xref: /freebsd/lib/libc/rpc/svc_dg.c (revision 6990ffd8a95caaba6858ad44ff1b3157d1efba8f)
1 /*	$NetBSD: svc_dg.c,v 1.4 2000/07/06 03:10:35 christos Exp $	*/
2 /*	$FreeBSD$ */
3 
4 /*
5  * Sun RPC is a product of Sun Microsystems, Inc. and is provided for
6  * unrestricted use provided that this legend is included on all tape
7  * media and as a part of the software program in whole or part.  Users
8  * may copy or modify Sun RPC without charge, but are not authorized
9  * to license or distribute it to anyone else except as part of a product or
10  * program developed by the user.
11  *
12  * SUN RPC IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING THE
13  * WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR
14  * PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE.
15  *
16  * Sun RPC is provided with no support and without any obligation on the
17  * part of Sun Microsystems, Inc. to assist in its use, correction,
18  * modification or enhancement.
19  *
20  * SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE
21  * INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY SUN RPC
22  * OR ANY PART THEREOF.
23  *
24  * In no event will Sun Microsystems, Inc. be liable for any lost revenue
25  * or profits or other special, indirect and consequential damages, even if
26  * Sun has been advised of the possibility of such damages.
27  *
28  * Sun Microsystems, Inc.
29  * 2550 Garcia Avenue
30  * Mountain View, California  94043
31  */
32 
33 /*
34  * Copyright (c) 1986-1991 by Sun Microsystems Inc.
35  */
36 
37 /* #ident	"@(#)svc_dg.c	1.17	94/04/24 SMI" */
38 
39 
40 /*
41  * svc_dg.c, Server side for connectionless RPC.
42  *
43  * Does some caching in the hopes of achieving execute-at-most-once semantics.
44  */
45 
46 #include "namespace.h"
47 #include "reentrant.h"
48 #include <sys/types.h>
49 #include <sys/socket.h>
50 #include <rpc/rpc.h>
51 #include <rpc/svc_dg.h>
52 #include <errno.h>
53 #include <unistd.h>
54 #include <stdio.h>
55 #include <stdlib.h>
56 #include <string.h>
57 #ifdef RPC_CACHE_DEBUG
58 #include <netconfig.h>
59 #include <netdir.h>
60 #endif
61 #include <err.h>
62 #include "un-namespace.h"
63 
64 #include "rpc_com.h"
65 
66 #define	su_data(xprt)	((struct svc_dg_data *)(xprt->xp_p2))
67 #define	rpc_buffer(xprt) ((xprt)->xp_p1)
68 
69 #ifndef MAX
70 #define	MAX(a, b)	(((a) > (b)) ? (a) : (b))
71 #endif
72 
73 static void svc_dg_ops __P((SVCXPRT *));
74 static enum xprt_stat svc_dg_stat __P((SVCXPRT *));
75 static bool_t svc_dg_recv __P((SVCXPRT *, struct rpc_msg *));
76 static bool_t svc_dg_reply __P((SVCXPRT *, struct rpc_msg *));
77 static bool_t svc_dg_getargs __P((SVCXPRT *, xdrproc_t, caddr_t));
78 static bool_t svc_dg_freeargs __P((SVCXPRT *, xdrproc_t, caddr_t));
79 static void svc_dg_destroy __P((SVCXPRT *));
80 static bool_t svc_dg_control __P((SVCXPRT *, const u_int, void *));
81 static int cache_get __P((SVCXPRT *, struct rpc_msg *, char **, size_t *));
82 static void cache_set __P((SVCXPRT *, size_t));
83 int svc_dg_enablecache __P((SVCXPRT *, u_int));
84 
85 /*
86  * Usage:
87  *	xprt = svc_dg_create(sock, sendsize, recvsize);
88  * Does other connectionless specific initializations.
89  * Once *xprt is initialized, it is registered.
90  * see (svc.h, xprt_register). If recvsize or sendsize are 0 suitable
91  * system defaults are chosen.
92  * The routines returns NULL if a problem occurred.
