1 /* $NetBSD: clnt_dg.c,v 1.4 2000/07/14 08:40:41 fvdl Exp $ */ 2 3 /* 4 * Sun RPC is a product of Sun Microsystems, Inc. and is provided for 5 * unrestricted use provided that this legend is included on all tape 6 * media and as a part of the software program in whole or part. Users 7 * may copy or modify Sun RPC without charge, but are not authorized 8 * to license or distribute it to anyone else except as part of a product or 9 * program developed by the user. 10 * 11 * SUN RPC IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING THE 12 * WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR 13 * PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE. 14 * 15 * Sun RPC is provided with no support and without any obligation on the 16 * part of Sun Microsystems, Inc. to assist in its use, correction, 17 * modification or enhancement. 18 * 19 * SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE 20 * INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY SUN RPC 21 * OR ANY PART THEREOF. 22 * 23 * In no event will Sun Microsystems, Inc. be liable for any lost revenue 24 * or profits or other special, indirect and consequential damages, even if 25 * Sun has been advised of the possibility of such damages. 26 * 27 * Sun Microsystems, Inc. 28 * 2550 Garcia Avenue 29 * Mountain View, California 94043 30 */ 31 /* 32 * Copyright (c) 1986-1991 by Sun Microsystems Inc. 33 */ 34 35 #if defined(LIBC_SCCS) && !defined(lint) 36 #ident "@(#)clnt_dg.c 1.23 94/04/22 SMI" 37 static char sccsid[] = "@(#)clnt_dg.c 1.19 89/03/16 Copyr 1988 Sun Micro"; 38 #endif 39 #include <sys/cdefs.h> 40 __FBSDID("$FreeBSD$"); 41 42 /* 43 * Implements a connectionless client side RPC. 44 */ 45 46 #include "namespace.h" 47 #include "reentrant.h" 48 #include <sys/types.h> 49 #include <sys/event.h> 50 #include <sys/time.h> 51 #include <sys/socket.h> 52 #include <sys/ioctl.h> 53 #include <arpa/inet.h> 54 #include <rpc/rpc.h> 55 #include <rpc/rpcsec_gss.h> 56 #include <errno.h> 57 #include <stdlib.h> 58 #include <string.h> 59 #include <signal.h> 60 #include <unistd.h> 61 #include <err.h> 62 #include "un-namespace.h" 63 #include "rpc_com.h" 64 #include "mt_misc.h" 65 66 67 #ifdef _FREEFALL_CONFIG 68 /* 69 * Disable RPC exponential back-off for FreeBSD.org systems. 70 */ 71 #define RPC_MAX_BACKOFF 1 /* second */ 72 #else 73 #define RPC_MAX_BACKOFF 30 /* seconds */ 74 #endif 75 76 77 static struct clnt_ops *clnt_dg_ops(void); 78 static bool_t time_not_ok(struct timeval *); 79 static enum clnt_stat clnt_dg_call(CLIENT *, rpcproc_t, xdrproc_t, void *, 80 xdrproc_t, void *, struct timeval); 81 static void clnt_dg_geterr(CLIENT *, struct rpc_err *); 82 static bool_t clnt_dg_freeres(CLIENT *, xdrproc_t, void *); 83 static void clnt_dg_abort(CLIENT *); 84 static bool_t clnt_dg_control(CLIENT *, u_int, void *); 85 static void clnt_dg_destroy(CLIENT *); 86 87 88 89 90 /* 91 * This machinery implements per-fd locks for MT-safety. It is not 92 * sufficient to do per-CLIENT handle locks for MT-safety because a 93 * user may create more than one CLIENT handle with the same fd behind 94 * it. Therfore, we allocate an array of flags (dg_fd_locks), protected 95 * by the clnt_fd_lock mutex, and