1 /* $NetBSD: svc_dg.c,v 1.4 2000/07/06 03:10:35 christos Exp $ */ 2 3 /*- 4 * SPDX-License-Identifier: BSD-3-Clause 5 * 6 * Copyright (c) 2009, Sun Microsystems, Inc. 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions are met: 11 * - Redistributions of source code must retain the above copyright notice, 12 * this list of conditions and the following disclaimer. 13 * - Redistributions in binary form must reproduce the above copyright notice, 14 * this list of conditions and the following disclaimer in the documentation 15 * and/or other materials provided with the distribution. 16 * - Neither the name of Sun Microsystems, Inc. nor the names of its 17 * contributors may be used to endorse or promote products derived 18 * from this software without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 21 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE 24 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 30 * POSSIBILITY OF SUCH DAMAGE. 31 */ 32 33 /* 34 * Copyright (c) 1986-1991 by Sun Microsystems Inc. 35 */ 36 37 #if defined(LIBC_SCCS) && !defined(lint) 38 #ident "@(#)svc_dg.c 1.17 94/04/24 SMI" 39 #endif 40 /* 41 * svc_dg.c, Server side for connectionless RPC. 42 * 43 * Does some caching in the hopes of achieving execute-at-most-once semantics. 44 */ 45 46 #include "namespace.h" 47 #include "reentrant.h" 48 #include <sys/types.h> 49 #include <sys/socket.h> 50 #include <rpc/rpc.h> 51 #include <rpc/svc_dg.h> 52 #include <assert.h> 53 #include <errno.h> 54 #include <unistd.h> 55 #include <stdio.h> 56 #include <stdlib.h> 57 #include <string.h> 58 #ifdef RPC_CACHE_DEBUG 59 #include <netconfig.h> 60 #include <netdir.h> 61 #endif 62 #include <err.h> 63 #include "un-namespace.h" 64 65 #include "rpc_com.h" 66 #include "mt_misc.h" 67 68 #define su_data(xprt) ((struct svc_dg_data *)((xprt)->xp_p2)) 69 #define rpc_buffer(xprt) ((xprt)->xp_p1) 70 71 #ifndef MAX 72 #define MAX(a, b) (((a) > (b)) ? (a) : (b)) 73 #endif 74 75 static void svc_dg_ops(SVCXPRT *); 76 static enum xprt_stat svc_dg_stat(SVCXPRT *); 77 static bool_t svc_dg_recv(SVCXPRT *, struct rpc_msg *); 78 static bool_t svc_dg_reply(SVCXPRT *, struct rpc_msg *); 79 static bool_t svc_dg_getargs(SVCXPRT *, xdrproc_t, void *); 80 static bool_t svc_dg_freeargs(SVCXPRT *, xdrproc_t, void *); 81 static void svc_dg_destroy(SVCXPRT *); 82 static bool_t svc_dg_control(SVCXPRT *, const u_int, void *); 83 static int cache_get(SVCXPRT *, struct rpc_msg *, char **, size_t *); 84 static void cache_set(SVCXPRT *, size_t); 85 int svc_dg_enablecache(SVCXPRT *, u_int); 86 87 /* 88 * Usage: 89 * xprt = svc_dg_create(sock, sendsize, recvsize); 90 * Does other connectionless specific initializations. 91 * Once *xprt is initialized, it is registered. 92 * see (svc.h, xprt_register). If recvsize or sendsize are 0 suitable 93 * system defaults are chosen. 94 * The routines returns NULL if a problem occurred. 