1 /* $NetBSD: svc_dg.c,v 1.4 2000/07/06 03:10:35 christos Exp $ */
2
3 /*-
4 * SPDX-License-Identifier: BSD-3-Clause
5 *
6 * Copyright (c) 2009, Sun Microsystems, Inc.
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions are met:
11 * - Redistributions of source code must retain the above copyright notice,
12 * this list of conditions and the following disclaimer.
13 * - Redistributions in binary form must reproduce the above copyright notice,
14 * this list of conditions and the following disclaimer in the documentation
15 * and/or other materials provided with the distribution.
16 * - Neither the name of Sun Microsystems, Inc. nor the names of its
17 * contributors may be used to endorse or promote products derived
18 * from this software without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
24 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1986-1991 by Sun Microsystems Inc.
35 */
36
37 /*
38 * svc_dg.c, Server side for connectionless RPC.
39 *
40 * Does some caching in the hopes of achieving execute-at-most-once semantics.
41 */
42
43 #include "namespace.h"
44 #include "reentrant.h"
45 #include <sys/types.h>
46 #include <sys/socket.h>
47 #include <rpc/rpc.h>
48 #include <rpc/svc_dg.h>
49 #include <assert.h>
50 #include <errno.h>
51 #include <unistd.h>
52 #include <stdio.h>
53 #include <stdlib.h>
54 #include <string.h>
55 #ifdef RPC_CACHE_DEBUG
56 #include <netconfig.h>
57 #include <netdir.h>
58 #endif
59 #include <err.h>
60 #include "un-namespace.h"
61
62 #include "rpc_com.h"
63 #include "mt_misc.h"
64
65 #define su_data(xprt) ((struct svc_dg_data *)((xprt)->xp_p2))
66 #define rpc_buffer(xprt) ((xprt)->xp_p1)
67
68 #ifndef MAX
69 #define MAX(a, b) (((a) > (b)) ? (a) : (b))
70 #endif
71
72 static void svc_dg_ops(SVCXPRT *);
73 static enum xprt_stat svc_dg_stat(SVCXPRT *);
74 static bool_t svc_dg_recv(SVCXPRT *, struct rpc_msg *);
75 static bool_t svc_dg_reply(SVCXPRT *, struct rpc_msg *);
76 static bool_t svc_dg_getargs(SVCXPRT *, xdrproc_t, void *);
77 static bool_t svc_dg_freeargs(SVCXPRT *, xdrproc_t, void *);
78 static void svc_dg_destroy(SVCXPRT *);
79 static bool_t svc_dg_control(SVCXPRT *, const u_int, void *);
80 static int cache_get(SVCXPRT *, struct rpc_msg *, char **, size_t *);
81 static void cache_set(SVCXPRT *, size_t);
82 int svc_dg_enablecache(SVCXPRT *, u_int);
83
84 /*
85 * Usage:
86 * xprt = svc_dg_create(sock, sendsize, recvsize);
87 * Does other connectionless specific initializations.
88 * Once *xprt is initialized, it is registered.
89 * see (svc.h, xprt_register). If recvsize or sendsize are 0 suitable
90 * system defaults are chosen.
91 * The routines returns NULL if a problem occurred.
