1 /* $NetBSD: svc_dg.c,v 1.4 2000/07/06 03:10:35 christos Exp $ */ 2 3 /* 4 * Sun RPC is a product of Sun Microsystems, Inc. and is provided for 5 * unrestricted use provided that this legend is included on all tape 6 * media and as a part of the software program in whole or part. Users 7 * may copy or modify Sun RPC without charge, but are not authorized 8 * to license or distribute it to anyone else except as part of a product or 9 * program developed by the user. 10 * 11 * SUN RPC IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING THE 12 * WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR 13 * PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE. 14 * 15 * Sun RPC is provided with no support and without any obligation on the 16 * part of Sun Microsystems, Inc. to assist in its use, correction, 17 * modification or enhancement. 18 * 19 * SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE 20 * INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY SUN RPC 21 * OR ANY PART THEREOF. 22 * 23 * In no event will Sun Microsystems, Inc. be liable for any lost revenue 24 * or profits or other special, indirect and consequential damages, even if 25 * Sun has been advised of the possibility of such damages. 26 * 27 * Sun Microsystems, Inc. 28 * 2550 Garcia Avenue 29 * Mountain View, California 94043 30 */ 31 32 /* 33 * Copyright (c) 1986-1991 by Sun Microsystems Inc. 34 */ 35 36 #if defined(LIBC_SCCS) && !defined(lint) 37 #ident "@(#)svc_dg.c 1.17 94/04/24 SMI" 38 #endif 39 #include <sys/cdefs.h> 40 __FBSDID("$FreeBSD$"); 41 42 /* 43 * svc_dg.c, Server side for connectionless RPC. 44 * 45 * Does some caching in the hopes of achieving execute-at-most-once semantics. 46 */ 47 48 #include "namespace.h" 49 #include "reentrant.h" 50 #include <sys/types.h> 51 #include <sys/socket.h> 52 #include <rpc/rpc.h> 53 #include <rpc/svc_dg.h> 54 #include <assert.h> 55 #include <errno.h> 56 #include <unistd.h> 57 #include <stdio.h> 58 #include <stdlib.h> 59 #include <string.h> 60 #ifdef RPC_CACHE_DEBUG 61 #include <netconfig.h> 62 #include <netdir.h> 63 #endif 64 #include <err.h> 65 #include "un-namespace.h" 66 67 #include "rpc_com.h" 68 #include "mt_misc.h" 69 70 #define su_data(xprt) ((struct svc_dg_data *)(xprt->xp_p2)) 71 #define rpc_buffer(xprt) ((xprt)->xp_p1) 72 73 #ifndef MAX 74 #define MAX(a, b) (((a) > (b)) ? (a) : (b)) 75 #endif 76 77 static void svc_dg_ops(SVCXPRT *); 78 static enum xprt_stat svc_dg_stat(SVCXPRT *); 79 static bool_t svc_dg_recv(SVCXPRT *, struct rpc_msg *); 80 static bool_t svc_dg_reply(SVCXPRT *, struct rpc_msg *); 81 static bool_t svc_dg_getargs(SVCXPRT *, xdrproc_t, void *); 82 static bool_t svc_dg_freeargs(SVCXPRT *, xdrproc_t, void *); 83 static void svc_dg_destroy(SVCXPRT *); 84 static bool_t svc_dg_control(SVCXPRT *, const u_int, void *); 85 static int cache_get(SVCXPRT *, struct rpc_msg *, char **, size_t *); 86 static void cache_set(SVCXPRT *, size_t); 87 int svc_dg_enablecache(SVCXPRT *, u_int); 88 89 /* 90 * Usage: 91 * xprt = svc_dg_create(sock, sendsize, recvsize); 92 * Does other connectionless specific initializations. 