95 */ 96 static const char svc_dg_str[] = "svc_dg_create: %s"; 97 static const char svc_dg_err1[] = "could not get transport information"; 98 static const char svc_dg_err2[] = "transport does not support data transfer"; 99 static const char svc_dg_err3[] = "getsockname failed"; 100 static const char svc_dg_err4[] = "cannot set IP_RECVDSTADDR"; 101 static const char __no_mem_str[] = "out of memory"; 102 103 SVCXPRT * 104 svc_dg_create(int fd, u_int sendsize, u_int recvsize) 105 { 106 SVCXPRT *xprt; 107 struct svc_dg_data *su = NULL; 108 struct __rpc_sockinfo si; 109 struct sockaddr_storage ss; 110 socklen_t slen; 111 112 if (!__rpc_fd2sockinfo(fd, &si)) { 113 warnx(svc_dg_str, svc_dg_err1); 114 return (NULL); 115 } 116 /* 117 * Find the receive and the send size 118 */ 119 sendsize = __rpc_get_t_size(si.si_af, si.si_proto, (int)sendsize); 120 recvsize = __rpc_get_t_size(si.si_af, si.si_proto, (int)recvsize); 121 if ((sendsize == 0) || (recvsize == 0)) { 122 warnx(svc_dg_str, svc_dg_err2); 123 return (NULL); 124 } 125 126 xprt = svc_xprt_alloc(); 127 if (xprt == NULL) 128 goto freedata; 129 130 su = mem_alloc(sizeof (*su)); 131 if (su == NULL) 132 goto freedata; 133 su->su_iosz = ((MAX(sendsize, recvsize) + 3) / 4) * 4; 134 if ((rpc_buffer(xprt) = mem_alloc(su->su_iosz)) == NULL) 135 goto freedata; 136 xdrmem_create(&(su->su_xdrs), rpc_buffer(xprt), su->su_iosz, 137 XDR_DECODE); 138 su->su_cache = NULL; 139 xprt->xp_fd = fd; 140 xprt->xp_p2 = su; 141 xprt->xp_verf.oa_base = su->su_verfbody; 142 svc_dg_ops(xprt); 143 xprt->xp_rtaddr.maxlen = sizeof (struct sockaddr_storage); 144 145 slen = sizeof ss; 146 if (_getsockname(fd, (struct sockaddr *)(void *)&ss, &slen) < 0) { 147 warnx(svc_dg_str, svc_dg_err3); 148 goto freedata_nowarn; 149 } 150 xprt->xp_ltaddr.buf = mem_alloc(sizeof (struct sockaddr_storage)); 151 xprt->xp_ltaddr.maxlen = sizeof (struct sockaddr_storage); 152 xprt->xp_ltaddr.len = slen; 153 memcpy(xprt->xp_ltaddr.buf, &ss, slen); 154 155 if (ss.ss_family == AF_INET) { 156 struct sockaddr_in *sin; 157 static const int true_value = 1; 158 159 sin = (struct sockaddr_in *)(void *)&ss; 160 if (sin->sin_addr.s_addr == INADDR_ANY) { 161 su->su_srcaddr.buf = mem_alloc(sizeof (ss)); 162 su->su_srcaddr.maxlen = sizeof (ss); 163 164 if (_setsockopt(fd, IPPROTO_IP, IP_RECVDSTADDR, 165 &true_value, sizeof(true_value))) { 166 warnx(svc_dg_str, svc_dg_err4); 167 goto freedata_nowarn; 168 } 169 } 170 } 171 172 xprt_register(xprt); 173 return (xprt); 174 freedata: 175 (void) warnx(svc_dg_str, __no_mem_str); 176 freedata_nowarn: 177 if (xprt) { 178 if (su) 179 (void) mem_free(su, sizeof (*su)); 180 svc_xprt_free(xprt); 181 } 182 return (NULL); 183 } 184 185 /*ARGSUSED*/ 186 static enum xprt_stat 187 svc_dg_stat(SVCXPRT *xprt) 188 { 189 return (XPRT_IDLE); 190 } 191 192 static int 193 svc_dg_recvfrom(int fd, char *buf, int buflen, 194 struct sockaddr *raddr, socklen_t *raddrlen, 195 struct sockaddr *laddr, socklen_t *laddrlen) 196 { 197 struct msghdr msg; 198 struct iovec msg_iov[1]; 199 struct sockaddr_in *lin = (struct