92 */
93 static const char svc_dg_str[] = "svc_dg_create: %s";
94 static const char svc_dg_err1[] = "could not get transport information";
95 static const char svc_dg_err2[] = "transport does not support data transfer";
96 static const char svc_dg_err3[] = "getsockname failed";
97 static const char svc_dg_err4[] = "cannot set IP_RECVDSTADDR";
98 static const char __no_mem_str[] = "out of memory";
99
100 SVCXPRT *
svc_dg_create(int fd,u_int sendsize,u_int recvsize)101 svc_dg_create(int fd, u_int sendsize, u_int recvsize)
102 {
103 SVCXPRT *xprt;
104 struct svc_dg_data *su = NULL;
105 struct __rpc_sockinfo si;
106 struct sockaddr_storage ss;
107 socklen_t slen;
108
109 if (!__rpc_fd2sockinfo(fd, &si)) {
110 warnx(svc_dg_str, svc_dg_err1);
111 return (NULL);
112 }
113 /*
114 * Find the receive and the send size
115 */
116 sendsize = __rpc_get_t_size(si.si_af, si.si_proto, (int)sendsize);
117 recvsize = __rpc_get_t_size(si.si_af, si.si_proto, (int)recvsize);
118 if ((sendsize == 0) || (recvsize == 0)) {
119 warnx(svc_dg_str, svc_dg_err2);
120 return (NULL);
121 }
122
123 xprt = svc_xprt_alloc();
124 if (xprt == NULL)
125 goto freedata;
126
127 su = mem_alloc(sizeof (*su));
128 if (su == NULL)
129 goto freedata;
130 su->su_iosz = ((MAX(sendsize, recvsize) + 3) / 4) * 4;
131 if ((rpc_buffer(xprt) = mem_alloc(su->su_iosz)) == NULL)
132 goto freedata;
133 xdrmem_create(&(su->su_xdrs), rpc_buffer(xprt), su->su_iosz,
134 XDR_DECODE);
135 su->su_cache = NULL;
136 xprt->xp_fd = fd;
137 xprt->xp_p2 = su;
138 xprt->xp_verf.oa_base = su->su_verfbody;
139 svc_dg_ops(xprt);
140 xprt->xp_rtaddr.maxlen = sizeof (struct sockaddr_storage);
141
142 slen = sizeof ss;
143 if (_getsockname(fd, (struct sockaddr *)(void *)&ss, &slen) < 0) {
144 warnx(svc_dg_str, svc_dg_err3);
145 goto freedata_nowarn;
146 }
147 xprt->xp_ltaddr.buf = mem_alloc(sizeof (struct sockaddr_storage));
148 xprt->xp_ltaddr.maxlen = sizeof (struct sockaddr_storage);
149 xprt->xp_ltaddr.len = slen;
150 memcpy(xprt->xp_ltaddr.buf, &ss, slen);
151
152 if (ss.ss_family == AF_INET) {
153 struct sockaddr_in *sin;
154 static const int true_value = 1;
155
156 sin = (struct sockaddr_in *)(void *)&ss;
157 if (sin->sin_addr.s_addr == INADDR_ANY) {
158 su->su_srcaddr.buf = mem_alloc(sizeof (ss));
159 su->su_srcaddr.maxlen = sizeof (ss);
160
161 if (_setsockopt(fd, IPPROTO_IP, IP_RECVDSTADDR,
162 &true_value, sizeof(true_value))) {
163 warnx(svc_dg_str, svc_dg_err4);
164 goto freedata_nowarn;
165 }
166 }
167 }
168
169 xprt_register(xprt);
170 return (xprt);
171 freedata:
172 (void) warnx(svc_dg_str, __no_mem_str);
173 freedata_nowarn:
174 if (xprt) {
175 if (su)
176 (void) mem_free(su, sizeof (*su));
177 svc_xprt_free(xprt);
178 }
179 return (NULL);
180 }
181
182 /*ARGSUSED*/
183 static enum xprt_stat
svc_dg_stat(SVCXPRT * xprt)184 svc_dg_stat(SVCXPRT *xprt)
185 {
186 return (XPRT_IDLE);
187 }
188
189 static int
svc_dg_recvfrom(int fd,char * buf,int buflen,struct sockaddr * raddr,socklen_t * raddrlen,struct sockaddr * laddr,socklen_t * laddrlen)190 svc_dg_recvfrom(int fd, char *buf, int buflen,
191 struct sockaddr *raddr, socklen_t *raddrlen,
