 207 } 208 #endif /* PORTMAP */ 209 xdrs->x_op = XDR_DECODE; 210 XDR_SETPOS(xdrs, 0); 211 if (! xdr_callmsg(xdrs, msg)) { 212 return (FALSE); 213 } 214 su->su_xid = msg->rm_xid; 215 if (su->su_cache != NULL) { 216 if (cache_get(xprt, msg, &reply, &replylen)) { 217 (void)_sendto(xprt->xp_fd, reply, replylen, 0, 218 (struct sockaddr *)(void *)&ss, alen); 219 return (FALSE); 220 } 221 } 222 return (TRUE); 223 } 224 225 static bool_t 226 svc_dg_reply(xprt, msg) 227 SVCXPRT *xprt; 228 struct rpc_msg *msg; 229 { 230 struct svc_dg_data *su = su_data(xprt); 231 XDR *xdrs = &(su->su_xdrs); 232 bool_t stat = FALSE; 233 size_t slen; 234 235 xdrs->x_op = XDR_ENCODE; 236 XDR_SETPOS(xdrs, 0); 237 msg->rm_xid = su->su_xid; 238 if (xdr_replymsg(xdrs, msg)) { 239 slen = XDR_GETPOS(xdrs); 240 if (_sendto(xprt->xp_fd, rpc_buffer(xprt), slen, 0, 241 (struct sockaddr *)xprt->xp_rtaddr.buf, 242 (socklen_t)xprt->xp_rtaddr.len) == (ssize_t) slen) { 243 stat = TRUE; 244 if (su->su_cache) 245 cache_set(xprt, slen); 246 } 247 } 248 return (stat); 249 } 250 251 static bool_t 252 svc_dg_getargs(xprt, xdr_args, args_ptr) 253 SVCXPRT *xprt; 254 xdrproc_t xdr_args; 255 void *args_ptr; 256 { 257 return (*xdr_args)(&(su_data(xprt)->su_xdrs), args_ptr); 258 } 259 260 static bool_t 261 svc_dg_freeargs(xprt, xdr_args, args_ptr) 262 SVCXPRT *xprt; 263 xdrproc_t xdr_args; 264 void *args_ptr; 265 { 266 XDR *xdrs = &(su_data(xprt)->su_xdrs); 267 268 xdrs->x_op = XDR_FREE; 269 return (*xdr_args)(xdrs, args_ptr); 270 } 271 272 static void 273 svc_dg_destroy(xprt) 274 SVCXPRT *xprt; 275 { 276 struct svc_dg_data *su = su_data(xprt); 277 278 xprt_unregister(xprt); 279 if (xprt->xp_fd != -1) 280 (void)_close(xprt->xp_fd); 281 XDR_DESTROY(&(su->su_xdrs)); 282 (void) mem_free(rpc_buffer(xprt), su->su_iosz); 283 (void) mem_free(su, sizeof (*su)); 284 if (xprt->xp_rtaddr.buf) 285 (void) mem_free(xprt->xp_rtaddr.buf, xprt->xp_rtaddr.maxlen); 286 if (xprt->xp_ltaddr.buf) 287 (void) mem_free(xprt->xp_ltaddr.buf, xprt->xp_ltaddr.maxlen); 288 if (xprt->xp_tp) 289 (void) free(xprt->xp_tp); 290 (void) mem_free(xprt, sizeof (SVCXPRT)); 291 } 292 293 static bool_t 294 /*ARGSUSED*/ 295 svc_dg_control(xprt, rq, in) 296 SVCXPRT *xprt; 297 const u_int rq; 298 void *in; 299 { 300 return (FALSE); 301 } 302 303 static void 304 svc_dg_ops(xprt) 305 SVCXPRT *xprt; 306 { 307 static struct xp_ops ops; 308 static struct xp_ops2 ops2; 309 extern mutex_t ops_lock; 310 311 /* VARIABLES PROTECTED BY ops_lock: ops */ 312 313 mutex_lock(&ops_lock); 314 if (ops.xp_recv == NULL) { 315 ops.xp_recv = svc_dg_recv; 316 ops.xp_stat = svc_dg_stat; 317 ops.xp_getargs = svc_dg_getargs; 318 ops.xp_reply = svc_dg_reply; 319 ops.xp_freeargs = svc_dg_freeargs; 320 ops.xp_destroy = svc_dg_destroy; 321 ops2.xp_control = svc_dg_control; 322 } 323 xprt->xp_ops = &ops; 324 xprt->xp_ops2 = &ops2; 325 mutex_unlock(&ops_lock); 326 } 327 328 /* The CACHING COMPONENT */ 329 330 /* 331 * Could have been a separate file, but some part of it depends upon the 332 * private structure of the client handle. 