93 * Once *xprt is initialized, it is registered. 94 * see (svc.h, xprt_register). If recvsize or sendsize are 0 suitable 95 * system defaults are chosen. 96 * The routines returns NULL if a problem occurred. 97 */ 98 static const char svc_dg_str[] = "svc_dg_create: %s"; 99 static const char svc_dg_err1[] = "could not get transport information"; 100 static const char svc_dg_err2[] = " transport does not support data transfer"; 101 static const char svc_dg_err3[] = "getsockname failed"; 102 static const char __no_mem_str[] = "out of memory"; 103 104 SVCXPRT * 105 svc_dg_create(fd, sendsize, recvsize) 106 int fd; 107 u_int sendsize; 108 u_int recvsize; 109 { 110 SVCXPRT *xprt; 111 struct svc_dg_data *su = NULL; 112 struct __rpc_sockinfo si; 113 struct sockaddr_storage ss; 114 socklen_t slen; 115 116 if (!__rpc_fd2sockinfo(fd, &si)) { 117 warnx(svc_dg_str, svc_dg_err1); 118 return (NULL); 119 } 120 /* 121 * Find the receive and the send size 122 */ 123 sendsize = __rpc_get_t_size(si.si_af, si.si_proto, (int)sendsize); 124 recvsize = __rpc_get_t_size(si.si_af, si.si_proto, (int)recvsize); 125 if ((sendsize == 0) || (recvsize == 0)) { 126 warnx(svc_dg_str, svc_dg_err2); 127 return (NULL); 128 } 129 130 xprt = svc_xprt_alloc(); 131 if (xprt == NULL) 132 goto freedata; 133 134 su = mem_alloc(sizeof (*su)); 135 if (su == NULL) 136 goto freedata; 137 su->su_iosz = ((MAX(sendsize, recvsize) + 3) / 4) * 4; 138 if ((rpc_buffer(xprt) = mem_alloc(su->su_iosz)) == NULL) 139 goto freedata; 140 xdrmem_create(&(su->su_xdrs), rpc_buffer(xprt), su->su_iosz, 141 XDR_DECODE); 142 su->su_cache = NULL; 143 xprt->xp_fd = fd; 144 xprt->xp_p2 = su; 145 xprt->xp_verf.oa_base = su->su_verfbody; 146 svc_dg_ops(xprt); 147 xprt->xp_rtaddr.maxlen = sizeof (struct sockaddr_storage); 148 149 slen = sizeof ss; 150 if (_getsockname(fd, (struct sockaddr *)(void *)&ss, &slen) < 0) { 151 warnx(svc_dg_str, svc_dg_err3); 152 goto freedata_nowarn; 153 } 154 xprt->xp_ltaddr.buf = mem_alloc(sizeof (struct sockaddr_storage)); 155 xprt->xp_ltaddr.maxlen = sizeof (struct sockaddr_storage); 156 xprt->xp_ltaddr.len = slen; 157 memcpy(xprt->xp_ltaddr.buf, &ss, slen); 158 159 xprt_register(xprt); 160 return (xprt); 161 freedata: 162 (void) warnx(svc_dg_str, __no_mem_str); 163 freedata_nowarn: 164 if (xprt) { 165 if (su) 166 (void) mem_free(su, sizeof (*su)); 167 svc_xprt_free(xprt); 168 } 169 return (NULL); 170 } 171 172 /*ARGSUSED*/ 173 static enum xprt_stat 174 svc_dg_stat(xprt) 175 SVCXPRT *xprt; 176 { 177 return (XPRT_IDLE); 178 } 179 180 static int 181 svc_dg_recvfrom(int fd, char *buf, int buflen, 182 struct sockaddr *raddr, socklen_t *raddrlen, 183 struct sockaddr *laddr, socklen_t *laddrlen) 184 { 185 struct msghdr msg; 186 struct iovec msg_iov[1]; 187 struct sockaddr_in *lin = (struct sockaddr_in *)laddr; 188 int rlen; 189 bool_t have_lin = FALSE; 