192 struct sockaddr *laddr, socklen_t *laddrlen)
193 {
194 struct msghdr msg;
195 struct iovec msg_iov[1];
196 struct sockaddr_in *lin = (struct sockaddr_in *)laddr;
197 int rlen;
198 bool_t have_lin = FALSE;
199 char tmp[CMSG_LEN(sizeof(*lin))];
200 struct cmsghdr *cmsg;
201
202 memset((char *)&msg, 0, sizeof(msg));
203 msg_iov[0].iov_base = buf;
204 msg_iov[0].iov_len = buflen;
205 msg.msg_iov = msg_iov;
206 msg.msg_iovlen = 1;
207 msg.msg_namelen = *raddrlen;
208 msg.msg_name = (char *)raddr;
209 if (laddr != NULL) {
210 msg.msg_control = (caddr_t)tmp;
211 msg.msg_controllen = CMSG_LEN(sizeof(*lin));
212 }
213 rlen = _recvmsg(fd, &msg, 0);
214 if (rlen >= 0)
215 *raddrlen = msg.msg_namelen;
216
217 if (rlen == -1 || laddr == NULL ||
218 msg.msg_controllen < sizeof(struct cmsghdr) ||
219 msg.msg_flags & MSG_CTRUNC)
220 return rlen;
221
222 for (cmsg = CMSG_FIRSTHDR(&msg); cmsg != NULL;
223 cmsg = CMSG_NXTHDR(&msg, cmsg)) {
224 if (cmsg->cmsg_level == IPPROTO_IP &&
225 cmsg->cmsg_type == IP_RECVDSTADDR) {
226 have_lin = TRUE;
227 memcpy(&lin->sin_addr,
228 (struct in_addr *)CMSG_DATA(cmsg),
229 sizeof(struct in_addr));
230 break;
231 }
232 }
233
234 lin->sin_family = AF_INET;
235 lin->sin_port = 0;
236 *laddrlen = sizeof(struct sockaddr_in);
237
238 if (!have_lin)
239 lin->sin_addr.s_addr = INADDR_ANY;
240
241 return rlen;
242 }
243
244 static bool_t
svc_dg_recv(SVCXPRT * xprt,struct rpc_msg * msg)245 svc_dg_recv(SVCXPRT *xprt, struct rpc_msg *msg)
246 {
247 struct svc_dg_data *su = su_data(xprt);
248 XDR *xdrs = &(su->su_xdrs);
249 char *reply;
250 struct sockaddr_storage ss;
251 socklen_t alen;
252 size_t replylen;
253 ssize_t rlen;
254
255 again:
256 alen = sizeof (struct sockaddr_storage);
257 rlen = svc_dg_recvfrom(xprt->xp_fd, rpc_buffer(xprt), su->su_iosz,
258 (struct sockaddr *)(void *)&ss, &alen,
259 (struct sockaddr *)su->su_srcaddr.buf, &su->su_srcaddr.len);
260 if (rlen == -1 && errno == EINTR)
261 goto again;
262 if (rlen == -1 || (rlen < (ssize_t)(4 * sizeof (u_int32_t))))
263 return (FALSE);
264 if (xprt->xp_rtaddr.len < alen) {
265 if (xprt->xp_rtaddr.len != 0)
266 mem_free(xprt->xp_rtaddr.buf, xprt->xp_rtaddr.len);
267 xprt->xp_rtaddr.buf = mem_alloc(alen);
268 xprt->xp_rtaddr.len = alen;
269 }
270 memcpy(xprt->xp_rtaddr.buf, &ss, alen);
271 #ifdef PORTMAP
272 if (ss.ss_family == AF_INET) {
273 xprt->xp_raddr = *(struct sockaddr_in *)xprt->xp_rtaddr.buf;
274 xprt->xp_addrlen = sizeof (struct sockaddr_in);
275 }
276 #endif /* PORTMAP */
277 xdrs->x_op = XDR_DECODE;
278 XDR_SETPOS(xdrs, 0);
279 if (! xdr_callmsg(xdrs, msg)) {
280 return (FALSE);
281 }
282 su->su_xid = msg->rm_xid;
283 if (su->su_cache != NULL) {
284 if (cache_get(xprt, msg, &reply, &replylen)) {
285 (void)_sendto(xprt->xp_fd, reply, replylen, 0,
286 (struct sockaddr *)(void *)&ss, alen);
287 return (FALSE);
288 }
289 }
290 return (TRUE);
291 }
292
293 static int
svc_dg_sendto(int fd,char * buf,int buflen,const struct sockaddr * raddr,socklen_t raddrlen,const struct sockaddr * laddr,socklen_t laddrlen)294 svc_dg_sendto(int fd, char *buf, int buflen,