an array (dg_cv) of condition variables 96 * similarly protected. Dg_fd_lock[fd] == 1 => a call is activte on some 97 * CLIENT handle created for that fd. 98 * The current implementation holds locks across the entire RPC and reply, 99 * including retransmissions. Yes, this is silly, and as soon as this 100 * code is proven to work, this should be the first thing fixed. One step 101 * at a time. 102 */ 103 static int *dg_fd_locks; 104 static cond_t *dg_cv; 105 #define release_fd_lock(fd, mask) { \ 106 mutex_lock(&clnt_fd_lock); \ 107 dg_fd_locks[fd] = 0; \ 108 mutex_unlock(&clnt_fd_lock); \ 109 thr_sigsetmask(SIG_SETMASK, &(mask), NULL); \ 110 cond_signal(&dg_cv[fd]); \ 111 } 112 113 static const char mem_err_clnt_dg[] = "clnt_dg_create: out of memory"; 114 115 /* VARIABLES PROTECTED BY clnt_fd_lock: dg_fd_locks, dg_cv */ 116 117 #define MCALL_MSG_SIZE 24 118 119 /* 120 * Private data kept per client handle 121 */ 122 struct cu_data { 123 int cu_fd; /* connections fd */ 124 bool_t cu_closeit; /* opened by library */ 125 struct sockaddr_storage cu_raddr; /* remote address */ 126 int cu_rlen; 127 struct timeval cu_wait; /* retransmit interval */ 128 struct timeval cu_total; /* total time for the call */ 129 struct rpc_err cu_error; 130 XDR cu_outxdrs; 131 u_int cu_xdrpos; 132 u_int cu_sendsz; /* send size */ 133 char cu_outhdr[MCALL_MSG_SIZE]; 134 char *cu_outbuf; 135 u_int cu_recvsz; /* recv size */ 136 int cu_async; 137 int cu_connect; /* Use connect(). */ 138 int cu_connected; /* Have done connect(). */ 139 struct kevent cu_kin; 140 int cu_kq; 141 char cu_inbuf[1]; 142 }; 143 144 /* 145 * Connection less client creation returns with client handle parameters. 146 * Default options are set, which the user can change using clnt_control(). 147 * fd should be open and bound. 148 * NB: The rpch->cl_auth is initialized to null authentication. 149 * Caller may wish to set this something more useful. 150 * 151 * sendsz and recvsz are the maximum allowable packet sizes that can be 152 * sent and received. Normally they are the same, but they can be 153 * changed to improve the program efficiency and buffer allocation. 154 * If they are 0, use the transport default. 155 * 156 * If svcaddr is NULL, returns NULL. 157 */ 158 CLIENT * 159 clnt_dg_create(fd, svcaddr, program, version, sendsz, recvsz) 160 int fd; /* open file descriptor */ 161 const struct netbuf *svcaddr; /* servers address */ 162 rpcprog_t program; /* program number */ 163 rpcvers_t version; /* version number */ 164 u_int sendsz; /* buffer recv size */ 165 u_int recvsz; /* buffer send size */ 166 { 167 CLIENT *cl = NULL; /* client handle */ 168 struct cu_data *cu = NULL; /* private data */ 169 struct timeval now; 170 struct rpc_msg call_msg; 171 sigset_t mask; 172 sigset_t newmask; 173 struct __rpc_sockinfo si; 174 int one = 1; 175 176 sigfillset(&newmask); 177 thr_sigsetmask(SIG_SETMASK, &newmask, &mask); 178 mutex_lock(&clnt_fd_lock); 179 if (dg_fd_locks == (int *) NULL) { 180 int cv_allocsz; 181 size_t fd_allocsz; 182 int dtbsize = __rpc_dtbsize(); 183 184 fd_allocsz = dtbsize * sizeof (int); 185 dg_fd_locks = (int *) mem_alloc(fd_allocsz); 186 if (dg_fd_locks == (int *) NULL) { 187 mutex_unlock(&clnt_fd_lock); 