190 char tmp[CMSG_LEN(sizeof(*lin))]; 191 struct cmsghdr *cmsg; 192 193 memset((char *)&msg, 0, sizeof(msg)); 194 msg_iov[0].iov_base = buf; 195 msg_iov[0].iov_len = buflen; 196 msg.msg_iov = msg_iov; 197 msg.msg_iovlen = 1; 198 msg.msg_namelen = *raddrlen; 199 msg.msg_name = (char *)raddr; 200 msg.msg_control = (caddr_t)tmp; 201 msg.msg_controllen = CMSG_LEN(sizeof(*lin)); 202 rlen = _recvmsg(fd, &msg, 0); 203 if (rlen >= 0) 204 *raddrlen = msg.msg_namelen; 205 206 if (rlen == -1 || !laddr || 207 msg.msg_controllen < sizeof(struct cmsghdr) || 208 msg.msg_flags & MSG_CTRUNC) 209 return rlen; 210 211 for (cmsg = CMSG_FIRSTHDR(&msg); cmsg != NULL; 212 cmsg = CMSG_NXTHDR(&msg, cmsg)){ 213 if (cmsg->cmsg_level == IPPROTO_IP && 214 cmsg->cmsg_type == IP_RECVDSTADDR) { 215 have_lin = TRUE; 216 memcpy(&lin->sin_addr, 217 (struct in_addr *)CMSG_DATA(cmsg), sizeof(struct in_addr)); 218 break; 219 } 220 } 221 222 if (!have_lin) 223 return rlen; 224 225 lin->sin_family = AF_INET; 226 lin->sin_port = 0; 227 *laddrlen = sizeof(struct sockaddr_in); 228 229 return rlen; 230 } 231 232 static bool_t 233 svc_dg_recv(xprt, msg) 234 SVCXPRT *xprt; 235 struct rpc_msg *msg; 236 { 237 struct svc_dg_data *su = su_data(xprt); 238 XDR *xdrs = &(su->su_xdrs); 239 char *reply; 240 struct sockaddr_storage ss; 241 socklen_t alen; 242 size_t replylen; 243 ssize_t rlen; 244 245 again: 246 alen = sizeof (struct sockaddr_storage); 247 rlen = svc_dg_recvfrom(xprt->xp_fd, rpc_buffer(xprt), su->su_iosz, 248 (struct sockaddr *)(void *)&ss, &alen, 249 (struct sockaddr *)xprt->xp_ltaddr.buf, &xprt->xp_ltaddr.len); 250 if (rlen == -1 && errno == EINTR) 251 goto again; 252 if (rlen == -1 || (rlen < (ssize_t)(4 * sizeof (u_int32_t)))) 253 return (FALSE); 254 if (xprt->xp_rtaddr.len < alen) { 255 if (xprt->xp_rtaddr.len != 0) 256 mem_free(xprt->xp_rtaddr.buf, xprt->xp_rtaddr.len); 257 xprt->xp_rtaddr.buf = mem_alloc(alen); 258 xprt->xp_rtaddr.len = alen; 259 } 260 memcpy(xprt->xp_rtaddr.buf, &ss, alen); 261 #ifdef PORTMAP 262 if (ss.ss_family == AF_INET) { 263 xprt->xp_raddr = *(struct sockaddr_in *)xprt->xp_rtaddr.buf; 264 xprt->xp_addrlen = sizeof (struct sockaddr_in); 265 } 266 #endif /* PORTMAP */ 267 xdrs->x_op = XDR_DECODE; 268 XDR_SETPOS(xdrs, 0); 269 if (! xdr_callmsg(xdrs, msg)) { 270 return (FALSE); 271 } 272 su->su_xid = msg->rm_xid; 273 if (su->su_cache != NULL) { 274 if (cache_get(xprt, msg, &reply, &replylen)) { 275 (void)_sendto(xprt->xp_fd, reply, replylen, 0, 276 (struct sockaddr *)(void *)&ss, alen); 277 return (FALSE); 278 } 279 } 280 return (TRUE); 281 } 282 283 static int 284 svc_dg_sendto(int fd, char *buf, int buflen, 285 const struct sockaddr *raddr, socklen_t raddrlen, 286 const struct sockaddr *laddr, socklen_t laddrlen) 287 { 288 struct msghdr msg; 289 struct iovec msg_iov[1]; 290 struct sockaddr_in *laddr_in = (struct sockaddr_in *)laddr; 291 struct in_addr *lin = &laddr_in->sin_addr; 292 char tmp[CMSG_SPACE(sizeof(*lin))]; 293 struct cmsghdr *cmsg; 