1 /* $NetBSD: svc_dg.c,v 1.4 2000/07/06 03:10:35 christos Exp $ */ 2 3 /*- 4 * SPDX-License-Identifier: BSD-3-Clause 5 * 6 * Copyright (c) 2009, Sun Microsystems, Inc. 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions are met: 11 * - Redistributions of source code must retain the above copyright notice, 12 * this list of conditions and the following disclaimer. 13 * - Redistributions in binary form must reproduce the above copyright notice, 14 * this list of conditions and the following disclaimer in the documentation 15 * and/or other materials provided with the distribution. 16 * - Neither the name of Sun Microsystems, Inc. nor the names of its 17 * contributors may be used to endorse or promote products derived 18 * from this software without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 21 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE 24 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 30 * POSSIBILITY OF SUCH DAMAGE. 31 */ 32 33 /* 34 * Copyright (c) 1986-1991 by Sun Microsystems Inc. 35 */ 36 37 #if defined(LIBC_SCCS) && !defined(lint) 38 #endif 39 /* 40 * svc_dg.c, Server side for connectionless RPC. 41 * 42 * Does some caching in the hopes of achieving execute-at-most-once semantics. 43 */ 44 45 #include "namespace.h" 46 #include "reentrant.h" 47 #include <sys/types.h> 48 #include <sys/socket.h> 49 #include <rpc/rpc.h> 50 #include <rpc/svc_dg.h> 51 #include <assert.h> 52 #include <errno.h> 53 #include <unistd.h> 54 #include <stdio.h> 55 #include <stdlib.h> 56 #include <string.h> 57 #ifdef RPC_CACHE_DEBUG 58 #include <netconfig.h> 59 #include <netdir.h> 60 #endif 61 #include <err.h> 62 #include "un-namespace.h" 63 64 #include "rpc_com.h" 65 #include "mt_misc.h" 66 67 #define su_data(xprt) ((struct svc_dg_data *)((xprt)->xp_p2)) 68 #define rpc_buffer(xprt) ((xprt)->xp_p1) 69 70 #ifndef MAX 71 #define MAX(a, b) (((a) > (b)) ? (a) : (b)) 72 #endif 73 74 static void svc_dg_ops(SVCXPRT *); 75 static enum xprt_stat svc_dg_stat(SVCXPRT *); 76 static bool_t svc_dg_recv(SVCXPRT *, struct rpc_msg *); 77 static bool_t svc_dg_reply(SVCXPRT *, struct rpc_msg *); 78 static bool_t svc_dg_getargs(SVCXPRT *, xdrproc_t, void *); 79 static bool_t svc_dg_freeargs(SVCXPRT *, xdrproc_t, void *); 80 static void svc_dg_destroy(SVCXPRT *); 81 static bool_t svc_dg_control(SVCXPRT *, const u_int, void *); 82 static int cache_get(SVCXPRT *, struct rpc_msg *, char **, size_t *); 83 static void cache_set(SVCXPRT *, size_t); 84 int svc_dg_enablecache(SVCXPRT *, u_int); 85 86 /* 87 * Usage: 88 * xprt = svc_dg_create(sock, sendsize, recvsize); 89 * Does other connectionless specific initializations. 90 * Once *xprt is initialized, it is registered. 91 * see (svc.h, xprt_register). If recvsize or sendsize are 0 suitable 92 * system defaults are chosen. 93 * The routines returns NULL if a problem occurred. 