188 thr_sigsetmask(SIG_SETMASK, &(mask), NULL); 189 goto err1; 190 } else 191 memset(dg_fd_locks, '\0', fd_allocsz); 192 193 cv_allocsz = dtbsize * sizeof (cond_t); 194 dg_cv = (cond_t *) mem_alloc(cv_allocsz); 195 if (dg_cv == (cond_t *) NULL) { 196 mem_free(dg_fd_locks, fd_allocsz); 197 dg_fd_locks = (int *) NULL; 198 mutex_unlock(&clnt_fd_lock); 199 thr_sigsetmask(SIG_SETMASK, &(mask), NULL); 200 goto err1; 201 } else { 202 int i; 203 204 for (i = 0; i < dtbsize; i++) 205 cond_init(&dg_cv[i], 0, (void *) 0); 206 } 207 } 208 209 mutex_unlock(&clnt_fd_lock); 210 thr_sigsetmask(SIG_SETMASK, &(mask), NULL); 211 212 if (svcaddr == NULL) { 213 rpc_createerr.cf_stat = RPC_UNKNOWNADDR; 214 return (NULL); 215 } 216 217 if (!__rpc_fd2sockinfo(fd, &si)) { 218 rpc_createerr.cf_stat = RPC_TLIERROR; 219 rpc_createerr.cf_error.re_errno = 0; 220 return (NULL); 221 } 222 /* 223 * Find the receive and the send size 224 */ 225 sendsz = __rpc_get_t_size(si.si_af, si.si_proto, (int)sendsz); 226 recvsz = __rpc_get_t_size(si.si_af, si.si_proto, (int)recvsz); 227 if ((sendsz == 0) || (recvsz == 0)) { 228 rpc_createerr.cf_stat = RPC_TLIERROR; /* XXX */ 229 rpc_createerr.cf_error.re_errno = 0; 230 return (NULL); 231 } 232 233 if ((cl = mem_alloc(sizeof (CLIENT))) == NULL) 234 goto err1; 235 /* 236 * Should be multiple of 4 for XDR. 237 */ 238 sendsz = ((sendsz + 3) / 4) * 4; 239 recvsz = ((recvsz + 3) / 4) * 4; 240 cu = mem_alloc(sizeof (*cu) + sendsz + recvsz); 241 if (cu == NULL) 242 goto err1; 243 (void) memcpy(&cu->cu_raddr, svcaddr->buf, (size_t)svcaddr->len); 244 cu->cu_rlen = svcaddr->len; 245 cu->cu_outbuf = &cu->cu_inbuf[recvsz]; 246 /* Other values can also be set through clnt_control() */ 247 cu->cu_wait.tv_sec = 15; /* heuristically chosen */ 248 cu->cu_wait.tv_usec = 0; 249 cu->cu_total.tv_sec = -1; 250 cu->cu_total.tv_usec = -1; 251 cu->cu_sendsz = sendsz; 252 cu->cu_recvsz = recvsz; 253 cu->cu_async = FALSE; 254 cu->cu_connect = FALSE; 255 cu->cu_connected = FALSE; 256 (void) gettimeofday(&now, NULL); 257 call_msg.rm_xid = __RPC_GETXID(&now); 258 call_msg.rm_call.cb_prog = program; 259 call_msg.rm_call.cb_vers = version; 260 xdrmem_create(&(cu->cu_outxdrs), cu->cu_outhdr, MCALL_MSG_SIZE, 261 XDR_ENCODE); 262 if (! xdr_callhdr(&cu->cu_outxdrs, &call_msg)) { 263 rpc_createerr.cf_stat = RPC_CANTENCODEARGS; /* XXX */ 264 rpc_createerr.cf_error.re_errno = 0; 265 goto err2; 266 } 267 cu->cu_xdrpos = XDR_GETPOS(&(cu->cu_outxdrs)); 268 XDR_DESTROY(&cu->cu_outxdrs); 269 xdrmem_create(&cu->cu_outxdrs, cu->cu_outbuf, sendsz, XDR_ENCODE); 270 271 /* XXX fvdl - do we still want this? */ 272 #if 0 273 (void)bindresvport_sa(fd, (struct sockaddr *)svcaddr->buf); 274 #endif 275 _ioctl(fd, FIONBIO, (char *)(void *)&one); 276 277 /* 278 * By default, closeit is always FALSE. It is users responsibility 279 * to do a close on it, else the user may use clnt_control 280 * to let clnt_destroy do it for him/her. 281 */ 282 cu->cu_closeit = FALSE; 283 cu->cu_fd = fd; 284 cl->cl_ops = clnt_dg_ops(); 285 cl->cl_private = (caddr_t)(void *)cu; 286 cl->cl_auth = authnone_create(); 287 cl->cl_tp = NULL; 288 cl->cl_netid = NULL; 289 cu->cu_kq = -1; 290 EV_SET(&cu->cu_kin, cu->cu_fd, EVFILT_READ, EV_ADD, 