93  */
94 static const char svc_dg_str[] = "svc_dg_create: %s";
95 static const char svc_dg_err1[] = "could not get transport information";
96 static const char svc_dg_err2[] = " transport does not support data transfer";
97 static const char __no_mem_str[] = "out of memory";
98 
99 SVCXPRT *
100 svc_dg_create(fd, sendsize, recvsize)
101 	int fd;
102 	u_int sendsize;
103 	u_int recvsize;
104 {
105 	SVCXPRT *xprt;
106 	struct svc_dg_data *su = NULL;
107 	struct __rpc_sockinfo si;
108 	struct sockaddr_storage ss;
109 	socklen_t slen;
110 
111 	if (!__rpc_fd2sockinfo(fd, &si)) {
112 		warnx(svc_dg_str, svc_dg_err1);
113 		return (NULL);
114 	}
115 	/*
116 	 * Find the receive and the send size
117 	 */
118 	sendsize = __rpc_get_t_size(si.si_af, si.si_proto, (int)sendsize);
119 	recvsize = __rpc_get_t_size(si.si_af, si.si_proto, (int)recvsize);
120 	if ((sendsize == 0) || (recvsize == 0)) {
121 		warnx(svc_dg_str, svc_dg_err2);
122 		return (NULL);
123 	}
124 
125 	xprt = mem_alloc(sizeof (SVCXPRT));
126 	if (xprt == NULL)
127 		goto freedata;
128 	memset(xprt, 0, sizeof (SVCXPRT));
129 
130 	su = mem_alloc(sizeof (*su));
131 	if (su == NULL)
132 		goto freedata;
133 	su->su_iosz = ((MAX(sendsize, recvsize) + 3) / 4) * 4;
134 	if ((rpc_buffer(xprt) = mem_alloc(su->su_iosz)) == NULL)
135 		goto freedata;
136 	xdrmem_create(&(su->su_xdrs), rpc_buffer(xprt), su->su_iosz,
137 		XDR_DECODE);
138 	su->su_cache = NULL;
139 	xprt->xp_fd = fd;
140 	xprt->xp_p2 = (caddr_t)(void *)su;
141 	xprt->xp_verf.oa_base = su->su_verfbody;
142 	svc_dg_ops(xprt);
143 	xprt->xp_rtaddr.maxlen = sizeof (struct sockaddr_storage);
144 
145 	slen = sizeof ss;
146 	if (_getsockname(fd, (struct sockaddr *)(void *)&ss, &slen) < 0)
147 		goto freedata;
148 	xprt->xp_ltaddr.buf = mem_alloc(sizeof (struct sockaddr_storage));
149 	xprt->xp_ltaddr.maxlen = sizeof (struct sockaddr_storage);
150 	xprt->xp_ltaddr.len = slen;
151 	memcpy(xprt->xp_ltaddr.buf, &ss, slen);
152 
153 	xprt_register(xprt);
154 	return (xprt);
155 freedata:
156 	(void) warnx(svc_dg_str, __no_mem_str);
157 	if (xprt) {
158 		if (su)
159 			(void) mem_free(su, sizeof (*su));
160 		(void) mem_free(xprt, sizeof (SVCXPRT));
161 	}
162 	return (NULL);
163 }
164 
165 /*ARGSUSED*/
166 static enum xprt_stat
167 svc_dg_stat(xprt)
168 	SVCXPRT *xprt;
169 {
170 	return (XPRT_IDLE);
171 }
172 
173 static bool_t
174 svc_dg_recv(xprt, msg)
175 	SVCXPRT *xprt;
176 	struct rpc_msg *msg;
177 {
178 	struct svc_dg_data *su = su_data(xprt);
179 	XDR *xdrs = &(su->su_xdrs);
180 	char *reply;
181 	struct sockaddr_storage ss;
182 	socklen_t alen;
183 	size_t replylen;
184 	int rlen;
185 
186 again:
187 	alen = sizeof (struct sockaddr_storage);
188 	rlen = _recvfrom(xprt->xp_fd, rpc_buffer(xprt), su->su_iosz, 0,
189 	    (struct sockaddr *)(void *)&ss, &alen);