sockaddr_in *)laddr; 200 int rlen; 201 bool_t have_lin = FALSE; 202 char tmp[CMSG_LEN(sizeof(*lin))]; 203 struct cmsghdr *cmsg; 204 205 memset((char *)&msg, 0, sizeof(msg)); 206 msg_iov[0].iov_base = buf; 207 msg_iov[0].iov_len = buflen; 208 msg.msg_iov = msg_iov; 209 msg.msg_iovlen = 1; 210 msg.msg_namelen = *raddrlen; 211 msg.msg_name = (char *)raddr; 212 if (laddr != NULL) { 213 msg.msg_control = (caddr_t)tmp; 214 msg.msg_controllen = CMSG_LEN(sizeof(*lin)); 215 } 216 rlen = _recvmsg(fd, &msg, 0); 217 if (rlen >= 0) 218 *raddrlen = msg.msg_namelen; 219 220 if (rlen == -1 || laddr == NULL || 221 msg.msg_controllen < sizeof(struct cmsghdr) || 222 msg.msg_flags & MSG_CTRUNC) 223 return rlen; 224 225 for (cmsg = CMSG_FIRSTHDR(&msg); cmsg != NULL; 226 cmsg = CMSG_NXTHDR(&msg, cmsg)) { 227 if (cmsg->cmsg_level == IPPROTO_IP && 228 cmsg->cmsg_type == IP_RECVDSTADDR) { 229 have_lin = TRUE; 230 memcpy(&lin->sin_addr, 231 (struct in_addr *)CMSG_DATA(cmsg), 232 sizeof(struct in_addr)); 233 break; 234 } 235 } 236 237 lin->sin_family = AF_INET; 238 lin->sin_port = 0; 239 *laddrlen = sizeof(struct sockaddr_in); 240 241 if (!have_lin) 242 lin->sin_addr.s_addr = INADDR_ANY; 243 244 return rlen; 245 } 246 247 static bool_t 248 svc_dg_recv(SVCXPRT *xprt, struct rpc_msg *msg) 249 { 250 struct svc_dg_data *su = su_data(xprt); 251 XDR *xdrs = &(su->su_xdrs); 252 char *reply; 253 struct sockaddr_storage ss; 254 socklen_t alen; 255 size_t replylen; 256 ssize_t rlen; 257 258 again: 259 alen = sizeof (struct sockaddr_storage); 260 rlen = svc_dg_recvfrom(xprt->xp_fd, rpc_buffer(xprt), su->su_iosz, 261 (struct sockaddr *)(void *)&ss, &alen, 262 (struct sockaddr *)su->su_srcaddr.buf, &su->su_srcaddr.len); 263 if (rlen == -1 && errno == EINTR) 264 goto again; 265 if (rlen == -1 || (rlen < (ssize_t)(4 * sizeof (u_int32_t)))) 266 return (FALSE); 267 if (xprt->xp_rtaddr.len < alen) { 268 if (xprt->xp_rtaddr.len != 0) 269 mem_free(xprt->xp_rtaddr.buf, xprt->xp_rtaddr.len); 270 xprt->xp_rtaddr.buf = mem_alloc(alen); 271 xprt->xp_rtaddr.len = alen; 272 } 273 memcpy(xprt->xp_rtaddr.buf, &ss, alen); 274 #ifdef PORTMAP 275 if (ss.ss_family == AF_INET) { 276 xprt->xp_raddr = *(struct sockaddr_in *)xprt->xp_rtaddr.buf; 277 xprt->xp_addrlen = sizeof (struct sockaddr_in); 278 } 279 #endif /* PORTMAP */ 280 xdrs->x_op = XDR_DECODE; 281 XDR_SETPOS(xdrs, 0); 282 if (! xdr_callmsg(xdrs, msg)) { 283 return (FALSE); 284 } 285 su->su_xid = msg->rm_xid; 286 if (su->su_cache != NULL) { 287 if (cache_get(xprt, msg, &reply, &replylen)) { 288 (void)_sendto(xprt->xp_fd, reply, replylen, 0, 289 (struct sockaddr *)(void *)&ss, alen); 290 return (FALSE); 291 } 292 } 293 return (TRUE); 294 } 295 296 static int 297 svc_dg_sendto(int fd, char *buf, int buflen, 298 const struct sockaddr *raddr, socklen_t raddrlen, 299 const struct sockaddr *laddr, socklen_t laddrlen) 300 { 301 struct msghdr msg; 302 struct iovec msg_iov[1]; 303 struct sockaddr_in *laddr_in = (struct sockaddr_in *)laddr; 304 