0, 0, 0); 291 return (cl); 292 err1: 293 warnx(mem_err_clnt_dg); 294 rpc_createerr.cf_stat = RPC_SYSTEMERROR; 295 rpc_createerr.cf_error.re_errno = errno; 296 err2: 297 if (cl) { 298 mem_free(cl, sizeof (CLIENT)); 299 if (cu) 300 mem_free(cu, sizeof (*cu) + sendsz + recvsz); 301 } 302 return (NULL); 303 } 304 305 static enum clnt_stat 306 clnt_dg_call(cl, proc, xargs, argsp, xresults, resultsp, utimeout) 307 CLIENT *cl; /* client handle */ 308 rpcproc_t proc; /* procedure number */ 309 xdrproc_t xargs; /* xdr routine for args */ 310 void *argsp; /* pointer to args */ 311 xdrproc_t xresults; /* xdr routine for results */ 312 void *resultsp; /* pointer to results */ 313 struct timeval utimeout; /* seconds to wait before giving up */ 314 { 315 struct cu_data *cu = (struct cu_data *)cl->cl_private; 316 XDR *xdrs; 317 size_t outlen = 0; 318 struct rpc_msg reply_msg; 319 XDR reply_xdrs; 320 bool_t ok; 321 int nrefreshes = 2; /* number of times to refresh cred */ 322 int nretries = 0; /* number of times we retransmitted */ 323 struct timeval timeout; 324 struct timeval retransmit_time; 325 struct timeval next_sendtime, starttime, time_waited, tv; 326 struct timespec ts; 327 struct kevent kv; 328 struct sockaddr *sa; 329 sigset_t mask; 330 sigset_t newmask; 331 socklen_t inlen, salen; 332 ssize_t recvlen = 0; 333 int kin_len, n, rpc_lock_value; 334 u_int32_t xid; 335 336 outlen = 0; 337 sigfillset(&newmask); 338 thr_sigsetmask(SIG_SETMASK, &newmask, &mask); 339 mutex_lock(&clnt_fd_lock); 340 while (dg_fd_locks[cu->cu_fd]) 341 cond_wait(&dg_cv[cu->cu_fd], &clnt_fd_lock); 342 if (__isthreaded) 343 rpc_lock_value = 1; 344 else 345 rpc_lock_value = 0; 346 dg_fd_locks[cu->cu_fd] = rpc_lock_value; 347 mutex_unlock(&clnt_fd_lock); 348 if (cu->cu_total.tv_usec == -1) { 349 timeout = utimeout; /* use supplied timeout */ 350 } else { 351 timeout = cu->cu_total; /* use default timeout */ 352 } 353 354 if (cu->cu_connect && !cu->cu_connected) { 355 if (_connect(cu->cu_fd, (struct sockaddr *)&cu->cu_raddr, 356 cu->cu_rlen) < 0) { 357 cu->cu_error.re_errno = errno; 358 cu->cu_error.re_status = RPC_CANTSEND; 359 goto out; 360 } 361 cu->cu_connected = 1; 362 } 363 if (cu->cu_connected) { 364 sa = NULL; 365 salen = 0; 366 } else { 367 sa = (struct sockaddr *)&cu->cu_raddr; 368 salen = cu->cu_rlen; 369 } 370 time_waited.tv_sec = 0; 371 time_waited.tv_usec = 0; 372 retransmit_time = next_sendtime = cu->cu_wait; 373 gettimeofday(&starttime, NULL); 374 375 /* Clean up in case the last call ended in a longjmp(3) call. */ 376 if (cu->cu_kq >= 0) 377 _close(cu->cu_kq); 378 if ((cu->cu_kq = kqueue()) < 0) { 379 cu->cu_error.re_errno = errno; 380 cu->cu_error.re_status = RPC_CANTSEND; 381 goto out; 382 } 383 kin_len = 1; 384 385 call_again: 386 if (cu->cu_async == TRUE && xargs == NULL) 387 goto get_reply; 388 /* 389 * the transaction is the first thing in the out buffer 390 * XXX Yes, and it's in network byte order, so we should to 391 * be careful when we increment it, shouldn't we. 392 */ 393 xid = ntohl(*(u_int32_t *)(void *)(cu->cu_outhdr)); 394 xid++; 395 *(u_int32_t *)(void *)(cu->cu_outhdr) = htonl(xid); 396 call_again_same_xid: 397 xdrs = &(cu->cu_outxdrs); 398 xdrs->x_op = XDR_ENCODE; 399 XDR_SETPOS(xdrs, 0); 400 401 if (cl->cl_auth->ah_cred.oa_flavor != RPCSEC_GSS) { 402 if ((! XDR_PUTBYTES(xdrs, cu->cu_outhdr, cu->cu_xdrpos)) || 403 (! XDR_PUTINT32(xdrs, &proc)) || 404 (! AUTH_MARSHALL(cl->cl_auth, xdrs)) || 405 (! (*xargs)(xdrs, argsp))) { 406 cu->cu_error.re_status = RPC_CANTENCODEARGS; 407 goto out; 408 } 409 } else { 410 *(uint32_t *) &cu->cu_outhdr[cu->cu_xdrpos] = htonl(proc); 411 if (!