190 	if (rlen == -1 && errno == EINTR)
191 		goto again;
192 	if (rlen == -1 || (rlen < 4 * sizeof (u_int32_t)))
193 		return (FALSE);
194 	if (xprt->xp_rtaddr.len < alen) {
195 		if (xprt->xp_rtaddr.len != 0)
196 			mem_free(xprt->xp_rtaddr.buf, xprt->xp_rtaddr.len);
197 		xprt->xp_rtaddr.buf = mem_alloc(alen);
198 		xprt->xp_rtaddr.len = alen;
199 	}
200 	memcpy(xprt->xp_rtaddr.buf, &ss, alen);
201 #ifdef PORTMAP
202 	if (ss.ss_family == AF_INET) {
203 		xprt->xp_raddr = *(struct sockaddr_in *)xprt->xp_rtaddr.buf;
204 		xprt->xp_addrlen = sizeof (struct sockaddr_in);
205 	}
206 #endif				/* PORTMAP */
207 	xdrs->x_op = XDR_DECODE;
208 	XDR_SETPOS(xdrs, 0);
209 	if (! xdr_callmsg(xdrs, msg)) {
210 		return (FALSE);
211 	}
212 	su->su_xid = msg->rm_xid;
213 	if (su->su_cache != NULL) {
214 		if (cache_get(xprt, msg, &reply, &replylen)) {
215 			(void)_sendto(xprt->xp_fd, reply, replylen, 0,
216 			    (struct sockaddr *)(void *)&ss, alen);
217 			return (FALSE);
218 		}
219 	}
220 	return (TRUE);
221 }
222 
223 static bool_t
224 svc_dg_reply(xprt, msg)
225 	SVCXPRT *xprt;
226 	struct rpc_msg *msg;
227 {
228 	struct svc_dg_data *su = su_data(xprt);
229 	XDR *xdrs = &(su->su_xdrs);
230 	bool_t stat = FALSE;
231 	size_t slen;
232 
233 	xdrs->x_op = XDR_ENCODE;
234 	XDR_SETPOS(xdrs, 0);
235 	msg->rm_xid = su->su_xid;
236 	if (xdr_replymsg(xdrs, msg)) {
237 		slen = XDR_GETPOS(xdrs);
238 		if (_sendto(xprt->xp_fd, rpc_buffer(xprt), slen, 0,
239 		    (struct sockaddr *)xprt->xp_rtaddr.buf,
240 		    (socklen_t)xprt->xp_rtaddr.len) == slen) {
241 			stat = TRUE;
242 			if (su->su_cache)
243 				cache_set(xprt, slen);
244 		}
245 	}
246 	return (stat);
247 }
248 
249 static bool_t
250 svc_dg_getargs(xprt, xdr_args, args_ptr)
251 	SVCXPRT *xprt;
252 	xdrproc_t xdr_args;
253 	caddr_t args_ptr;
254 {
255 	return (*xdr_args)(&(su_data(xprt)->su_xdrs), args_ptr);
256 }
257 
258 static bool_t
259 svc_dg_freeargs(xprt, xdr_args, args_ptr)
260 	SVCXPRT *xprt;
261 	xdrproc_t xdr_args;
262 	caddr_t args_ptr;
263 {
264 	XDR *xdrs = &(su_data(xprt)->su_xdrs);
265 
266 	xdrs->x_op = XDR_FREE;
267 	return (*xdr_args)(xdrs, args_ptr);
268 }
269 
270 static void
271 svc_dg_destroy(xprt)
272 	SVCXPRT *xprt;
273 {
274 	struct svc_dg_data *su = su_data(xprt);
275 
276 	xprt_unregister(xprt);
277 	if (xprt->xp_fd != -1)
278 		(void)_close(xprt->xp_fd);
279 	XDR_DESTROY(&(su->su_xdrs));
280 	(void) mem_free(rpc_buffer(xprt), su->su_iosz);
281 	(void) mem_free(su, sizeof (*su));
282 	if (xprt->xp_rtaddr.buf)
283 		(void) mem_free(xprt->xp_rtaddr.buf, xprt->xp_rtaddr.maxlen);
284 	if (xprt->xp_ltaddr.buf)
285 		(void) mem_free(xprt->xp_ltaddr.buf, xprt->xp_ltaddr.maxlen);
286 	if (xprt->xp_tp)
287 		(void) free(xprt->xp_tp);
288 	(void) mem_free(xprt, sizeof (SVCXPRT));
289 }
290 