struct in_addr *lin = &laddr_in->sin_addr; 305 char tmp[CMSG_SPACE(sizeof(*lin))]; 306 struct cmsghdr *cmsg; 307 308 memset((char *)&msg, 0, sizeof(msg)); 309 msg_iov[0].iov_base = buf; 310 msg_iov[0].iov_len = buflen; 311 msg.msg_iov = msg_iov; 312 msg.msg_iovlen = 1; 313 msg.msg_namelen = raddrlen; 314 msg.msg_name = (char *)raddr; 315 316 if (laddr != NULL && laddr->sa_family == AF_INET && 317 lin->s_addr != INADDR_ANY) { 318 msg.msg_control = (caddr_t)tmp; 319 msg.msg_controllen = CMSG_LEN(sizeof(*lin)); 320 cmsg = CMSG_FIRSTHDR(&msg); 321 cmsg->cmsg_len = CMSG_LEN(sizeof(*lin)); 322 cmsg->cmsg_level = IPPROTO_IP; 323 cmsg->cmsg_type = IP_SENDSRCADDR; 324 memcpy(CMSG_DATA(cmsg), lin, sizeof(*lin)); 325 } 326 327 return _sendmsg(fd, &msg, 0); 328 } 329 330 static bool_t 331 svc_dg_reply(SVCXPRT *xprt, struct rpc_msg *msg) 332 { 333 struct svc_dg_data *su = su_data(xprt); 334 XDR *xdrs = &(su->su_xdrs); 335 bool_t stat = TRUE; 336 size_t slen; 337 xdrproc_t xdr_proc; 338 caddr_t xdr_where; 339 340 xdrs->x_op = XDR_ENCODE; 341 XDR_SETPOS(xdrs, 0); 342 msg->rm_xid = su->su_xid; 343 if (msg->rm_reply.rp_stat == MSG_ACCEPTED && 344 msg->rm_reply.rp_acpt.ar_stat == SUCCESS) { 345 xdr_proc = msg->acpted_rply.ar_results.proc; 346 xdr_where = msg->acpted_rply.ar_results.where; 347 msg->acpted_rply.ar_results.proc = (xdrproc_t) xdr_void; 348 msg->acpted_rply.ar_results.where = NULL; 349 350 if (!xdr_replymsg(xdrs, msg) || 351 !SVCAUTH_WRAP(&SVC_AUTH(xprt), xdrs, xdr_proc, xdr_where)) 352 stat = FALSE; 353 } else { 354 stat = xdr_replymsg(xdrs, msg); 355 } 356 if (stat) { 357 slen = XDR_GETPOS(xdrs); 358 if (svc_dg_sendto(xprt->xp_fd, rpc_buffer(xprt), slen, 359 (struct sockaddr *)xprt->xp_rtaddr.buf, 360 (socklen_t)xprt->xp_rtaddr.len, 361 (struct sockaddr *)su->su_srcaddr.buf, 362 (socklen_t)su->su_srcaddr.len) == (ssize_t) slen) { 363 stat = TRUE; 364 if (su->su_cache) 365 cache_set(xprt, slen); 366 } 367 } 368 return (stat); 369 } 370 371 static bool_t 372 svc_dg_getargs(SVCXPRT *xprt, xdrproc_t xdr_args, void *args_ptr) 373 { 374 struct svc_dg_data *su; 375 376 assert(xprt != NULL); 377 su = su_data(xprt); 378 return (SVCAUTH_UNWRAP(&SVC_AUTH(xprt), 379 &su->su_xdrs, xdr_args, args_ptr)); 380 } 381 382 static bool_t 383 svc_dg_freeargs(SVCXPRT *xprt, xdrproc_t xdr_args, void *args_ptr) 384 { 385 XDR *xdrs = &(su_data(xprt)->su_xdrs); 386 387 xdrs->x_op = XDR_FREE; 388 return (*xdr_args)(xdrs, args_ptr); 389 } 390 391 static void 392 svc_dg_destroy(SVCXPRT *xprt) 393 { 394 struct svc_dg_data *su = su_data(xprt); 395 396 xprt_unregister(xprt); 397 if (xprt->xp_fd != -1) 398 (void)_close(xprt->xp_fd); 399 XDR_DESTROY(&(su->su_xdrs)); 400 (void) mem_free(rpc_buffer(xprt), su->su_iosz); 401 if (su->su_srcaddr.buf) 402 (void) mem_free(su->su_srcaddr.buf, su->su_srcaddr.maxlen); 403 (void) mem_free(su, sizeof (*su)); 404 if (xprt->xp_rtaddr.buf) 405 (void) mem_free(xprt->xp_rtaddr.buf, xprt->xp_rtaddr.maxlen); 406 if (xprt->xp_ltaddr.buf) 407 (void) mem_free(xprt->xp_ltaddr.buf, xprt->xp_ltaddr.maxlen); 408 free(xprt->xp_tp); 409 svc_xprt_free(xprt); 410 } 411 412 static bool_t 413 /*ARGSUSED*/ 414 svc_dg_control(SVCXPRT *xprt, const u_int rq, void *in) 415 { 416 return (FALSE); 417 } 418 419 static void 420 svc_dg_ops(SVCXPRT *xprt) 421 { 422 static struct xp_ops ops; 423 static struct xp_ops2 ops2; 424 425 /* VARIABLES PROTECTED BY ops_lock: ops */ 426 427 mutex_lock(&ops_lock); 428 if (ops.xp_recv == NULL) { 429 ops.xp_recv = svc_dg_recv; 430 ops.xp_stat = svc_dg_stat; 431 ops.xp_getargs = svc_dg_getargs; 432 ops.xp_reply = svc_dg_reply; 433 ops.xp_freeargs = svc_dg_freeargs; 434 ops.xp_destroy = svc_dg_destroy; 435 ops2.xp_control = svc_dg_control; 436 } 437 xprt->xp_ops = &ops; 438 xprt->xp_ops2 = &ops2; 439 mutex_unlock(&ops_lock); 440 } 441 442 /* The CACHING COMPONENT */ 443 444 /* 445 * Could have been a separate file, but some part of it depends upon the 446 * private structure of the client handle. 447 * 448 * Fifo cache for cl server 449 * Copies pointers to reply buffers into fifo cache 450 * Buffers are sent again if retransmissions are detected. 451 */ 452 453 #define SPARSENESS 4 /* 75% sparse */ 454 455 #define ALLOC(type, size) \ 456 (type *) mem_alloc((sizeof (type) * (size))) 457 458 #define MEMZERO(addr, type, size) \ 459 (void) memset((void *) (addr), 0, sizeof (type) * (int) (size)) 460 461 #define FREE(addr, type, size) \ 462 mem_free((addr), (sizeof (type) * (size))) 463 464 /* 465 * An entry in the cache 466 */ 467 typedef struct cache_node *cache_ptr; 468 struct cache_node { 469 /* 470 * Index into cache is xid, proc, vers, prog and address 471 */ 472 u_int32_t cache_xid; 473 rpcproc_t cache_proc; 474 rpcvers_t cache_vers; 475 rpcprog_t cache_prog; 476 struct netbuf cache_addr; 477 /* 478 * The cached reply and length 479 */ 480 char *cache_reply; 481 size_t cache_replylen; 482 /* 483 * Next node on the list, if there is a collision 484 */ 485 cache_ptr cache_next; 486 }; 487 488 /* 489 * The entire cache 490 */ 491 struct cl_cache { 492 u_int uc_size; /* size of cache */ 493 cache_ptr *uc_entries; /* hash table of entries in cache */ 494 cache_ptr *uc_fifo; /* fifo list of entries in cache */ 495 u_int uc_nextvictim; /* points to next victim in fifo list */ 496 rpcprog_t uc_prog; /* saved program number */ 497 rpcvers_t uc_vers; /* saved version number */ 498 rpcproc_t uc_proc; /* saved procedure number */ 499 }; 500 501 502 /* 503 * the hashing function 504 */ 505 #define CACHE_LOC(transp, xid) \ 506 (xid % (SPARSENESS * ((struct cl_cache *) \ 507 su_data(transp)->su_cache)->uc_size)) 508 509 /* 510 * Enable use of the cache. Returns 1 on success, 0 on failure. 511 * Note: there is no disable. 