__rpc_gss_wrap(cl->cl_auth, cu->cu_outhdr, 412 cu->cu_xdrpos + sizeof(uint32_t), 413 xdrs, xargs, argsp)) { 414 cu->cu_error.re_status = RPC_CANTENCODEARGS; 415 goto out; 416 } 417 } 418 outlen = (size_t)XDR_GETPOS(xdrs); 419 420 send_again: 421 if (_sendto(cu->cu_fd, cu->cu_outbuf, outlen, 0, sa, salen) != outlen) { 422 cu->cu_error.re_errno = errno; 423 cu->cu_error.re_status = RPC_CANTSEND; 424 goto out; 425 } 426 427 /* 428 * Hack to provide rpc-based message passing 429 */ 430 if (timeout.tv_sec == 0 && timeout.tv_usec == 0) { 431 cu->cu_error.re_status = RPC_TIMEDOUT; 432 goto out; 433 } 434 435 get_reply: 436 437 /* 438 * sub-optimal code appears here because we have 439 * some clock time to spare while the packets are in flight. 440 * (We assume that this is actually only executed once.) 441 */ 442 reply_msg.acpted_rply.ar_verf = _null_auth; 443 if (cl->cl_auth->ah_cred.oa_flavor != RPCSEC_GSS) { 444 reply_msg.acpted_rply.ar_results.where = resultsp; 445 reply_msg.acpted_rply.ar_results.proc = xresults; 446 } else { 447 reply_msg.acpted_rply.ar_results.where = NULL; 448 reply_msg.acpted_rply.ar_results.proc = (xdrproc_t)xdr_void; 449 } 450 451 for (;;) { 452 /* Decide how long to wait. */ 453 if (timercmp(&next_sendtime, &timeout, <)) 454 timersub(&next_sendtime, &time_waited, &tv); 455 else 456 timersub(&timeout, &time_waited, &tv); 457 if (tv.tv_sec < 0 || tv.tv_usec < 0) 458 tv.tv_sec = tv.tv_usec = 0; 459 TIMEVAL_TO_TIMESPEC(&tv, &ts); 460 461 n = _kevent(cu->cu_kq, &cu->cu_kin, kin_len, &kv, 1, &ts); 462 /* We don't need to register the event again. */ 463 kin_len = 0; 464 465 if (n == 1) { 466 if (kv.flags & EV_ERROR) { 467 cu->cu_error.re_errno = kv.data; 468 cu->cu_error.re_status = RPC_CANTRECV; 469 goto out; 470 } 471 /* We have some data now */ 472 do { 473 recvlen = _recvfrom(cu->cu_fd, cu->cu_inbuf, 474 cu->cu_recvsz, 0, NULL, NULL); 475 } while (recvlen < 0 && errno == EINTR); 476 if (recvlen < 0 && errno != EWOULDBLOCK) { 477 cu->cu_error.re_errno = errno; 478 cu->cu_error.re_status = RPC_CANTRECV; 479 goto out; 480 } 481 if (recvlen >= sizeof(u_int32_t) && 482 (cu->cu_async == TRUE || 483 *((u_int32_t *)(void *)(cu->cu_inbuf)) == 484 *((u_int32_t *)(void *)(cu->cu_outbuf)))) { 485 /* We now assume we have the proper reply. */ 486 break; 487 } 488 } 489 if (n == -1 && errno != EINTR) { 490 cu->cu_error.re_errno = errno; 491 cu->cu_error.re_status = RPC_CANTRECV; 492 goto out; 493 } 494 gettimeofday(&tv, NULL); 495 timersub(&tv, &starttime, &time_waited); 496 497 /* Check for timeout. */ 498 if (timercmp(&time_waited, &timeout, >)) { 499 cu->cu_error.re_status = RPC_TIMEDOUT; 500 goto out; 501 } 502 503 /* Retransmit if necessary. */ 504 if (timercmp(&time_waited, &next_sendtime, >)) { 505 /* update retransmit_time */ 506 if (retransmit_time.tv_sec < RPC_MAX_BACKOFF) 507 timeradd(&retransmit_time, &retransmit_time, 508 &retransmit_time); 509 timeradd(&next_sendtime, &retransmit_time, 510 &next_sendtime); 511 nretries++; 512 513 /* 514 * When retransmitting a RPCSEC_GSS message, 515 * we must use a new sequence number (handled 516 * by __rpc_gss_wrap above). 