295 const struct sockaddr *raddr, socklen_t raddrlen,
296 const struct sockaddr *laddr, socklen_t laddrlen)
297 {
298 struct msghdr msg;
299 struct iovec msg_iov[1];
300 struct sockaddr_in *laddr_in = (struct sockaddr_in *)laddr;
301 struct in_addr *lin = &laddr_in->sin_addr;
302 char tmp[CMSG_SPACE(sizeof(*lin))];
303 struct cmsghdr *cmsg;
304
305 memset((char *)&msg, 0, sizeof(msg));
306 msg_iov[0].iov_base = buf;
307 msg_iov[0].iov_len = buflen;
308 msg.msg_iov = msg_iov;
309 msg.msg_iovlen = 1;
310 msg.msg_namelen = raddrlen;
311 msg.msg_name = (char *)raddr;
312
313 if (laddr != NULL && laddr->sa_family == AF_INET &&
314 lin->s_addr != INADDR_ANY) {
315 msg.msg_control = (caddr_t)tmp;
316 msg.msg_controllen = CMSG_LEN(sizeof(*lin));
317 cmsg = CMSG_FIRSTHDR(&msg);
318 cmsg->cmsg_len = CMSG_LEN(sizeof(*lin));
319 cmsg->cmsg_level = IPPROTO_IP;
320 cmsg->cmsg_type = IP_SENDSRCADDR;
321 memcpy(CMSG_DATA(cmsg), lin, sizeof(*lin));
322 }
323
324 return _sendmsg(fd, &msg, 0);
325 }
326
327 static bool_t
svc_dg_reply(SVCXPRT * xprt,struct rpc_msg * msg)328 svc_dg_reply(SVCXPRT *xprt, struct rpc_msg *msg)
329 {
330 struct svc_dg_data *su = su_data(xprt);
331 XDR *xdrs = &(su->su_xdrs);
332 bool_t stat = TRUE;
333 size_t slen;
334 xdrproc_t xdr_proc;
335 caddr_t xdr_where;
336
337 xdrs->x_op = XDR_ENCODE;
338 XDR_SETPOS(xdrs, 0);
339 msg->rm_xid = su->su_xid;
340 if (msg->rm_reply.rp_stat == MSG_ACCEPTED &&
341 msg->rm_reply.rp_acpt.ar_stat == SUCCESS) {
342 xdr_proc = msg->acpted_rply.ar_results.proc;
343 xdr_where = msg->acpted_rply.ar_results.where;
344 msg->acpted_rply.ar_results.proc = (xdrproc_t) xdr_void;
345 msg->acpted_rply.ar_results.where = NULL;
346
347 if (!xdr_replymsg(xdrs, msg) ||
348 !SVCAUTH_WRAP(&SVC_AUTH(xprt), xdrs, xdr_proc, xdr_where))
349 stat = FALSE;
350 } else {
351 stat = xdr_replymsg(xdrs, msg);
352 }
353 if (stat) {
354 slen = XDR_GETPOS(xdrs);
355 if (svc_dg_sendto(xprt->xp_fd, rpc_buffer(xprt), slen,
356 (struct sockaddr *)xprt->xp_rtaddr.buf,
357 (socklen_t)xprt->xp_rtaddr.len,
358 (struct sockaddr *)su->su_srcaddr.buf,
359 (socklen_t)su->su_srcaddr.len) == (ssize_t) slen) {
360 stat = TRUE;
361 if (su->su_cache)
362 cache_set(xprt, slen);
363 }
364 }
365 return (stat);
366 }
367
368 static bool_t
svc_dg_getargs(SVCXPRT * xprt,xdrproc_t xdr_args,void * args_ptr)369 svc_dg_getargs(SVCXPRT *xprt, xdrproc_t xdr_args, void *args_ptr)
370 {
371 struct svc_dg_data *su;
372
373 assert(xprt != NULL);
374 su = su_data(xprt);
375 return (SVCAUTH_UNWRAP(&SVC_AUTH(xprt),
376 &su->su_xdrs, xdr_args, args_ptr));
377 }
378
379 static bool_t
svc_dg_freeargs(SVCXPRT * xprt,xdrproc_t xdr_args,void * args_ptr)380 svc_dg_freeargs(SVCXPRT *xprt, xdrproc_t xdr_args, void *args_ptr)
381 {
382 XDR *xdrs = &(su_data(xprt)->su_xdrs);
383
384 xdrs->x_op = XDR_FREE;
385 return (*xdr_args)(xdrs, args_ptr);
386 }
387
388 static void
svc_dg_destroy(SVCXPRT * xprt)389 svc_dg_destroy(SVCXPRT *xprt)
390 {
391 struct svc_dg_data *su = su_data(xprt);
392
393 xprt_unregister(xprt);
394 if (xprt->xp_fd != -1)
395 (void)_close(xprt->xp_fd);
396 XDR_DESTROY(&(su->su_xdrs));