94 */ 95 static const char svc_dg_str[] = "svc_dg_create: %s"; 96 static const char svc_dg_err1[] = "could not get transport information"; 97 static const char svc_dg_err2[] = "transport does not support data transfer"; 98 static const char svc_dg_err3[] = "getsockname failed"; 99 static const char svc_dg_err4[] = "cannot set IP_RECVDSTADDR"; 100 static const char __no_mem_str[] = "out of memory"; 101 102 SVCXPRT * 103 svc_dg_create(int fd, u_int sendsize, u_int recvsize) 104 { 105 SVCXPRT *xprt; 106 struct svc_dg_data *su = NULL; 107 struct __rpc_sockinfo si; 108 struct sockaddr_storage ss; 109 socklen_t slen; 110 111 if (!__rpc_fd2sockinfo(fd, &si)) { 112 warnx(svc_dg_str, svc_dg_err1); 113 return (NULL); 114 } 115 /* 116 * Find the receive and the send size 117 */ 118 sendsize = __rpc_get_t_size(si.si_af, si.si_proto, (int)sendsize); 119 recvsize = __rpc_get_t_size(si.si_af, si.si_proto, (int)recvsize); 120 if ((sendsize == 0) || (recvsize == 0)) { 121 warnx(svc_dg_str, svc_dg_err2); 122 return (NULL); 123 } 124 125 xprt = svc_xprt_alloc(); 126 if (xprt == NULL) 127 goto freedata; 128 129 su = mem_alloc(sizeof (*su)); 130 if (su == NULL) 131 goto freedata; 132 su->su_iosz = ((MAX(sendsize, recvsize) + 3) / 4) * 4; 133 if ((rpc_buffer(xprt) = mem_alloc(su->su_iosz)) == NULL) 134 goto freedata; 135 xdrmem_create(&(su->su_xdrs), rpc_buffer(xprt), su->su_iosz, 136 XDR_DECODE); 137 su->su_cache = NULL; 138 xprt->xp_fd = fd; 139 xprt->xp_p2 = su; 140 xprt->xp_verf.oa_base = su->su_verfbody; 141 svc_dg_ops(xprt); 142 xprt->xp_rtaddr.maxlen = sizeof (struct sockaddr_storage); 143 144 slen = sizeof ss; 145 if (_getsockname(fd, (struct sockaddr *)(void *)&ss, &slen) < 0) { 146 warnx(svc_dg_str, svc_dg_err3); 147 goto freedata_nowarn; 148 } 149 xprt->xp_ltaddr.buf = mem_alloc(sizeof (struct sockaddr_storage)); 150 xprt->xp_ltaddr.maxlen = sizeof (struct sockaddr_storage); 151 xprt->xp_ltaddr.len = slen; 152 memcpy(xprt->xp_ltaddr.buf, &ss, slen); 153 154 if (ss.ss_family == AF_INET) { 155 struct sockaddr_in *sin; 156 static const int true_value = 1; 157 158 sin = (struct sockaddr_in *)(void *)&ss; 159 if (sin->sin_addr.s_addr == INADDR_ANY) { 160 su->su_srcaddr.buf = mem_alloc(sizeof (ss)); 161 su->su_srcaddr.maxlen = sizeof (ss); 162 163 if (_setsockopt(fd, IPPROTO_IP, IP_RECVDSTADDR, 164 &true_value, sizeof(true_value))) { 165 warnx(svc_dg_str, svc_dg_err4); 166 goto freedata_nowarn; 167 } 168 } 169 } 170 171 xprt_register(xprt); 172 return (xprt); 173 freedata: 174 (void) warnx(svc_dg_str, __no_mem_str); 175 freedata_nowarn: 176 if (xprt) { 177 if (su) 178 (void) mem_free(su, sizeof (*su)); 179 svc_xprt_free(xprt); 180 } 181 return (NULL); 182 } 183 184 /*ARGSUSED*/ 185 static enum xprt_stat 186 svc_dg_stat(SVCXPRT *xprt) 187 { 188 return (XPRT_IDLE); 189 } 190 191 static int 192 svc_dg_recvfrom(int fd, char *buf, int buflen, 193 struct sockaddr *raddr, socklen_t *raddrlen, 194 struct sockaddr *laddr, socklen_t *laddrlen) 195 { 196 struct msghdr msg; 197 struct iovec msg_iov[1]; 198 struct sockaddr_in *lin = (struct sockaddr_in *)laddr; 199 int rlen; 