294 295 memset((char *)&msg, 0, sizeof(msg)); 296 msg_iov[0].iov_base = buf; 297 msg_iov[0].iov_len = buflen; 298 msg.msg_iov = msg_iov; 299 msg.msg_iovlen = 1; 300 msg.msg_namelen = raddrlen; 301 msg.msg_name = (char *)raddr; 302 303 if (laddr->sa_family == AF_INET) { 304 msg.msg_control = (caddr_t)tmp; 305 msg.msg_controllen = CMSG_LEN(sizeof(*lin)); 306 cmsg = CMSG_FIRSTHDR(&msg); 307 cmsg->cmsg_len = CMSG_LEN(sizeof(*lin)); 308 cmsg->cmsg_level = IPPROTO_IP; 309 cmsg->cmsg_type = IP_SENDSRCADDR; 310 memcpy(CMSG_DATA(cmsg), lin, sizeof(*lin)); 311 } 312 313 return _sendmsg(fd, &msg, 0); 314 } 315 316 static bool_t 317 svc_dg_reply(xprt, msg) 318 SVCXPRT *xprt; 319 struct rpc_msg *msg; 320 { 321 struct svc_dg_data *su = su_data(xprt); 322 XDR *xdrs = &(su->su_xdrs); 323 bool_t stat = TRUE; 324 size_t slen; 325 xdrproc_t xdr_proc; 326 caddr_t xdr_where; 327 328 xdrs->x_op = XDR_ENCODE; 329 XDR_SETPOS(xdrs, 0); 330 msg->rm_xid = su->su_xid; 331 if (msg->rm_reply.rp_stat == MSG_ACCEPTED && 332 msg->rm_reply.rp_acpt.ar_stat == SUCCESS) { 333 xdr_proc = msg->acpted_rply.ar_results.proc; 334 xdr_where = msg->acpted_rply.ar_results.where; 335 msg->acpted_rply.ar_results.proc = (xdrproc_t) xdr_void; 336 msg->acpted_rply.ar_results.where = NULL; 337 338 if (!xdr_replymsg(xdrs, msg) || 339 !SVCAUTH_WRAP(&SVC_AUTH(xprt), xdrs, xdr_proc, xdr_where)) 340 stat = FALSE; 341 } else { 342 stat = xdr_replymsg(xdrs, msg); 343 } 344 if (stat) { 345 slen = XDR_GETPOS(xdrs); 346 if (svc_dg_sendto(xprt->xp_fd, rpc_buffer(xprt), slen, 347 (struct sockaddr *)xprt->xp_rtaddr.buf, 348 (socklen_t)xprt->xp_rtaddr.len, 349 (struct sockaddr *)xprt->xp_ltaddr.buf, 350 xprt->xp_ltaddr.len) == (ssize_t) slen) { 351 stat = TRUE; 352 if (su->su_cache) 353 cache_set(xprt, slen); 354 } 355 } 356 return (stat); 357 } 358 359 static bool_t 360 svc_dg_getargs(xprt, xdr_args, args_ptr) 361 SVCXPRT *xprt; 362 xdrproc_t xdr_args; 363 void *args_ptr; 364 { 365 struct svc_dg_data *su; 366 367 assert(xprt != NULL); 368 su = su_data(xprt); 369 return (SVCAUTH_UNWRAP(&SVC_AUTH(xprt), 370 &su->su_xdrs, xdr_args, args_ptr)); 371 } 372 373 static bool_t 374 svc_dg_freeargs(xprt, xdr_args, args_ptr) 375 SVCXPRT *xprt; 376 xdrproc_t xdr_args; 377 void *args_ptr; 378 { 379 XDR *xdrs = &(su_data(xprt)->su_xdrs); 380 381 xdrs->x_op = XDR_FREE; 382 return (*xdr_args)(xdrs, args_ptr); 383 } 384 385 static void 386 svc_dg_destroy(xprt) 387 SVCXPRT *xprt; 388 { 389 struct svc_dg_data *su = su_data(xprt); 390 391 xprt_unregister(xprt); 392 if (xprt->xp_fd != -1) 393 (void)_close(xprt->xp_fd); 394 XDR_DESTROY(&(su->su_xdrs)); 395 (void) mem_free(rpc_buffer(xprt), su->su_iosz); 396 (void) mem_free(su, sizeof (*su)); 397 if (xprt->xp_rtaddr.buf) 398 (void) mem_free(xprt->xp_rtaddr.buf, xprt->xp_rtaddr.maxlen); 399 if (xprt->xp_ltaddr.buf) 400 (void) mem_free(xprt->xp_ltaddr.buf, xprt->xp_ltaddr.maxlen); 401 if (xprt->xp_tp) 402 (void) free(xprt->xp_tp); 403 svc_xprt_free(xprt); 404 } 405 406 static