397 (void) mem_free(rpc_buffer(xprt), su->su_iosz);
398 if (su->su_srcaddr.buf)
399 (void) mem_free(su->su_srcaddr.buf, su->su_srcaddr.maxlen);
400 (void) mem_free(su, sizeof (*su));
401 if (xprt->xp_rtaddr.buf)
402 (void) mem_free(xprt->xp_rtaddr.buf, xprt->xp_rtaddr.maxlen);
403 if (xprt->xp_ltaddr.buf)
404 (void) mem_free(xprt->xp_ltaddr.buf, xprt->xp_ltaddr.maxlen);
405 free(xprt->xp_tp);
406 svc_xprt_free(xprt);
407 }
408
409 static bool_t
410 /*ARGSUSED*/
svc_dg_control(SVCXPRT * xprt,const u_int rq,void * in)411 svc_dg_control(SVCXPRT *xprt, const u_int rq, void *in)
412 {
413 return (FALSE);
414 }
415
416 static void
svc_dg_ops(SVCXPRT * xprt)417 svc_dg_ops(SVCXPRT *xprt)
418 {
419 static struct xp_ops ops;
420 static struct xp_ops2 ops2;
421
422 /* VARIABLES PROTECTED BY ops_lock: ops */
423
424 mutex_lock(&ops_lock);
425 if (ops.xp_recv == NULL) {
426 ops.xp_recv = svc_dg_recv;
427 ops.xp_stat = svc_dg_stat;
428 ops.xp_getargs = svc_dg_getargs;
429 ops.xp_reply = svc_dg_reply;
430 ops.xp_freeargs = svc_dg_freeargs;
431 ops.xp_destroy = svc_dg_destroy;
432 ops2.xp_control = svc_dg_control;
433 }
434 xprt->xp_ops = &ops;
435 xprt->xp_ops2 = &ops2;
436 mutex_unlock(&ops_lock);
437 }
438
439 /* The CACHING COMPONENT */
440
441 /*
442 * Could have been a separate file, but some part of it depends upon the
443 * private structure of the client handle.
444 *
445 * Fifo cache for cl server
446 * Copies pointers to reply buffers into fifo cache
447 * Buffers are sent again if retransmissions are detected.
448 */
449
450 #define SPARSENESS 4 /* 75% sparse */
451
452 #define ALLOC(type, size) \
453 (type *) mem_alloc((sizeof (type) * (size)))
454
455 #define MEMZERO(addr, type, size) \
456 (void) memset((void *) (addr), 0, sizeof (type) * (int) (size))
457
458 #define FREE(addr, type, size) \
459 mem_free((addr), (sizeof (type) * (size)))
460
461 /*
462 * An entry in the cache
463 */
464 typedef struct cache_node *cache_ptr;
465 struct cache_node {
466 /*
467 * Index into cache is xid, proc, vers, prog and address
468 */
469 u_int32_t cache_xid;
470 rpcproc_t cache_proc;
471 rpcvers_t cache_vers;
472 rpcprog_t cache_prog;
473 struct netbuf cache_addr;
474 /*
475 * The cached reply and length
476 */
477 char *cache_reply;
478 size_t cache_replylen;
479 /*
480 * Next node on the list, if there is a collision
481 */
482 cache_ptr cache_next;
483 };
484
485 /*
486 * The entire cache
487 */
488 struct cl_cache {
489 u_int uc_size; /* size of cache */
490 cache_ptr *uc_entries; /* hash table of entries in cache */
491 cache_ptr *uc_fifo; /* fifo list of entries in cache */
492 u_int uc_nextvictim; /* points to next victim in fifo list */
493 rpcprog_t uc_prog; /* saved program number */
494 rpcvers_t uc_vers; /* saved version number */
495 rpcproc_t uc_proc; /* saved procedure number */
496 };
497
498
499 /*
500 * the hashing function
501 */
502 #define CACHE_LOC(transp, xid) \
503 (xid % (SPARSENESS * ((struct cl_cache *) \
504 su_data(transp)->su_cache)->uc_size))
505
506 /*
507 * Enable use of the cache. Returns 1 on success, 0 on failure.
508 * Note: there is no disable.