200 bool_t have_lin = FALSE; 201 char tmp[CMSG_LEN(sizeof(*lin))]; 202 struct cmsghdr *cmsg; 203 204 memset((char *)&msg, 0, sizeof(msg)); 205 msg_iov[0].iov_base = buf; 206 msg_iov[0].iov_len = buflen; 207 msg.msg_iov = msg_iov; 208 msg.msg_iovlen = 1; 209 msg.msg_namelen = *raddrlen; 210 msg.msg_name = (char *)raddr; 211 if (laddr != NULL) { 212 msg.msg_control = (caddr_t)tmp; 213 msg.msg_controllen = CMSG_LEN(sizeof(*lin)); 214 } 215 rlen = _recvmsg(fd, &msg, 0); 216 if (rlen >= 0) 217 *raddrlen = msg.msg_namelen; 218 219 if (rlen == -1 || laddr == NULL || 220 msg.msg_controllen < sizeof(struct cmsghdr) || 221 msg.msg_flags & MSG_CTRUNC) 222 return rlen; 223 224 for (cmsg = CMSG_FIRSTHDR(&msg); cmsg != NULL; 225 cmsg = CMSG_NXTHDR(&msg, cmsg)) { 226 if (cmsg->cmsg_level == IPPROTO_IP && 227 cmsg->cmsg_type == IP_RECVDSTADDR) { 228 have_lin = TRUE; 229 memcpy(&lin->sin_addr, 230 (struct in_addr *)CMSG_DATA(cmsg), 231 sizeof(struct in_addr)); 232 break; 233 } 234 } 235 236 lin->sin_family = AF_INET; 237 lin->sin_port = 0; 238 *laddrlen = sizeof(struct sockaddr_in); 239 240 if (!have_lin) 241 lin->sin_addr.s_addr = INADDR_ANY; 242 243 return rlen; 244 } 245 246 static bool_t 247 svc_dg_recv(SVCXPRT *xprt, struct rpc_msg *msg) 248 { 249 struct svc_dg_data *su = su_data(xprt); 250 XDR *xdrs = &(su->su_xdrs); 251 char *reply; 252 struct sockaddr_storage ss; 253 socklen_t alen; 254 size_t replylen; 255 ssize_t rlen; 256 257 again: 258 alen = sizeof (struct sockaddr_storage); 259 rlen = svc_dg_recvfrom(xprt->xp_fd, rpc_buffer(xprt), su->su_iosz, 260 (struct sockaddr *)(void *)&ss, &alen, 261 (struct sockaddr *)su->su_srcaddr.buf, &su->su_srcaddr.len); 262 if (rlen == -1 && errno == EINTR) 263 goto again; 264 if (rlen == -1 || (rlen < (ssize_t)(4 * sizeof (u_int32_t)))) 265 return (FALSE); 266 if (xprt->xp_rtaddr.len < alen) { 267 if (xprt->xp_rtaddr.len != 0) 268 mem_free(xprt->xp_rtaddr.buf, xprt->xp_rtaddr.len); 269 xprt->xp_rtaddr.buf = mem_alloc(alen); 270 xprt->xp_rtaddr.len = alen; 271 } 272 memcpy(xprt->xp_rtaddr.buf, &ss, alen); 273 #ifdef PORTMAP 274 if (ss.ss_family == AF_INET) { 275 xprt->xp_raddr = *(struct sockaddr_in *)xprt->xp_rtaddr.buf; 276 xprt->xp_addrlen = sizeof (struct sockaddr_in); 277 } 278 #endif /* PORTMAP */ 279 xdrs->x_op = XDR_DECODE; 280 XDR_SETPOS(xdrs, 0); 281 if (! xdr_callmsg(xdrs, msg)) { 282 return (FALSE); 283 } 284 su->su_xid = msg->rm_xid; 285 if (su->su_cache != NULL) { 286 if (cache_get(xprt, msg, &reply, &replylen)) { 287 (void)_sendto(xprt->xp_fd, reply, replylen, 0, 288 (struct sockaddr *)(void *)&ss, alen); 289 return (FALSE); 290 } 291 } 292 return (TRUE); 293 } 294 295 static int 296 svc_dg_sendto(int fd, char *buf, int buflen, 297 const struct sockaddr *raddr, socklen_t raddrlen, 298 const struct sockaddr *laddr, socklen_t laddrlen) 299 { 300 struct msghdr msg; 301 struct iovec msg_iov[1]; 302 struct sockaddr_in *laddr_in = (struct sockaddr_in *)laddr; 303 struct in_addr *lin = &laddr_in->sin_addr; 304 char tmp[CMSG_SPACE(sizeof(*lin))]; 305 struct cmsghdr *cmsg; 306 307 memset((char *)&msg, 0, sizeof(msg)); 308 msg_iov[0].iov_base = buf; 309 msg_iov[0].iov_len = buflen; 310 msg.msg_iov = msg_iov; 311 msg.msg_iovlen = 1; 312 msg.msg_namelen = raddrlen; 313 msg.msg_name = (char *)raddr; 314 315 if (laddr != NULL && laddr->sa_family == AF_INET && 316 lin->s_addr != INADDR_ANY) { 317 msg.msg_control = (caddr_t)tmp; 318 msg.msg_controllen = CMSG_LEN(sizeof(*lin)); 319 cmsg = CMSG_FIRSTHDR(&msg); 320 cmsg->cmsg_len = CMSG_LEN(sizeof(*lin)); 321 cmsg->cmsg_level = IPPROTO_IP; 322 cmsg->cmsg_type = IP_SENDSRCADDR; 323 memcpy(CMSG_DATA(cmsg), lin, sizeof(*lin)); 324 } 325 326 return _sendmsg(fd, &msg, 0); 327 } 328 329 static bool_t 330 svc_dg_reply(SVCXPRT *xprt, struct rpc_msg *msg) 331 { 332 struct svc_dg_data *su = su_data(xprt); 333 XDR *xdrs = &(su->su_xdrs); 334 bool_t stat = TRUE; 335 size_t slen; 336 xdrproc_t xdr_proc; 337 caddr_t xdr_where; 338 339 xdrs->x_op = XDR_ENCODE; 340 XDR_SETPOS(xdrs, 0); 341 msg->rm_xid = su->su_xid; 342 if (msg->rm_reply.rp_stat == MSG_ACCEPTED && 343 msg->rm_reply.rp_acpt.ar_stat == SUCCESS) { 344 xdr_proc = msg->acpted_rply.ar_results.proc; 345 xdr_where = msg->acpted_rply.ar_results.where; 346 msg->acpted_rply.ar_results.proc = (xdrproc_t) xdr_void; 347 msg->acpted_rply.ar_results.where = NULL; 348 349 if (!xdr_replymsg(xdrs, msg) || 350 !SVCAUTH_WRAP(&SVC_AUTH(xprt), xdrs, xdr_proc, xdr_where)) 351 stat = FALSE; 352 } else { 353 stat = xdr_replymsg(xdrs, msg); 354 } 355 if (stat) { 356 slen = XDR_GETPOS(xdrs); 357 if (svc_dg_sendto(xprt->xp_fd, rpc_buffer(xprt), slen, 358 (struct sockaddr *)xprt->xp_rtaddr.buf, 359 (socklen_t)xprt->xp_rtaddr.len, 360 (struct sockaddr *)su->su_srcaddr.buf, 361 (socklen_t)su->su_srcaddr.len) == (ssize_t) slen) { 362 stat = TRUE; 363 if (su->su_cache) 364 cache_set(xprt, slen); 365 } 366 } 367 return (stat); 368 } 369 370 static bool_t 371 svc_dg_getargs(SVCXPRT *xprt, xdrproc_t xdr_args, void *args_ptr) 372 { 373 struct svc_dg_data *su; 374 375 assert(xprt != NULL); 376 su = su_data(xprt); 377 return (SVCAUTH_UNWRAP(&SVC_AUTH(xprt), 378 &su->su_xdrs, xdr_args, args_ptr)); 379 } 380 381 static bool_t 382 svc_dg_freeargs(SVCXPRT *xprt, xdrproc_t xdr_args, void *args_ptr) 383 { 384 XDR *xdrs = &(su_data(xprt)->su_xdrs); 385 386 xdrs->x_op = XDR_FREE; 387 return (*xdr_args)(xdrs, args_ptr); 388 } 389 390 static void 391 svc_dg_destroy(SVCXPRT *xprt) 392 { 393 struct svc_dg_data *su = su_data(xprt); 394 395 xprt_unregister(xprt); 396 if (xprt->xp_fd != -1) 397 (void)_close(xprt->xp_fd); 398 XDR_DESTROY(&(su->su_xdrs)); 399 (void) mem_free(rpc_buffer(xprt), su->su_iosz); 400 if (su->su_srcaddr.buf) 401 (void) mem_free(su->su_srcaddr.buf, su->su_srcaddr.maxlen); 402 (void) mem_free(su, sizeof (*su)); 403 if (xprt->xp_rtaddr.buf) 404 (void) mem_free(xprt->xp_rtaddr.buf, xprt->xp_rtaddr.maxlen); 405 if (xprt->xp_ltaddr.buf) 406 (void) mem_free(xprt->xp_ltaddr.buf, xprt->xp_ltaddr.maxlen); 407 free(xprt->xp_tp); 408 svc_xprt_free(xprt); 409 } 410 411 static bool_t 412 /*ARGSUSED*/ 413 svc_dg_control(SVCXPRT *xprt, const u_int rq, void *in) 414 { 415 return (FALSE); 416 } 417 418 static void 419 svc_dg_ops(SVCXPRT *xprt) 420 { 421 static struct xp_ops ops; 422 static struct xp_ops2 ops2; 423 424 /* VARIABLES PROTECTED BY ops_lock: ops */ 425 426 mutex_lock(&ops_lock); 427 if (ops.xp_recv == NULL) { 428 ops.xp_recv = svc_dg_recv; 429 ops.xp_stat = svc_dg_stat; 430 ops.xp_getargs = svc_dg_getargs; 431 ops.xp_reply = svc_dg_reply; 432 ops.xp_freeargs = svc_dg_freeargs; 433 ops.xp_destroy = svc_dg_destroy; 434 ops2.xp_control = svc_dg_control; 435 } 436 xprt->xp_ops = &ops; 437 xprt->xp_ops2 = &ops2; 438 mutex_unlock(&ops_lock); 439 } 440 441 /* The CACHING COMPONENT */ 442 443 /* 444 * Could have been a separate file, but some part of it depends upon the 445 * private structure of the client handle. 446 * 447 * Fifo cache for cl server 448 * Copies pointers to reply buffers into fifo cache 449 * Buffers are sent again if retransmissions are detected. 450 */ 451 452 #define SPARSENESS 4 /* 75% sparse */ 453 454 #define ALLOC(type, size) \ 455 (type *) mem_alloc((sizeof (type) * (size))) 456 457 #define MEMZERO(addr, type, size) \ 458 (void) memset((void *) (addr), 0, sizeof (type) * (int) (size)) 459 460 #define FREE(addr, type, size) \ 461 mem_free((addr), (sizeof (type) * (size))) 462 463 /* 464 * An entry in the cache 465 */ 466 typedef struct cache_node *cache_ptr; 467 struct cache_node { 468 /* 469 * Index into cache is xid, proc, vers, prog and address 470 */ 471 u_int32_t cache_xid; 472 rpcproc_t cache_proc; 473 rpcvers_t cache_vers; 474 rpcprog_t cache_prog; 475 struct netbuf cache_addr; 476 /* 477 * The cached reply and length 478 */ 479 char *cache_reply; 480 size_t cache_replylen; 481 /* 482 * Next node on the list, if there is a collision 483 */ 484 cache_ptr cache_next; 485 }; 486 487 /* 488 * The entire cache 489 */ 490 struct cl_cache { 491 u_int uc_size; /* size of cache */ 492 cache_ptr *uc_entries; /* hash table of entries in cache */ 493 cache_ptr *uc_fifo; /* fifo list of entries in cache */ 494 u_int uc_nextvictim; /* points to next victim in fifo list */ 495 rpcprog_t uc_prog; /* saved program number */ 496 rpcvers_t uc_vers; /* saved version number */ 497 rpcproc_t uc_proc; /* saved procedure number */ 498 }; 499 500 501 /* 502 * the hashing function 503 */ 504 #define CACHE_LOC(transp, xid) \ 505 (xid % (SPARSENESS * ((struct cl_cache *) \ 506 su_data(transp)->su_cache)->uc_size)) 507 508 /* 509 * Enable use of the cache. Returns 1 on success, 0 on failure. 510 * Note: there is no disable. 