517 */ 518 if (cl->cl_auth->ah_cred.oa_flavor != RPCSEC_GSS) 519 goto send_again; 520 else 521 goto call_again_same_xid; 522 } 523 } 524 inlen = (socklen_t)recvlen; 525 526 /* 527 * now decode and validate the response 528 */ 529 530 xdrmem_create(&reply_xdrs, cu->cu_inbuf, (u_int)recvlen, XDR_DECODE); 531 ok = xdr_replymsg(&reply_xdrs, &reply_msg); 532 /* XDR_DESTROY(&reply_xdrs); save a few cycles on noop destroy */ 533 if (ok) { 534 if ((reply_msg.rm_reply.rp_stat == MSG_ACCEPTED) && 535 (reply_msg.acpted_rply.ar_stat == SUCCESS)) 536 cu->cu_error.re_status = RPC_SUCCESS; 537 else 538 _seterr_reply(&reply_msg, &(cu->cu_error)); 539 540 if (cu->cu_error.re_status == RPC_SUCCESS) { 541 if (! AUTH_VALIDATE(cl->cl_auth, 542 &reply_msg.acpted_rply.ar_verf)) { 543 if (nretries && 544 cl->cl_auth->ah_cred.oa_flavor 545 == RPCSEC_GSS) 546 /* 547 * If we retransmitted, its 548 * possible that we will 549 * receive a reply for one of 550 * the earlier transmissions 551 * (which will use an older 552 * RPCSEC_GSS sequence 553 * number). In this case, just 554 * go back and listen for a 555 * new reply. We could keep a 556 * record of all the seq 557 * numbers we have transmitted 558 * so far so that we could 559 * accept a reply for any of 560 * them here. 561 */ 562 goto get_reply; 563 cu->cu_error.re_status = RPC_AUTHERROR; 564 cu->cu_error.re_why = AUTH_INVALIDRESP; 565 } else { 566 if (cl->cl_auth->ah_cred.oa_flavor 567 == RPCSEC_GSS) { 568 if (!__rpc_gss_unwrap(cl->cl_auth, 569 &reply_xdrs, xresults, 570 resultsp)) 571 cu->cu_error.re_status = 572 RPC_CANTDECODERES; 573 } 574 } 575 if (reply_msg.acpted_rply.ar_verf.oa_base != NULL) { 576 xdrs->x_op = XDR_FREE; 577 (void) xdr_opaque_auth(xdrs, 578 &(reply_msg.acpted_rply.ar_verf)); 579 } 580 } /* end successful completion */ 581 /* 582 * If unsuccesful AND error is an authentication error 583 * then refresh credentials and try again, else break 584 */ 585 else if (cu->cu_error.re_status == RPC_AUTHERROR) 586 /* maybe our credentials need to be refreshed ... */ 587 if (nrefreshes > 0 && 588 AUTH_REFRESH(cl->cl_auth, &reply_msg)) { 589 nrefreshes--; 590 goto call_again; 591 } 592 /* end of unsuccessful completion */ 593 } /* end of valid reply message */ 594 else { 595 cu->cu_error.re_status = RPC_CANTDECODERES; 596 597 } 598 out: 599 if (cu->cu_kq >= 0) 600 _close(cu->cu_kq); 601 cu->cu_kq = -1; 602 release_fd_lock(cu->cu_fd, mask); 603 return (cu->cu_error.re_status); 604 } 605 606 static void 607 clnt_dg_geterr(cl, errp) 608 CLIENT *cl; 609 struct rpc_err *errp; 610 { 611 struct cu_data *cu = (struct cu_data *)cl->cl_private; 612 613 *errp = cu->cu_error; 614 } 615 616 static bool_t 617 clnt_dg_freeres(cl, xdr_res, res_ptr) 618 CLIENT *cl; 619 xdrproc_t xdr_res; 620 void *res_ptr; 621 { 622 struct cu_data *cu = (struct cu_data *)cl->cl_private; 623 XDR *xdrs = &(cu->cu_outxdrs); 624 bool_t dummy; 625 sigset_t mask; 626 sigset_t newmask; 627 628 sigfillset(&newmask); 629 thr_sigsetmask(SIG_SETMASK, &newmask, &mask); 630 mutex_lock(&clnt_fd_lock); 631 while (dg_fd_locks[cu->cu_fd]) 632 cond_wait(&dg_cv[cu->cu_fd], &clnt_fd_lock); 633 xdrs->x_op = XDR_FREE; 634 dummy = (*xdr_res)(xdrs, res_ptr); 635 mutex_unlock(&clnt_fd_lock); 636 thr_sigsetmask(SIG_SETMASK, &mask, NULL); 637 cond_signal(&dg_cv[cu->cu_fd]); 638 return (dummy); 639 } 640 641 /*ARGSUSED*/ 642 static void 643 clnt_dg_abort(h) 644 CLIENT *h; 645 { 646 } 647 648 static bool_t 649 clnt_dg_control(cl, request, info) 650 CLIENT *cl; 651 u_int request; 652 void *info; 653 { 654 struct cu_data *cu = (struct cu_data *)cl->cl_private; 655 struct netbuf *addr; 656 sigset_t mask; 657 sigset_t newmask; 658 int rpc_lock_value; 659 660 sigfillset(&newmask); 661 thr_sigsetmask(SIG_SETMASK, &newmask, &mask); 662 mutex_lock(&clnt_fd_lock); 663 while (dg_fd_locks[cu->cu_fd]) 664 cond_wait(&dg_cv[cu->cu_fd], &clnt_fd_lock); 665 if (__isthreaded) 666 rpc_lock_value = 1; 667 else 668 rpc_lock_value = 0; 669 dg_fd_locks[cu->cu_fd] = rpc_lock_value; 670 mutex_unlock(&clnt_fd_lock); 671 switch (request) { 672 case CLSET_FD_CLOSE: 673 cu->cu_closeit = TRUE; 674 release_fd_lock(cu->cu_fd, mask); 675 return (TRUE); 676 case CLSET_FD_NCLOSE: 677 cu->cu_closeit = FALSE; 678 release_fd_lock(cu->cu_fd, mask); 679 return (TRUE); 680 } 681 682 /* for other requests which use info */ 683 if (info == NULL) { 684 release_fd_lock(cu->cu_fd, mask); 685 return (FALSE); 686 } 687 switch (request) { 688 case CLSET_TIMEOUT: 689 if (time_not_ok((struct timeval *)info)) { 690 release_fd_lock(cu->cu_fd, mask); 691 return (FALSE); 692 } 693 cu->cu_total = *(struct timeval *)info; 694 break; 695 case CLGET_TIMEOUT: 696 *(struct timeval *)info = cu->cu_total; 697 break; 698 case CLGET_SERVER_ADDR: /* Give him the fd address */ 699 /* Now obsolete. Only for backward compatibility */ 700 (void) memcpy(info, &cu->cu_raddr, (size_t)cu->cu_rlen); 701 break; 702 case CLSET_RETRY_TIMEOUT: 703 if (time_not_ok((struct timeval *)info)) { 704 release_fd_lock(cu->cu_fd, mask); 705 return (FALSE); 706 } 707 cu->cu_wait = *(struct timeval *)info; 708 break; 709 case CLGET_RETRY_TIMEOUT: 710 *(struct timeval *)info = cu->cu_wait; 711 break; 712 case CLGET_FD: 713 *(int *)info = cu->cu_fd; 714 break; 715 case CLGET_SVC_ADDR: 716 addr = (struct netbuf *)info; 717 addr->buf = &cu->cu_raddr; 718 addr->len = cu->cu_rlen; 719 addr->maxlen = sizeof cu->cu_raddr; 720 break; 721 case CLSET_SVC_ADDR: /* set to new address */ 722 addr = (struct netbuf *)info; 723 if (addr->len < sizeof cu->cu_raddr) { 724 release_fd_lock(cu->cu_fd, mask); 725 return (FALSE); 726 } 727 (void) memcpy(&cu->cu_raddr, addr->buf, addr->len); 728 cu->cu_rlen = addr->len; 729 break; 730 case CLGET_XID: 731 /* 732 * use the knowledge that xid is the 733 * first element in the call structure *. 