512 */ 513 static const char cache_enable_str[] = "svc_enablecache: %s %s"; 514 static const char alloc_err[] = "could not allocate cache "; 515 static const char enable_err[] = "cache already enabled"; 516 517 int 518 svc_dg_enablecache(SVCXPRT *transp, u_int size) 519 { 520 struct svc_dg_data *su = su_data(transp); 521 struct cl_cache *uc; 522 523 mutex_lock(&dupreq_lock); 524 if (su->su_cache != NULL) { 525 (void) warnx(cache_enable_str, enable_err, " "); 526 mutex_unlock(&dupreq_lock); 527 return (0); 528 } 529 uc = ALLOC(struct cl_cache, 1); 530 if (uc == NULL) { 531 warnx(cache_enable_str, alloc_err, " "); 532 mutex_unlock(&dupreq_lock); 533 return (0); 534 } 535 uc->uc_size = size; 536 uc->uc_nextvictim = 0; 537 uc->uc_entries = ALLOC(cache_ptr, size * SPARSENESS); 538 if (uc->uc_entries == NULL) { 539 warnx(cache_enable_str, alloc_err, "data"); 540 FREE(uc, struct cl_cache, 1); 541 mutex_unlock(&dupreq_lock); 542 return (0); 543 } 544 MEMZERO(uc->uc_entries, cache_ptr, size * SPARSENESS); 545 uc->uc_fifo = ALLOC(cache_ptr, size); 546 if (uc->uc_fifo == NULL) { 547 warnx(cache_enable_str, alloc_err, "fifo"); 548 FREE(uc->uc_entries, cache_ptr, size * SPARSENESS); 549 FREE(uc, struct cl_cache, 1); 550 mutex_unlock(&dupreq_lock); 551 return (0); 552 } 553 MEMZERO(uc->uc_fifo, cache_ptr, size); 554 su->su_cache = (char *)(void *)uc; 555 mutex_unlock(&dupreq_lock); 556 return (1); 557 } 558 559 /* 560 * Set an entry in the cache. It assumes that the uc entry is set from 561 * the earlier call to cache_get() for the same procedure. This will always 562 * happen because cache_get() is calle by svc_dg_recv and cache_set() is called 563 * by svc_dg_reply(). All this hoopla because the right RPC parameters are 564 * not available at svc_dg_reply time. 565 */ 566 567 static const char cache_set_str[] = "cache_set: %s"; 568 static const char cache_set_err1[] = "victim not found"; 569 static const char cache_set_err2[] = "victim alloc failed"; 570 static const char cache_set_err3[] = "could not allocate new rpc buffer"; 571 572 static void 573 cache_set(SVCXPRT *xprt, size_t replylen) 574 { 575 cache_ptr victim; 576 cache_ptr *vicp; 577 struct svc_dg_data *su = su_data(xprt); 578 struct cl_cache *uc = (struct cl_cache *) su->su_cache; 579 u_int loc; 580 char *newbuf; 581 #ifdef RPC_CACHE_DEBUG 582 struct netconfig *nconf; 583 char *uaddr; 584 #endif 585 586 mutex_lock(&dupreq_lock); 587 /* 588 * Find space for the new entry, either by 589 * reusing an old entry, or by mallocing a new one 590 */ 591 victim = uc->uc_fifo[uc->uc_nextvictim]; 592 if (victim != NULL) { 593 loc = CACHE_LOC(xprt, victim->cache_xid); 594 for (vicp = &uc->uc_entries[loc]; 595 *vicp != NULL && *vicp != victim; 596 vicp = &(*vicp)->cache_next) 597 ; 598 if (*vicp == NULL) { 599 warnx(cache_set_str, cache_set_err1); 600 mutex_unlock(&dupreq_lock); 601 return; 602 } 603 *vicp = victim->cache_next; /* remove from cache */ 604 newbuf = victim->cache_reply; 605 } else { 606 victim = ALLOC(struct cache_node, 1); 607 if (victim == NULL) { 608 warnx(cache_set_str, cache_set_err2); 609 mutex_unlock(&dupreq_lock); 610 return; 611 } 612 newbuf = mem_alloc(su->su_iosz); 613 if (newbuf == NULL) { 614 warnx(cache_set_str, cache_set_err3); 