511 */ 512 static const char cache_enable_str[] = "svc_enablecache: %s %s"; 513 static const char alloc_err[] = "could not allocate cache "; 514 static const char enable_err[] = "cache already enabled"; 515 516 int 517 svc_dg_enablecache(SVCXPRT *transp, u_int size) 518 { 519 struct svc_dg_data *su = su_data(transp); 520 struct cl_cache *uc; 521 522 mutex_lock(&dupreq_lock); 523 if (su->su_cache != NULL) { 524 (void) warnx(cache_enable_str, enable_err, " "); 525 mutex_unlock(&dupreq_lock); 526 return (0); 527 } 528 uc = ALLOC(struct cl_cache, 1); 529 if (uc == NULL) { 530 warnx(cache_enable_str, alloc_err, " "); 531 mutex_unlock(&dupreq_lock); 532 return (0); 533 } 534 uc->uc_size = size; 535 uc->uc_nextvictim = 0; 536 uc->uc_entries = ALLOC(cache_ptr, size * SPARSENESS); 537 if (uc->uc_entries == NULL) { 538 warnx(cache_enable_str, alloc_err, "data"); 539 FREE(uc, struct cl_cache, 1); 540 mutex_unlock(&dupreq_lock); 541 return (0); 542 } 543 MEMZERO(uc->uc_entries, cache_ptr, size * SPARSENESS); 544 uc->uc_fifo = ALLOC(cache_ptr, size); 545 if (uc->uc_fifo == NULL) { 546 warnx(cache_enable_str, alloc_err, "fifo"); 547 FREE(uc->uc_entries, cache_ptr, size * SPARSENESS); 548 FREE(uc, struct cl_cache, 1); 549 mutex_unlock(&dupreq_lock); 550 return (0); 551 } 552 MEMZERO(uc->uc_fifo, cache_ptr, size); 553 su->su_cache = (char *)(void *)uc; 554 mutex_unlock(&dupreq_lock); 555 return (1); 556 } 557 558 /* 559 * Set an entry in the cache. It assumes that the uc entry is set from 560 * the earlier call to cache_get() for the same procedure. This will always 561 * happen because cache_get() is calle by svc_dg_recv and cache_set() is called 562 * by svc_dg_reply(). All this hoopla because the right RPC parameters are 563 * not available at svc_dg_reply time. 564 */ 565 566 static const char cache_set_str[] = "cache_set: %s"; 567 static const char cache_set_err1[] = "victim not found"; 568 static const char cache_set_err2[] = "victim alloc failed"; 569 static const char cache_set_err3[] = "could not allocate new rpc buffer"; 570 571 static void 572 cache_set(SVCXPRT *xprt, size_t replylen) 573 { 574 cache_ptr victim; 575 cache_ptr *vicp; 576 struct svc_dg_data *su = su_data(xprt); 577 struct cl_cache *uc = (struct cl_cache *) su->su_cache; 578 u_int loc; 579 char *newbuf; 580 #ifdef RPC_CACHE_DEBUG 581 struct netconfig *nconf; 582 char *uaddr; 583 #endif 584 585 mutex_lock(&dupreq_lock); 586 /* 587 * Find space for the new entry, either by 588 * reusing an old entry, or by mallocing a new one 589 */ 590 victim = uc->uc_fifo[uc->uc_nextvictim]; 591 if (victim != NULL) { 592 loc = CACHE_LOC(xprt, victim->cache_xid); 593 for (vicp = &uc->uc_entries[loc]; 594 *vicp != NULL && *vicp != victim; 595 vicp = &(*vicp)->cache_next) 596 ; 597 if (*vicp == NULL) { 598 warnx(cache_set_str, cache_set_err1); 599 mutex_unlock(&dupreq_lock); 600 return; 601 } 602 *vicp = victim->cache_next; /* remove from cache */ 603 newbuf = victim->cache_reply; 604 } else { 605 victim = ALLOC(struct cache_node, 1); 606 if (victim == NULL) { 607 warnx(cache_set_str, cache_set_err2); 608 mutex_unlock(&dupreq_lock); 609 return; 610 } 611 newbuf = mem_alloc(su->su_iosz); 612 if (newbuf == NULL) { 613 warnx(cache_set_str, cache_set_err3); 