291 static bool_t
292 /*ARGSUSED*/
293 svc_dg_control(xprt, rq, in)
294 	SVCXPRT *xprt;
295 	const u_int	rq;
296 	void		*in;
297 {
298 	return (FALSE);
299 }
300 
301 static void
302 svc_dg_ops(xprt)
303 	SVCXPRT *xprt;
304 {
305 	static struct xp_ops ops;
306 	static struct xp_ops2 ops2;
307 	extern mutex_t ops_lock;
308 
309 /* VARIABLES PROTECTED BY ops_lock: ops */
310 
311 	mutex_lock(&ops_lock);
312 	if (ops.xp_recv == NULL) {
313 		ops.xp_recv = svc_dg_recv;
314 		ops.xp_stat = svc_dg_stat;
315 		ops.xp_getargs = svc_dg_getargs;
316 		ops.xp_reply = svc_dg_reply;
317 		ops.xp_freeargs = svc_dg_freeargs;
318 		ops.xp_destroy = svc_dg_destroy;
319 		ops2.xp_control = svc_dg_control;
320 	}
321 	xprt->xp_ops = &ops;
322 	xprt->xp_ops2 = &ops2;
323 	mutex_unlock(&ops_lock);
324 }
325 
326 /*  The CACHING COMPONENT */
327 
328 /*
329  * Could have been a separate file, but some part of it depends upon the
330  * private structure of the client handle.
331  *
332  * Fifo cache for cl server
333  * Copies pointers to reply buffers into fifo cache
334  * Buffers are sent again if retransmissions are detected.
335  */
336 
337 #define	SPARSENESS 4	/* 75% sparse */
338 
339 #define	ALLOC(type, size)	\
340 	(type *) mem_alloc((sizeof (type) * (size)))
341 
342 #define	MEMZERO(addr, type, size)	 \
343 	(void) memset((void *) (addr), 0, sizeof (type) * (int) (size))
344 
345 #define	FREE(addr, type, size)	\
346 	mem_free((addr), (sizeof (type) * (size)))
347 
348 /*
349  * An entry in the cache
350  */
351 typedef struct cache_node *cache_ptr;
352 struct cache_node {
353 	/*
354 	 * Index into cache is xid, proc, vers, prog and address
355 	 */
356 	u_int32_t cache_xid;
357 	rpcproc_t cache_proc;
358 	rpcvers_t cache_vers;
359 	rpcprog_t cache_prog;
360 	struct netbuf cache_addr;
361 	/*
362 	 * The cached reply and length
363 	 */
364 	char *cache_reply;
365 	size_t cache_replylen;
366 	/*
367 	 * Next node on the list, if there is a collision
368 	 */
369 	cache_ptr cache_next;
370 };
371 
372 /*
373  * The entire cache
374  */
375 struct cl_cache {
376 	u_int uc_size;		/* size of cache */
377 	cache_ptr *uc_entries;	/* hash table of entries in cache */
378 	cache_ptr *uc_fifo;	/* fifo list of entries in cache */
379 	u_int uc_nextvictim;	/* points to next victim in fifo list */
380 	rpcprog_t uc_prog;	/* saved program number */
381 	rpcvers_t uc_vers;	/* saved version number */
382 	rpcproc_t uc_proc;	/* saved procedure number */
383 };
384 
385 
386 /*
387  * the hashing function
388  */
389 #define	CACHE_LOC(transp, xid)	\
390 	(xid % (SPARSENESS * ((struct cl_cache *) \
391 		su_data(transp)->su_cache)->uc_size))
392 
393 extern mutex_t	dupreq_lock;
394 
395 /*
396  * Enable use of the cache. Returns 1 on success, 0 on failure.
397  * Note: there is no disable.