333 * 334 * Fifo cache for cl server 335 * Copies pointers to reply buffers into fifo cache 336 * Buffers are sent again if retransmissions are detected. 337 */ 338 339 #define SPARSENESS 4 /* 75% sparse */ 340 341 #define ALLOC(type, size) \ 342 (type *) mem_alloc((sizeof (type) * (size))) 343 344 #define MEMZERO(addr, type, size) \ 345 (void) memset((void *) (addr), 0, sizeof (type) * (int) (size)) 346 347 #define FREE(addr, type, size) \ 348 mem_free((addr), (sizeof (type) * (size))) 349 350 /* 351 * An entry in the cache 352 */ 353 typedef struct cache_node *cache_ptr; 354 struct cache_node { 355 /* 356 * Index into cache is xid, proc, vers, prog and address 357 */ 358 u_int32_t cache_xid; 359 rpcproc_t cache_proc; 360 rpcvers_t cache_vers; 361 rpcprog_t cache_prog; 362 struct netbuf cache_addr; 363 /* 364 * The cached reply and length 365 */ 366 char *cache_reply; 367 size_t cache_replylen; 368 /* 369 * Next node on the list, if there is a collision 370 */ 371 cache_ptr cache_next; 372 }; 373 374 /* 375 * The entire cache 376 */ 377 struct cl_cache { 378 u_int uc_size; /* size of cache */ 379 cache_ptr *uc_entries; /* hash table of entries in cache */ 380 cache_ptr *uc_fifo; /* fifo list of entries in cache */ 381 u_int uc_nextvictim; /* points to next victim in fifo list */ 382 rpcprog_t uc_prog; /* saved program number */ 383 rpcvers_t uc_vers; /* saved version number */ 384 rpcproc_t uc_proc; /* saved procedure number */ 385 }; 386 387 388 /* 389 * the hashing function 390 */ 391 #define CACHE_LOC(transp, xid) \ 392 (xid % (SPARSENESS * ((struct cl_cache *) \ 393 su_data(transp)->su_cache)->uc_size)) 394 395 extern mutex_t dupreq_lock; 396 397 /* 398 * Enable use of the cache. Returns 1 on success, 0 on failure. 399 * Note: there is no disable. 400 */ 401 static const char cache_enable_str[] = "svc_enablecache: %s %s"; 402 static const char alloc_err[] = "could not allocate cache "; 403 static const char enable_err[] = "cache already enabled"; 404 405 int 406 svc_dg_enablecache(transp, size) 407 SVCXPRT *transp; 408 u_int size; 409 { 410 struct svc_dg_data *su = su_data(transp); 411 struct cl_cache *uc; 412 413 mutex_lock(&dupreq_lock); 414 if (su->su_cache != NULL) { 415 (void) warnx(cache_enable_str, enable_err, " "); 416 mutex_unlock(&dupreq_lock); 417 return (0); 418 } 419 uc = ALLOC(struct cl_cache, 1); 420 if (uc == NULL) { 421 warnx(cache_enable_str, alloc_err, " "); 422 mutex_unlock(&dupreq_lock); 423 return (0); 424 } 425 uc->uc_size = size; 426 uc->uc_nextvictim = 0; 427 uc->uc_entries = ALLOC(cache_ptr, size * SPARSENESS); 428 if (uc->uc_entries == NULL) { 429 warnx(cache_enable_str, alloc_err, "data"); 430 FREE(uc, struct cl_cache, 1); 431 mutex_unlock(&dupreq_lock); 432 return (0); 433 } 434 MEMZERO(uc->uc_entries, cache_ptr, size * SPARSENESS); 435 uc->uc_fifo = ALLOC(cache_ptr, size); 436 if (uc->uc_fifo == NULL) { 437 warnx(cache_enable_str, alloc_err, "fifo"); 438 FREE(uc->uc_entries, cache_ptr, size * SPARSENESS); 439 FREE(uc, struct cl_cache, 1); 440 mutex_unlock(&dupreq_lock); 441 return (0); 442 } 443 MEMZERO(uc->uc_fifo, cache_ptr, size); 444 su->su_cache = (char *)(void *)uc; 445 mutex_unlock(&dupreq_lock); 446 return (1); 447 } 448 449 /* 450 * Set an entry in the cache. It assumes that the uc entry is set from 451 * the earlier call to cache_get() for the same procedure. This will always 452 * happen because cache_get() is calle by svc_dg_recv and cache_set() is called 453 * by svc_dg_reply(). All this hoopla because the right RPC parameters are 454 * not available at svc_dg_reply time. 455 */ 456 457 static const char cache_set_str[] = "cache_set: %s"; 458 static const char cache_set_err1[] = "victim not found"; 459 static const char cache_set_err2[] = "victim alloc failed"; 460 static const char cache_set_err3[] = "could not allocate new rpc buffer"; 461 462 static void 463 cache_set(xprt, replylen) 464 SVCXPRT *xprt; 465 size_t replylen; 466 { 467 cache_ptr victim; 468 cache_ptr *vicp; 469 struct svc_dg_data *su = su_data(xprt); 470 struct cl_cache *uc = (struct cl_cache *) su->su_cache; 471 u_int loc; 472 char *newbuf; 473 #ifdef RPC_CACHE_DEBUG 474 struct netconfig *nconf; 475 char *uaddr; 476 #endif 477 478 mutex_lock(&dupreq_lock); 479 /* 480 * Find space for the new entry, either by 481 * reusing an old entry, or by mallocing a new one 482 */ 483 victim = uc->uc_fifo[uc->uc_nextvictim]; 484 if (victim != NULL) { 485 loc = CACHE_LOC(xprt, victim->cache_xid); 486 for (vicp = &uc->uc_entries[loc]; 487 *vicp != NULL && *vicp != victim; 488 vicp = &(*vicp)->cache_next) 489 ; 490 if (*vicp == NULL) { 491 warnx(cache_set_str, cache_set_err1); 492 mutex_unlock(&dupreq_lock); 493 return; 494 } 495 *vicp = victim->cache_next; /* remove from cache */ 496 newbuf = victim->cache_reply; 497 } else { 498 victim = ALLOC(struct cache_node, 1); 499 if (victim == NULL) { 500 warnx(cache_set_str, cache_set_err2); 501 mutex_unlock(&dupreq_lock); 502 return; 503 } 504 newbuf = mem_alloc(su->su_iosz); 505 if (newbuf == NULL) { 506 warnx(cache_set_str, cache_set_err3); 507 FREE(victim, struct cache_node, 1); 508 mutex_unlock(&dupreq_lock); 509 return; 510 } 511 } 512 513 /* 514 * Store it away 515 */ 516 #ifdef RPC_CACHE_DEBUG 517 if (nconf = getnetconfigent(xprt->xp_netid)) { 518 uaddr = taddr2uaddr(nconf, &xprt->xp_rtaddr); 519 freenetconfigent(nconf); 520 printf( 521 "cache set for xid= %x prog=%d vers=%d proc=%d for rmtaddr=%s\n", 522 su->su_xid, uc->uc_prog, uc->uc_vers, 523 uc->uc_proc, uaddr); 524 free(uaddr); 525 } 526 #endif 527 victim->cache_replylen = replylen; 528 victim->cache_reply = rpc_buffer(xprt); 529 rpc_buffer(xprt) = newbuf; 530 xdrmem_create(&(su->su_xdrs), rpc_buffer(xprt), 531 su->su_iosz, XDR_ENCODE); 532 victim->cache_xid = su->su_xid; 533 victim->cache_proc = uc->uc_proc; 534 victim->cache_vers = uc->uc_vers; 535 victim->cache_prog = uc->uc_prog; 536 victim->cache_addr = xprt->xp_rtaddr; 537 victim->cache_addr.buf = ALLOC(char, xprt->xp_rtaddr.len); 538 (void) memcpy(victim->cache_addr.buf, xprt->xp_rtaddr.buf, 539 (size_t)xprt->xp_rtaddr.len); 540 loc = CACHE_LOC(xprt, victim->cache_xid); 541 victim->cache_next = uc->uc_entries[loc]; 542 uc->uc_entries[loc] = victim; 543 uc->uc_fifo[uc->uc_nextvictim++] = victim; 544 uc->uc_nextvictim %= uc->uc_size; 545 mutex_unlock(&dupreq_lock); 546 } 547 548 /* 549 * Try to get an entry from the cache 550 * return 1 if found, 0 if not found and set the stage for cache_set() 551 */ 552 static int 553 cache_get(xprt, msg, replyp, replylenp) 554 SVCXPRT *xprt; 555 struct rpc_msg *msg; 556 char **replyp; 557 size_t *replylenp; 558 { 559 u_int loc; 560 cache_ptr ent; 561 struct svc_dg_data *su = su_data(xprt); 562 struct cl_cache *uc = (struct cl_cache *) su->su_cache; 563 #ifdef RPC_CACHE_DEBUG 564 struct netconfig *nconf; 565 char *uaddr; 566 #endif 567 568 mutex_lock(&dupreq_lock); 569 loc = CACHE_LOC(xprt, su->su_xid); 570 for (ent = uc->uc_entries[loc]; ent != NULL; ent = ent->cache_next) { 571 if (ent->cache_xid == su->su_xid && 572 ent->cache_proc == msg->rm_call.cb_proc && 573 ent->cache_vers == msg->rm_call.cb_vers && 574 ent->cache_prog == msg->rm_call.cb_prog && 575 ent->cache_addr.len == xprt->xp_rtaddr.len && 576 (memcmp(ent->cache_addr.buf, xprt->xp_rtaddr.buf, 577 xprt->xp_rtaddr.len) == 0)) { 578 #ifdef RPC_CACHE_DEBUG 579 if (nconf = getnetconfigent(xprt->xp_netid)) { 580 uaddr = taddr2uaddr(nconf, &xprt->xp_rtaddr); 581 freenetconfigent(nconf); 582 printf( 583 "cache entry found for xid=%x prog=%d vers=%d proc=%d for rmtaddr=%s\n", 584 su->su_xid, msg->rm_call.cb_prog, 585 msg->rm_call.cb_vers, 586 msg->rm_call.cb_proc, uaddr); 587 free(uaddr); 588 } 589 #endif 590 *replyp = ent->cache_reply; 591 *replylenp = ent->cache_replylen; 592 mutex_unlock(&dupreq_lock); 593 return (1); 594 } 595 } 596 /* 597 * Failed to find entry 598 * Remember a few things so we can do a set later 599 */ 600 uc->uc_proc = msg->rm_call.cb_proc; 601 uc->uc_vers = msg->rm_call.cb_vers; 602 uc->uc_prog = msg->rm_call.cb_prog; 603 mutex_unlock(&dupreq_lock); 604 return (0); 605 } 606