615 FREE(victim, struct cache_node, 1); 616 mutex_unlock(&dupreq_lock); 617 return; 618 } 619 } 620 621 /* 622 * Store it away 623 */ 624 #ifdef RPC_CACHE_DEBUG 625 if (nconf = getnetconfigent(xprt->xp_netid)) { 626 uaddr = taddr2uaddr(nconf, &xprt->xp_rtaddr); 627 freenetconfigent(nconf); 628 printf( 629 "cache set for xid= %x prog=%d vers=%d proc=%d for rmtaddr=%s\n", 630 su->su_xid, uc->uc_prog, uc->uc_vers, 631 uc->uc_proc, uaddr); 632 free(uaddr); 633 } 634 #endif 635 victim->cache_replylen = replylen; 636 victim->cache_reply = rpc_buffer(xprt); 637 rpc_buffer(xprt) = newbuf; 638 xdrmem_create(&(su->su_xdrs), rpc_buffer(xprt), 639 su->su_iosz, XDR_ENCODE); 640 victim->cache_xid = su->su_xid; 641 victim->cache_proc = uc->uc_proc; 642 victim->cache_vers = uc->uc_vers; 643 victim->cache_prog = uc->uc_prog; 644 victim->cache_addr = xprt->xp_rtaddr; 645 victim->cache_addr.buf = ALLOC(char, xprt->xp_rtaddr.len); 646 (void) memcpy(victim->cache_addr.buf, xprt->xp_rtaddr.buf, 647 (size_t)xprt->xp_rtaddr.len); 648 loc = CACHE_LOC(xprt, victim->cache_xid); 649 victim->cache_next = uc->uc_entries[loc]; 650 uc->uc_entries[loc] = victim; 651 uc->uc_fifo[uc->uc_nextvictim++] = victim; 652 uc->uc_nextvictim %= uc->uc_size; 653 mutex_unlock(&dupreq_lock); 654 } 655 656 /* 657 * Try to get an entry from the cache 658 * return 1 if found, 0 if not found and set the stage for cache_set() 659 */ 660 static int 661 cache_get(SVCXPRT *xprt, struct rpc_msg *msg, char **replyp, size_t *replylenp) 662 { 663 u_int loc; 664 cache_ptr ent; 665 struct svc_dg_data *su = su_data(xprt); 666 struct cl_cache *uc = (struct cl_cache *) su->su_cache; 667 #ifdef RPC_CACHE_DEBUG 668 struct netconfig *nconf; 669 char *uaddr; 670 #endif 671 672 mutex_lock(&dupreq_lock); 673 loc = CACHE_LOC(xprt, su->su_xid); 674 for (ent = uc->uc_entries[loc]; ent != NULL; ent = ent->cache_next) { 675 if (ent->cache_xid == su->su_xid && 676 ent->cache_proc == msg->rm_call.cb_proc && 677 ent->cache_vers == msg->rm_call.cb_vers && 678 ent->cache_prog == msg->rm_call.cb_prog && 679 ent->cache_addr.len == xprt->xp_rtaddr.len && 680 (memcmp(ent->cache_addr.buf, xprt->xp_rtaddr.buf, 681 xprt->xp_rtaddr.len) == 0)) { 682 #ifdef RPC_CACHE_DEBUG 683 if (nconf = getnetconfigent(xprt->xp_netid)) { 684 uaddr = taddr2uaddr(nconf, &xprt->xp_rtaddr); 685 freenetconfigent(nconf); 686 printf( 687 "cache entry found for xid=%x prog=%d vers=%d proc=%d for rmtaddr=%s\n", 688 su->su_xid, msg->rm_call.cb_prog, 689 msg->rm_call.cb_vers, 690 msg->rm_call.cb_proc, uaddr); 691 free(uaddr); 692 } 693 #endif 694 *replyp = ent->cache_reply; 695 *replylenp = ent->cache_replylen; 696 mutex_unlock(&dupreq_lock); 697 return (1); 698 } 699 } 700 /* 701 * Failed to find entry 702 * Remember a few things so we can do a set later 703 */ 704 uc->uc_proc = msg->rm_call.cb_proc; 705 uc->uc_vers = msg->rm_call.cb_vers; 706 uc->uc_prog = msg->rm_call.cb_prog; 707 mutex_unlock(&dupreq_lock); 708 return (0); 709 } 710