614 FREE(victim, struct cache_node, 1); 615 mutex_unlock(&dupreq_lock); 616 return; 617 } 618 } 619 620 /* 621 * Store it away 622 */ 623 #ifdef RPC_CACHE_DEBUG 624 if (nconf = getnetconfigent(xprt->xp_netid)) { 625 uaddr = taddr2uaddr(nconf, &xprt->xp_rtaddr); 626 freenetconfigent(nconf); 627 printf( 628 "cache set for xid= %x prog=%d vers=%d proc=%d for rmtaddr=%s\n", 629 su->su_xid, uc->uc_prog, uc->uc_vers, 630 uc->uc_proc, uaddr); 631 free(uaddr); 632 } 633 #endif 634 victim->cache_replylen = replylen; 635 victim->cache_reply = rpc_buffer(xprt); 636 rpc_buffer(xprt) = newbuf; 637 xdrmem_create(&(su->su_xdrs), rpc_buffer(xprt), 638 su->su_iosz, XDR_ENCODE); 639 victim->cache_xid = su->su_xid; 640 victim->cache_proc = uc->uc_proc; 641 victim->cache_vers = uc->uc_vers; 642 victim->cache_prog = uc->uc_prog; 643 victim->cache_addr = xprt->xp_rtaddr; 644 victim->cache_addr.buf = ALLOC(char, xprt->xp_rtaddr.len); 645 (void) memcpy(victim->cache_addr.buf, xprt->xp_rtaddr.buf, 646 (size_t)xprt->xp_rtaddr.len); 647 loc = CACHE_LOC(xprt, victim->cache_xid); 648 victim->cache_next = uc->uc_entries[loc]; 649 uc->uc_entries[loc] = victim; 650 uc->uc_fifo[uc->uc_nextvictim++] = victim; 651 uc->uc_nextvictim %= uc->uc_size; 652 mutex_unlock(&dupreq_lock); 653 } 654 655 /* 656 * Try to get an entry from the cache 657 * return 1 if found, 0 if not found and set the stage for cache_set() 658 */ 659 static int 660 cache_get(SVCXPRT *xprt, struct rpc_msg *msg, char **replyp, size_t *replylenp) 661 { 662 u_int loc; 663 cache_ptr ent; 664 struct svc_dg_data *su = su_data(xprt); 665 struct cl_cache *uc = (struct cl_cache *) su->su_cache; 666 #ifdef RPC_CACHE_DEBUG 667 struct netconfig *nconf; 668 char *uaddr; 669 #endif 670 671 mutex_lock(&dupreq_lock); 672 loc = CACHE_LOC(xprt, su->su_xid); 673 for (ent = uc->uc_entries[loc]; ent != NULL; ent = ent->cache_next) { 674 if (ent->cache_xid == su->su_xid && 675 ent->cache_proc == msg->rm_call.cb_proc && 676 ent->cache_vers == msg->rm_call.cb_vers && 677 ent->cache_prog == msg->rm_call.cb_prog && 678 ent->cache_addr.len == xprt->xp_rtaddr.len && 679 (memcmp(ent->cache_addr.buf, xprt->xp_rtaddr.buf, 680 xprt->xp_rtaddr.len) == 0)) { 681 #ifdef RPC_CACHE_DEBUG 682 if (nconf = getnetconfigent(xprt->xp_netid)) { 683 uaddr = taddr2uaddr(nconf, &xprt->xp_rtaddr); 684 freenetconfigent(nconf); 685 printf( 686 "cache entry found for xid=%x prog=%d vers=%d proc=%d for rmtaddr=%s\n", 687 su->su_xid, msg->rm_call.cb_prog, 688 msg->rm_call.cb_vers, 689 msg->rm_call.cb_proc, uaddr); 690 free(uaddr); 691 } 692 #endif 693 *replyp = ent->cache_reply; 694 *replylenp = ent->cache_replylen; 695 mutex_unlock(&dupreq_lock); 696 return (1); 697 } 698 } 699 /* 700 * Failed to find entry 701 * Remember a few things so we can do a set later 702 */ 703 uc->uc_proc = msg->rm_call.cb_proc; 704 uc->uc_vers = msg->rm_call.cb_vers; 705 uc->uc_prog = msg->rm_call.cb_prog; 706 mutex_unlock(&dupreq_lock); 707 return (0); 708 } 709