398  */
399 static const char cache_enable_str[] = "svc_enablecache: %s %s";
400 static const char alloc_err[] = "could not allocate cache ";
401 static const char enable_err[] = "cache already enabled";
402 
403 int
404 svc_dg_enablecache(transp, size)
405 	SVCXPRT *transp;
406 	u_int size;
407 {
408 	struct svc_dg_data *su = su_data(transp);
409 	struct cl_cache *uc;
410 
411 	mutex_lock(&dupreq_lock);
412 	if (su->su_cache != NULL) {
413 		(void) warnx(cache_enable_str, enable_err, " ");
414 		mutex_unlock(&dupreq_lock);
415 		return (0);
416 	}
417 	uc = ALLOC(struct cl_cache, 1);
418 	if (uc == NULL) {
419 		warnx(cache_enable_str, alloc_err, " ");
420 		mutex_unlock(&dupreq_lock);
421 		return (0);
422 	}
423 	uc->uc_size = size;
424 	uc->uc_nextvictim = 0;
425 	uc->uc_entries = ALLOC(cache_ptr, size * SPARSENESS);
426 	if (uc->uc_entries == NULL) {
427 		warnx(cache_enable_str, alloc_err, "data");
428 		FREE(uc, struct cl_cache, 1);
429 		mutex_unlock(&dupreq_lock);
430 		return (0);
431 	}
432 	MEMZERO(uc->uc_entries, cache_ptr, size * SPARSENESS);
433 	uc->uc_fifo = ALLOC(cache_ptr, size);
434 	if (uc->uc_fifo == NULL) {
435 		warnx(cache_enable_str, alloc_err, "fifo");
436 		FREE(uc->uc_entries, cache_ptr, size * SPARSENESS);
437 		FREE(uc, struct cl_cache, 1);
438 		mutex_unlock(&dupreq_lock);
439 		return (0);
440 	}
441 	MEMZERO(uc->uc_fifo, cache_ptr, size);
442 	su->su_cache = (char *)(void *)uc;
443 	mutex_unlock(&dupreq_lock);
444 	return (1);
445 }
446 
447 /*
448  * Set an entry in the cache.  It assumes that the uc entry is set from
449  * the earlier call to cache_get() for the same procedure.  This will always
450  * happen because cache_get() is calle by svc_dg_recv and cache_set() is called
451  * by svc_dg_reply().  All this hoopla because the right RPC parameters are
452  * not available at svc_dg_reply time.
453  */
454 
455 static const char cache_set_str[] = "cache_set: %s";
456 static const char cache_set_err1[] = "victim not found";
457 static const char cache_set_err2[] = "victim alloc failed";
458 static const char cache_set_err3[] = "could not allocate new rpc buffer";
459 
460 static void
461 cache_set(xprt, replylen)
462 	SVCXPRT *xprt;
463 	size_t replylen;
464 {
465 	cache_ptr victim;
466 	cache_ptr *vicp;
467 	struct svc_dg_data *su = su_data(xprt);
468 	struct cl_cache *uc = (struct cl_cache *) su->su_cache;
469 	u_int loc;
470 	char *newbuf;
471 #ifdef RPC_CACHE_DEBUG
472 	struct netconfig *nconf;
473 	char *uaddr;
474 #endif
475 
476 	mutex_lock(&dupreq_lock);
477 	/*
478 	 * Find space for the new entry, either by
479 	 * reusing an old entry, or by mallocing a new one
480 	 */
481 	victim = uc->uc_fifo[uc->uc_nextvictim];
482 	if (victim != NULL) {
483 		loc = CACHE_LOC(xprt, victim->cache_xid);
484 		for (vicp = &uc->uc_entries[loc];
485 			*vicp != NULL && *vicp != victim;
486 			vicp = &(*vicp)->cache_next)
487 			;
488 		if (*vicp == NULL) {
489 			warnx(cache_set_str, cache_set_err1);
490 			mutex_unlock(&dupreq_lock);
491 			return;
492 		}
493 		*vicp = victim->cache_next;	/* remove from cache */
494 		newbuf = victim->cache_reply;
495 	} else {
496 		victim = ALLOC(struct cache_node, 1);
497 		if (victim == NULL) {
498 			warnx(cache_set_str, cache_set_err2);
499 			mutex_unlock(&dupreq_lock);
500 			return;