509 */
510 static const char cache_enable_str[] = "svc_enablecache: %s %s";
511 static const char alloc_err[] = "could not allocate cache ";
512 static const char enable_err[] = "cache already enabled";
513
514 int
svc_dg_enablecache(SVCXPRT * transp,u_int size)515 svc_dg_enablecache(SVCXPRT *transp, u_int size)
516 {
517 struct svc_dg_data *su = su_data(transp);
518 struct cl_cache *uc;
519
520 mutex_lock(&dupreq_lock);
521 if (su->su_cache != NULL) {
522 (void) warnx(cache_enable_str, enable_err, " ");
523 mutex_unlock(&dupreq_lock);
524 return (0);
525 }
526 uc = ALLOC(struct cl_cache, 1);
527 if (uc == NULL) {
528 warnx(cache_enable_str, alloc_err, " ");
529 mutex_unlock(&dupreq_lock);
530 return (0);
531 }
532 uc->uc_size = size;
533 uc->uc_nextvictim = 0;
534 uc->uc_entries = ALLOC(cache_ptr, size * SPARSENESS);
535 if (uc->uc_entries == NULL) {
536 warnx(cache_enable_str, alloc_err, "data");
537 FREE(uc, struct cl_cache, 1);
538 mutex_unlock(&dupreq_lock);
539 return (0);
540 }
541 MEMZERO(uc->uc_entries, cache_ptr, size * SPARSENESS);
542 uc->uc_fifo = ALLOC(cache_ptr, size);
543 if (uc->uc_fifo == NULL) {
544 warnx(cache_enable_str, alloc_err, "fifo");
545 FREE(uc->uc_entries, cache_ptr, size * SPARSENESS);
546 FREE(uc, struct cl_cache, 1);
547 mutex_unlock(&dupreq_lock);
548 return (0);
549 }
550 MEMZERO(uc->uc_fifo, cache_ptr, size);
551 su->su_cache = (char *)(void *)uc;
552 mutex_unlock(&dupreq_lock);
553 return (1);
554 }
555
556 /*
557 * Set an entry in the cache. It assumes that the uc entry is set from
558 * the earlier call to cache_get() for the same procedure. This will always
559 * happen because cache_get() is calle by svc_dg_recv and cache_set() is called
560 * by svc_dg_reply(). All this hoopla because the right RPC parameters are
561 * not available at svc_dg_reply time.
562 */
563
564 static const char cache_set_str[] = "cache_set: %s";
565 static const char cache_set_err1[] = "victim not found";
566 static const char cache_set_err2[] = "victim alloc failed";
567 static const char cache_set_err3[] = "could not allocate new rpc buffer";
568
569 static void
cache_set(SVCXPRT * xprt,size_t replylen)570 cache_set(SVCXPRT *xprt, size_t replylen)
571 {
572 cache_ptr victim;
573 cache_ptr *vicp;
574 struct svc_dg_data *su = su_data(xprt);
575 struct cl_cache *uc = (struct cl_cache *) su->su_cache;
576 u_int loc;
577 char *newbuf;
578 #ifdef RPC_CACHE_DEBUG
579 struct netconfig *nconf;
580 char *uaddr;
581 #endif
582
583 mutex_lock(&dupreq_lock);
584 /*
585 * Find space for the new entry, either by
586 * reusing an old entry, or by mallocing a new one
587 */
588 victim = uc->uc_fifo[uc->uc_nextvictim];
589 if (victim != NULL) {
590 loc = CACHE_LOC(xprt, victim->cache_xid);
591 for (vicp = &uc->uc_entries[loc];
592 *vicp != NULL && *vicp != victim;
593 vicp = &(*vicp)->cache_next)
594 ;
595 if (*vicp == NULL) {
596 warnx(cache_set_str, cache_set_err1);
597 mutex_unlock(&dupreq_lock);
598 return;
599 }
600 *vicp = victim->cache_next; /* remove from cache */
601 newbuf = victim->cache_reply;
602 } else {
603 victim = ALLOC(struct cache_node, 1);
604 if (victim == NULL) {
605 warnx(cache_set_str, cache_set_err2);