bool_t 407 /*ARGSUSED*/ 408 svc_dg_control(xprt, rq, in) 409 SVCXPRT *xprt; 410 const u_int rq; 411 void *in; 412 { 413 return (FALSE); 414 } 415 416 static void 417 svc_dg_ops(xprt) 418 SVCXPRT *xprt; 419 { 420 static struct xp_ops ops; 421 static struct xp_ops2 ops2; 422 423 /* VARIABLES PROTECTED BY ops_lock: ops */ 424 425 mutex_lock(&ops_lock); 426 if (ops.xp_recv == NULL) { 427 ops.xp_recv = svc_dg_recv; 428 ops.xp_stat = svc_dg_stat; 429 ops.xp_getargs = svc_dg_getargs; 430 ops.xp_reply = svc_dg_reply; 431 ops.xp_freeargs = svc_dg_freeargs; 432 ops.xp_destroy = svc_dg_destroy; 433 ops2.xp_control = svc_dg_control; 434 } 435 xprt->xp_ops = &ops; 436 xprt->xp_ops2 = &ops2; 437 mutex_unlock(&ops_lock); 438 } 439 440 /* The CACHING COMPONENT */ 441 442 /* 443 * Could have been a separate file, but some part of it depends upon the 444 * private structure of the client handle. 445 * 446 * Fifo cache for cl server 447 * Copies pointers to reply buffers into fifo cache 448 * Buffers are sent again if retransmissions are detected. 449 */ 450 451 #define SPARSENESS 4 /* 75% sparse */ 452 453 #define ALLOC(type, size) \ 454 (type *) mem_alloc((sizeof (type) * (size))) 455 456 #define MEMZERO(addr, type, size) \ 457 (void) memset((void *) (addr), 0, sizeof (type) * (int) (size)) 458 459 #define FREE(addr, type, size) \ 460 mem_free((addr), (sizeof (type) * (size))) 461 462 /* 463 * An entry in the cache 464 */ 465 typedef struct cache_node *cache_ptr; 466 struct cache_node { 467 /* 468 * Index into cache is xid, proc, vers, prog and address 469 */ 470 u_int32_t cache_xid; 471 rpcproc_t cache_proc; 472 rpcvers_t cache_vers; 473 rpcprog_t cache_prog; 474 struct netbuf cache_addr; 475 /* 476 * The cached reply and length 477 */ 478 char *cache_reply; 479 size_t cache_replylen; 480 /* 481 * Next node on the list, if there is a collision 482 */ 483 cache_ptr cache_next; 484 }; 485 486 /* 487 * The entire cache 488 */ 489 struct cl_cache { 490 u_int uc_size; /* size of cache */ 491 cache_ptr *uc_entries; /* hash table of entries in cache */ 492 cache_ptr *uc_fifo; /* fifo list of entries in cache */ 493 u_int uc_nextvictim; /* points to next victim in fifo list */ 494 rpcprog_t uc_prog; /* saved program number */ 495 rpcvers_t uc_vers; /* saved version number */ 496 rpcproc_t uc_proc; /* saved procedure number */ 497 }; 498 499 500 /* 501 * the hashing function 502 */ 503 #define CACHE_LOC(transp, xid) \ 504 (xid % (SPARSENESS * ((struct cl_cache *) \ 505 su_data(transp)->su_cache)->uc_size)) 506 507 /* 508 * Enable use of the cache. Returns 1 on success, 0 on failure. 509 * Note: there is no disable. 