734 * This will get the xid of the PREVIOUS call 735 */ 736 *(u_int32_t *)info = 737 ntohl(*(u_int32_t *)(void *)cu->cu_outhdr); 738 break; 739 740 case CLSET_XID: 741 /* This will set the xid of the NEXT call */ 742 *(u_int32_t *)(void *)cu->cu_outhdr = 743 htonl(*(u_int32_t *)info - 1); 744 /* decrement by 1 as clnt_dg_call() increments once */ 745 break; 746 747 case CLGET_VERS: 748 /* 749 * This RELIES on the information that, in the call body, 750 * the version number field is the fifth field from the 751 * begining of the RPC header. MUST be changed if the 752 * call_struct is changed 753 */ 754 *(u_int32_t *)info = 755 ntohl(*(u_int32_t *)(void *)(cu->cu_outhdr + 756 4 * BYTES_PER_XDR_UNIT)); 757 break; 758 759 case CLSET_VERS: 760 *(u_int32_t *)(void *)(cu->cu_outhdr + 4 * BYTES_PER_XDR_UNIT) 761 = htonl(*(u_int32_t *)info); 762 break; 763 764 case CLGET_PROG: 765 /* 766 * This RELIES on the information that, in the call body, 767 * the program number field is the fourth field from the 768 * begining of the RPC header. MUST be changed if the 769 * call_struct is changed 770 */ 771 *(u_int32_t *)info = 772 ntohl(*(u_int32_t *)(void *)(cu->cu_outhdr + 773 3 * BYTES_PER_XDR_UNIT)); 774 break; 775 776 case CLSET_PROG: 777 *(u_int32_t *)(void *)(cu->cu_outhdr + 3 * BYTES_PER_XDR_UNIT) 778 = htonl(*(u_int32_t *)info); 779 break; 780 case CLSET_ASYNC: 781 cu->cu_async = *(int *)info; 782 break; 783 case CLSET_CONNECT: 784 cu->cu_connect = *(int *)info; 785 break; 786 default: 787 release_fd_lock(cu->cu_fd, mask); 788 return (FALSE); 789 } 790 release_fd_lock(cu->cu_fd, mask); 791 return (TRUE); 792 } 793 794 static void 795 clnt_dg_destroy(cl) 796 CLIENT *cl; 797 { 798 struct cu_data *cu = (struct cu_data *)cl->cl_private; 799 int cu_fd = cu->cu_fd; 800 sigset_t mask; 801 sigset_t newmask; 802 803 sigfillset(&newmask); 804 thr_sigsetmask(SIG_SETMASK, &newmask, &mask); 805 mutex_lock(&clnt_fd_lock); 806 while (dg_fd_locks[cu_fd]) 807 cond_wait(&dg_cv[cu_fd], &clnt_fd_lock); 808 if (cu->cu_closeit) 809 (void)_close(cu_fd); 810 if (cu->cu_kq >= 0) 811 _close(cu->cu_kq); 812 XDR_DESTROY(&(cu->cu_outxdrs)); 813 mem_free(cu, (sizeof (*cu) + cu->cu_sendsz + cu->cu_recvsz)); 814 if (cl->cl_netid && cl->cl_netid[0]) 815 mem_free(cl->cl_netid, strlen(cl->cl_netid) +1); 816 if (cl->cl_tp && cl->cl_tp[0]) 817 mem_free(cl->cl_tp, strlen(cl->cl_tp) +1); 818 mem_free(cl, sizeof (CLIENT)); 819 mutex_unlock(&clnt_fd_lock); 820 thr_sigsetmask(SIG_SETMASK, &mask, NULL); 821 cond_signal(&dg_cv[cu_fd]); 822 } 823 824 static struct clnt_ops * 825 clnt_dg_ops() 826 { 827 static struct clnt_ops ops; 828 sigset_t mask; 829 sigset_t newmask; 830 831 /* VARIABLES PROTECTED BY ops_lock: ops */ 832 833 sigfillset(&newmask); 834 thr_sigsetmask(SIG_SETMASK, &newmask, &mask); 835 mutex_lock(&ops_lock); 836 if (ops.cl_call == NULL) { 837 ops.cl_call = clnt_dg_call; 838 ops.cl_abort = clnt_dg_abort; 839 ops.cl_geterr = clnt_dg_geterr; 840 ops.cl_freeres = clnt_dg_freeres; 841 ops.cl_destroy = clnt_dg_destroy; 842 ops.cl_control = clnt_dg_control; 843 } 844 mutex_unlock(&ops_lock); 845 thr_sigsetmask(SIG_SETMASK, &mask, NULL); 846 return (&ops); 847 } 848 849 /* 850 * Make sure that the time is not garbage. -1 value is allowed. 851 */ 852 static bool_t 853 time_not_ok(t) 854 struct timeval *t; 855 { 856 return (t->tv_sec < -1 || t->tv_sec > 100000000 || 857 t->tv_usec < -1 || t->tv_usec > 1000000); 858 } 859 860