606 mutex_unlock(&dupreq_lock);
607 return;
608 }
609 newbuf = mem_alloc(su->su_iosz);
610 if (newbuf == NULL) {
611 warnx(cache_set_str, cache_set_err3);
612 FREE(victim, struct cache_node, 1);
613 mutex_unlock(&dupreq_lock);
614 return;
615 }
616 }
617
618 /*
619 * Store it away
620 */
621 #ifdef RPC_CACHE_DEBUG
622 if (nconf = getnetconfigent(xprt->xp_netid)) {
623 uaddr = taddr2uaddr(nconf, &xprt->xp_rtaddr);
624 freenetconfigent(nconf);
625 printf(
626 "cache set for xid= %x prog=%d vers=%d proc=%d for rmtaddr=%s\n",
627 su->su_xid, uc->uc_prog, uc->uc_vers,
628 uc->uc_proc, uaddr);
629 free(uaddr);
630 }
631 #endif
632 victim->cache_replylen = replylen;
633 victim->cache_reply = rpc_buffer(xprt);
634 rpc_buffer(xprt) = newbuf;
635 xdrmem_create(&(su->su_xdrs), rpc_buffer(xprt),
636 su->su_iosz, XDR_ENCODE);
637 victim->cache_xid = su->su_xid;
638 victim->cache_proc = uc->uc_proc;
639 victim->cache_vers = uc->uc_vers;
640 victim->cache_prog = uc->uc_prog;
641 victim->cache_addr = xprt->xp_rtaddr;
642 victim->cache_addr.buf = ALLOC(char, xprt->xp_rtaddr.len);
643 (void) memcpy(victim->cache_addr.buf, xprt->xp_rtaddr.buf,
644 (size_t)xprt->xp_rtaddr.len);
645 loc = CACHE_LOC(xprt, victim->cache_xid);
646 victim->cache_next = uc->uc_entries[loc];
647 uc->uc_entries[loc] = victim;
648 uc->uc_fifo[uc->uc_nextvictim++] = victim;
649 uc->uc_nextvictim %= uc->uc_size;
650 mutex_unlock(&dupreq_lock);
651 }
652
653 /*
654 * Try to get an entry from the cache
655 * return 1 if found, 0 if not found and set the stage for cache_set()
656 */
657 static int
cache_get(SVCXPRT * xprt,struct rpc_msg * msg,char ** replyp,size_t * replylenp)658 cache_get(SVCXPRT *xprt, struct rpc_msg *msg, char **replyp, size_t *replylenp)
659 {
660 u_int loc;
661 cache_ptr ent;
662 struct svc_dg_data *su = su_data(xprt);
663 struct cl_cache *uc = (struct cl_cache *) su->su_cache;
664 #ifdef RPC_CACHE_DEBUG
665 struct netconfig *nconf;
666 char *uaddr;
667 #endif
668
669 mutex_lock(&dupreq_lock);
670 loc = CACHE_LOC(xprt, su->su_xid);
671 for (ent = uc->uc_entries[loc]; ent != NULL; ent = ent->cache_next) {
672 if (ent->cache_xid == su->su_xid &&
673 ent->cache_proc == msg->rm_call.cb_proc &&
674 ent->cache_vers == msg->rm_call.cb_vers &&
675 ent->cache_prog == msg->rm_call.cb_prog &&
676 ent->cache_addr.len == xprt->xp_rtaddr.len &&
677 (memcmp(ent->cache_addr.buf, xprt->xp_rtaddr.buf,
678 xprt->xp_rtaddr.len) == 0)) {
679 #ifdef RPC_CACHE_DEBUG
680 if (nconf = getnetconfigent(xprt->xp_netid)) {
681 uaddr = taddr2uaddr(nconf, &xprt->xp_rtaddr);
682 freenetconfigent(nconf);
683 printf(
684 "cache entry found for xid=%x prog=%d vers=%d proc=%d for rmtaddr=%s\n",
685 su->su_xid, msg->rm_call.cb_prog,
686 msg->rm_call.cb_vers,
687 msg->rm_call.cb_proc, uaddr);
688 free(uaddr);
689 }
690 #endif
691 *replyp = ent->cache_reply;
692 *replylenp = ent->cache_replylen;
693 mutex_unlock(&dupreq_lock);
694 return (1);
695 }
696 }
697 /*
698 * Failed to find entry
699 * Remember a few things so we can do a set later
700 */
701 uc->uc_proc = msg->rm_call.cb_proc;
702 uc->uc_vers = msg->rm_call.cb_vers;
703 uc->uc_prog = msg->rm_call.cb_prog;
704 mutex_unlock(&dupreq_lock);
705 return (0);
706 }
707