510 */ 511 static const char cache_enable_str[] = "svc_enablecache: %s %s"; 512 static const char alloc_err[] = "could not allocate cache "; 513 static const char enable_err[] = "cache already enabled"; 514 515 int 516 svc_dg_enablecache(transp, size) 517 SVCXPRT *transp; 518 u_int size; 519 { 520 struct svc_dg_data *su = su_data(transp); 521 struct cl_cache *uc; 522 523 mutex_lock(&dupreq_lock); 524 if (su->su_cache != NULL) { 525 (void) warnx(cache_enable_str, enable_err, " "); 526 mutex_unlock(&dupreq_lock); 527 return (0); 528 } 529 uc = ALLOC(struct cl_cache, 1); 530 if (uc == NULL) { 531 warnx(cache_enable_str, alloc_err, " "); 532 mutex_unlock(&dupreq_lock); 533 return (0); 534 } 535 uc->uc_size = size; 536 uc->uc_nextvictim = 0; 537 uc->uc_entries = ALLOC(cache_ptr, size * SPARSENESS); 538 if (uc->uc_entries == NULL) { 539 warnx(cache_enable_str, alloc_err, "data"); 540 FREE(uc, struct cl_cache, 1); 541 mutex_unlock(&dupreq_lock); 542 return (0); 543 } 544 MEMZERO(uc->uc_entries, cache_ptr, size * SPARSENESS); 545 uc->uc_fifo = ALLOC(cache_ptr, size); 546 if (uc->uc_fifo == NULL) { 547 warnx(cache_enable_str, alloc_err, "fifo"); 548 FREE(uc->uc_entries, cache_ptr, size * SPARSENESS); 549 FREE(uc, struct cl_cache, 1); 550 mutex_unlock(&dupreq_lock); 551 return (0); 552 } 553 MEMZERO(uc->uc_fifo, cache_ptr, size); 554 su->su_cache = (char *)(void *)uc; 555 mutex_unlock(&dupreq_lock); 556 return (1); 557 } 558 559 /* 560 * Set an entry in the cache. It assumes that the uc entry is set from 561 * the earlier call to cache_get() for the same procedure. This will always 562 * happen because cache_get() is calle by svc_dg_recv and cache_set() is called 563 * by svc_dg_reply(). All this hoopla because the right RPC parameters are 564 * not available at svc_dg_reply time. 565 */ 566 567 static const char cache_set_str[] = "cache_set: %s"; 568 static const char cache_set_err1[] = "victim not found"; 569 static const char cache_set_err2[] = "victim alloc failed"; 570 static const char cache_set_err3[] = "could not allocate new rpc buffer"; 571 572 static void 573 cache_set(xprt, replylen) 574 SVCXPRT *xprt; 575 size_t replylen; 576 { 577 cache_ptr victim; 578 cache_ptr *vicp; 579 struct svc_dg_data *su = su_data(xprt); 580 struct cl_cache *uc = (struct cl_cache *) su->su_cache; 581 u_int loc; 582 char *newbuf; 583 #ifdef RPC_CACHE_DEBUG 584 struct netconfig *nconf; 585 char *uaddr; 586 #endif 587 588 mutex_lock(&dupreq_lock); 589 /* 590 * Find space for the new entry, either by 591 * reusing an old entry, or by mallocing a new one 592 */ 593 victim = uc->uc_fifo[uc->uc_nextvictim]; 594 if (victim != NULL) { 595 loc = CACHE_LOC(xprt, victim->cache_xid); 596 for (vicp = &uc->uc_entries[loc]; 597 *vicp != NULL && *vicp != victim; 598 vicp = &(*vicp)->cache_next) 599 ; 600 if (*vicp == NULL) { 601 warnx(cache_set_str, cache_set_err1); 602 mutex_unlock(&dupreq_lock); 603 return; 604 } 605 *vicp = victim->cache_next; /* remove from cache */ 606 newbuf = victim->cache_reply; 607 } else { 608 victim = ALLOC(struct cache_node, 1); 609 if (victim == NULL) { 610 warnx(cache_set_str, cache_set_err2); 611 mutex_unlock(&dupreq_lock); 612 return; 613 } 614 newbuf = mem_alloc(su->su_iosz); 615 if (newbuf == NULL) { 616 warnx(cache_set_str, cache_set_err3); 617 FREE(victim, struct cache_node, 