501 		}
502 		newbuf = mem_alloc(su->su_iosz);
503 		if (newbuf == NULL) {
504 			warnx(cache_set_str, cache_set_err3);
505 			FREE(victim, struct cache_node, 1);
506 			mutex_unlock(&dupreq_lock);
507 			return;
508 		}
509 	}
510 
511 	/*
512 	 * Store it away
513 	 */
514 #ifdef RPC_CACHE_DEBUG
515 	if (nconf = getnetconfigent(xprt->xp_netid)) {
516 		uaddr = taddr2uaddr(nconf, &xprt->xp_rtaddr);
517 		freenetconfigent(nconf);
518 		printf(
519 	"cache set for xid= %x prog=%d vers=%d proc=%d for rmtaddr=%s\n",
520 			su->su_xid, uc->uc_prog, uc->uc_vers,
521 			uc->uc_proc, uaddr);
522 		free(uaddr);
523 	}
524 #endif
525 	victim->cache_replylen = replylen;
526 	victim->cache_reply = rpc_buffer(xprt);
527 	rpc_buffer(xprt) = newbuf;
528 	xdrmem_create(&(su->su_xdrs), rpc_buffer(xprt),
529 			su->su_iosz, XDR_ENCODE);
530 	victim->cache_xid = su->su_xid;
531 	victim->cache_proc = uc->uc_proc;
532 	victim->cache_vers = uc->uc_vers;
533 	victim->cache_prog = uc->uc_prog;
534 	victim->cache_addr = xprt->xp_rtaddr;
535 	victim->cache_addr.buf = ALLOC(char, xprt->xp_rtaddr.len);
536 	(void) memcpy(victim->cache_addr.buf, xprt->xp_rtaddr.buf,
537 	    (size_t)xprt->xp_rtaddr.len);
538 	loc = CACHE_LOC(xprt, victim->cache_xid);
539 	victim->cache_next = uc->uc_entries[loc];
540 	uc->uc_entries[loc] = victim;
541 	uc->uc_fifo[uc->uc_nextvictim++] = victim;
542 	uc->uc_nextvictim %= uc->uc_size;
543 	mutex_unlock(&dupreq_lock);
544 }
545 
546 /*
547  * Try to get an entry from the cache
548  * return 1 if found, 0 if not found and set the stage for cache_set()
549  */
550 static int
551 cache_get(xprt, msg, replyp, replylenp)
552 	SVCXPRT *xprt;
553 	struct rpc_msg *msg;
554 	char **replyp;
555 	size_t *replylenp;
556 {
557 	u_int loc;
558 	cache_ptr ent;
559 	struct svc_dg_data *su = su_data(xprt);
560 	struct cl_cache *uc = (struct cl_cache *) su->su_cache;
561 #ifdef RPC_CACHE_DEBUG
562 	struct netconfig *nconf;
563 	char *uaddr;
564 #endif
565 
566 	mutex_lock(&dupreq_lock);
567 	loc = CACHE_LOC(xprt, su->su_xid);
568 	for (ent = uc->uc_entries[loc]; ent != NULL; ent = ent->cache_next) {
569 		if (ent->cache_xid == su->su_xid &&
570 			ent->cache_proc == msg->rm_call.cb_proc &&
571 			ent->cache_vers == msg->rm_call.cb_vers &&
572 			ent->cache_prog == msg->rm_call.cb_prog &&
573 			ent->cache_addr.len == xprt->xp_rtaddr.len &&
574 			(memcmp(ent->cache_addr.buf, xprt->xp_rtaddr.buf,
575 				xprt->xp_rtaddr.len) == 0)) {
576 #ifdef RPC_CACHE_DEBUG
577 			if (nconf = getnetconfigent(xprt->xp_netid)) {
578 				uaddr = taddr2uaddr(nconf, &xprt->xp_rtaddr);
579 				freenetconfigent(nconf);
580 				printf(
581 	"cache entry found for xid=%x prog=%d vers=%d proc=%d for rmtaddr=%s\n",
582 					su->su_xid, msg->rm_call.cb_prog,
583 					msg->rm_call.cb_vers,
584 					msg->rm_call.cb_proc, uaddr);
585 				free(uaddr);
586 			}
587 #endif
588 			*replyp = ent->cache_reply;
589 			*replylenp = ent->cache_replylen;
590 			mutex_unlock(&dupreq_lock);
591 			return (1);
592 		}
593 	}
594 	/*
595 	 * Failed to find entry
596 	 * Remember a few things so we can do a set later
597 	 */
598 	uc->uc_proc = msg->rm_call.cb_proc;
599 	uc->uc_vers = msg->rm_call.cb_vers;
600 	uc->uc_prog = msg->rm_call.cb_prog;
601 	mutex_unlock(&dupreq_lock);
602 	return (0);
603 }
604