1); 618 mutex_unlock(&dupreq_lock); 619 return; 620 } 621 } 622 623 /* 624 * Store it away 625 */ 626 #ifdef RPC_CACHE_DEBUG 627 if (nconf = getnetconfigent(xprt->xp_netid)) { 628 uaddr = taddr2uaddr(nconf, &xprt->xp_rtaddr); 629 freenetconfigent(nconf); 630 printf( 631 "cache set for xid= %x prog=%d vers=%d proc=%d for rmtaddr=%s\n", 632 su->su_xid, uc->uc_prog, uc->uc_vers, 633 uc->uc_proc, uaddr); 634 free(uaddr); 635 } 636 #endif 637 victim->cache_replylen = replylen; 638 victim->cache_reply = rpc_buffer(xprt); 639 rpc_buffer(xprt) = newbuf; 640 xdrmem_create(&(su->su_xdrs), rpc_buffer(xprt), 641 su->su_iosz, XDR_ENCODE); 642 victim->cache_xid = su->su_xid; 643 victim->cache_proc = uc->uc_proc; 644 victim->cache_vers = uc->uc_vers; 645 victim->cache_prog = uc->uc_prog; 646 victim->cache_addr = xprt->xp_rtaddr; 647 victim->cache_addr.buf = ALLOC(char, xprt->xp_rtaddr.len); 648 (void) memcpy(victim->cache_addr.buf, xprt->xp_rtaddr.buf, 649 (size_t)xprt->xp_rtaddr.len); 650 loc = CACHE_LOC(xprt, victim->cache_xid); 651 victim->cache_next = uc->uc_entries[loc]; 652 uc->uc_entries[loc] = victim; 653 uc->uc_fifo[uc->uc_nextvictim++] = victim; 654 uc->uc_nextvictim %= uc->uc_size; 655 mutex_unlock(&dupreq_lock); 656 } 657 658 /* 659 * Try to get an entry from the cache 660 * return 1 if found, 0 if not found and set the stage for cache_set() 661 */ 662 static int 663 cache_get(xprt, msg, replyp, replylenp) 664 SVCXPRT *xprt; 665 struct rpc_msg *msg; 666 char **replyp; 667 size_t *replylenp; 668 { 669 u_int loc; 670 cache_ptr ent; 671 struct svc_dg_data *su = su_data(xprt); 672 struct cl_cache *uc = (struct cl_cache *) su->su_cache; 673 #ifdef RPC_CACHE_DEBUG 674 struct netconfig *nconf; 675 char *uaddr; 676 #endif 677 678 mutex_lock(&dupreq_lock); 679 loc = CACHE_LOC(xprt, su->su_xid); 680 for (ent = uc->uc_entries[loc]; ent != NULL; ent = ent->cache_next) { 681 if (ent->cache_xid == su->su_xid && 682 ent->cache_proc == msg->rm_call.cb_proc && 683 ent->cache_vers == msg->rm_call.cb_vers && 684 ent->cache_prog == msg->rm_call.cb_prog && 685 ent->cache_addr.len == xprt->xp_rtaddr.len && 686 (memcmp(ent->cache_addr.buf, xprt->xp_rtaddr.buf, 687 xprt->xp_rtaddr.len) == 0)) { 688 #ifdef RPC_CACHE_DEBUG 689 if (nconf = getnetconfigent(xprt->xp_netid)) { 690 uaddr = taddr2uaddr(nconf, &xprt->xp_rtaddr); 691 freenetconfigent(nconf); 692 printf( 693 "cache entry found for xid=%x prog=%d vers=%d proc=%d for rmtaddr=%s\n", 694 su->su_xid, msg->rm_call.cb_prog, 695 msg->rm_call.cb_vers, 696 msg->rm_call.cb_proc, uaddr); 697 free(uaddr); 698 } 699 #endif 700 *replyp = ent->cache_reply; 701 *replylenp = ent->cache_replylen; 702 mutex_unlock(&dupreq_lock); 703 return (1); 704 } 705 } 706 /* 707 * Failed to find entry 708 * Remember a few things so we can do a set later 709 */ 710 uc->uc_proc = msg->rm_call.cb_proc; 711 uc->uc_vers = msg->rm_call.cb_vers; 712 uc->uc_prog = msg->rm_call.cb_prog; 713 mutex_unlock(&dupreq_lock); 714 return (0); 715 } 716