xref: /freebsd/lib/libc/regex/regcomp.c (revision ee51cfe17ce50ca189c85280cbe3c3aa7b6dd7f9)
1  /*-
2   * Copyright (c) 1992, 1993, 1994 Henry Spencer.
3   * Copyright (c) 1992, 1993, 1994
4   *	The Regents of the University of California.  All rights reserved.
5   *
6   * Copyright (c) 2011 The FreeBSD Foundation
7   * All rights reserved.
8   * Portions of this software were developed by David Chisnall
9   * under sponsorship from the FreeBSD Foundation.
10   *
11   * This code is derived from software contributed to Berkeley by
12   * Henry Spencer.
13   *
14   * Redistribution and use in source and binary forms, with or without
15   * modification, are permitted provided that the following conditions
16   * are met:
17   * 1. Redistributions of source code must retain the above copyright
18   *    notice, this list of conditions and the following disclaimer.
19   * 2. Redistributions in binary form must reproduce the above copyright
20   *    notice, this list of conditions and the following disclaimer in the
21   *    documentation and/or other materials provided with the distribution.
22   * 3. Neither the name of the University nor the names of its contributors
23   *    may be used to endorse or promote products derived from this software
24   *    without specific prior written permission.
25   *
26   * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27   * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28   * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29   * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30   * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31   * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32   * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33   * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34   * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35   * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36   * SUCH DAMAGE.
37   *
38   *	@(#)regcomp.c	8.5 (Berkeley) 3/20/94
39   */
40  
41  #if defined(LIBC_SCCS) && !defined(lint)
42  static char sccsid[] = "@(#)regcomp.c	8.5 (Berkeley) 3/20/94";
43  #endif /* LIBC_SCCS and not lint */
44  #include <sys/cdefs.h>
45  __FBSDID("$FreeBSD$");
46  
47  #include <sys/types.h>
48  #include <stdio.h>
49  #include <string.h>
50  #include <ctype.h>
51  #include <limits.h>
52  #include <stdlib.h>
53  #include <regex.h>
54  #include <stdbool.h>
55  #include <wchar.h>
56  #include <wctype.h>
57  
58  #include "collate.h"
59  
60  #include "utils.h"
61  #include "regex2.h"
62  
63  #include "cname.h"
64  
65  /*
66   * Branching context, used to keep track of branch state for all of the branch-
67   * aware functions. In addition to keeping track of branch positions for the
68   * p_branch_* functions, we use this to simplify some clumsiness in BREs for
69   * detection of whether ^ is acting as an anchor or being used erroneously and
70   * also for whether we're in a sub-expression or not.
71   */
72  struct branchc {
73  	sopno start;
74  	sopno back;
75  	sopno fwd;
76  
77  	int nbranch;
78  	int nchain;
79  	bool outer;
80  	bool terminate;
81  };
82  
83  /*
84   * parse structure, passed up and down to avoid global variables and
85   * other clumsinesses
86   */
87  struct parse {
88  	const char *next;	/* next character in RE */
89  	const char *end;	/* end of string (-> NUL normally) */
90  	int error;		/* has an error been seen? */
91  	sop *strip;		/* malloced strip */
92  	sopno ssize;		/* malloced strip size (allocated) */
93  	sopno slen;		/* malloced strip length (used) */
94  	int ncsalloc;		/* number of csets allocated */
95  	struct re_guts *g;
96  #	define	NPAREN	10	/* we need to remember () 1-9 for back refs */
97  	sopno pbegin[NPAREN];	/* -> ( ([0] unused) */
98  	sopno pend[NPAREN];	/* -> ) ([0] unused) */
99  	bool allowbranch;	/* can this expression branch? */
100  	bool bre;		/* convenience; is this a BRE? */
101  	bool (*parse_expr)(struct parse *, struct branchc *);
102  	void (*pre_parse)(struct parse *, struct branchc *);
103  	void (*post_parse)(struct parse *, struct branchc *);
104  };
105  
106  /* ========= begin header generated by ./mkh ========= */
107  #ifdef __cplusplus
108  extern "C" {
109  #endif
110  
111  /* === regcomp.c === */
112  static bool p_ere_exp(struct parse *p, struct branchc *bc);
113  static void p_str(struct parse *p);
114  static int p_branch_eat_delim(struct parse *p, struct branchc *bc);
115  static void p_branch_ins_offset(struct parse *p, struct branchc *bc);
116  static void p_branch_fix_tail(struct parse *p, struct branchc *bc);
117  static bool p_branch_empty(struct parse *p, struct branchc *bc);
118  static bool p_branch_do(struct parse *p, struct branchc *bc);
119  static void p_bre_pre_parse(struct parse *p, struct branchc *bc);
120  static void p_bre_post_parse(struct parse *p, struct branchc *bc);
121  static void p_re(struct parse *p, int end1, int end2);
122  static bool p_simp_re(struct parse *p, struct branchc *bc);
123  static int p_count(struct parse *p);
124  static void p_bracket(struct parse *p);
125  static void p_b_term(struct parse *p, cset *cs);
126  static void p_b_cclass(struct parse *p, cset *cs);
127  static void p_b_eclass(struct parse *p, cset *cs);
128  static wint_t p_b_symbol(struct parse *p);
129  static wint_t p_b_coll_elem(struct parse *p, wint_t endc);
130  static wint_t othercase(wint_t ch);
131  static void bothcases(struct parse *p, wint_t ch);
132  static void ordinary(struct parse *p, wint_t ch);
133  static void nonnewline(struct parse *p);
134  static void repeat(struct parse *p, sopno start, int from, int to);
135  static int seterr(struct parse *p, int e);
136  static cset *allocset(struct parse *p);
137  static void freeset(struct parse *p, cset *cs);
138  static void CHadd(struct parse *p, cset *cs, wint_t ch);
139  static void CHaddrange(struct parse *p, cset *cs, wint_t min, wint_t max);
140  static void CHaddtype(struct parse *p, cset *cs, wctype_t wct);
141  static wint_t singleton(cset *cs);
142  static sopno dupl(struct parse *p, sopno start, sopno finish);
143  static void doemit(struct parse *p, sop op, size_t opnd);
144  static void doinsert(struct parse *p, sop op, size_t opnd, sopno pos);
145  static void dofwd(struct parse *p, sopno pos, sop value);
146  static int enlarge(struct parse *p, sopno size);
147  static void stripsnug(struct parse *p, struct re_guts *g);
148  static void findmust(struct parse *p, struct re_guts *g);
149  static int altoffset(sop *scan, int offset);
150  static void computejumps(struct parse *p, struct re_guts *g);
151  static void computematchjumps(struct parse *p, struct re_guts *g);
152  static sopno pluscount(struct parse *p, struct re_guts *g);
153  static wint_t wgetnext(struct parse *p);
154  
155  #ifdef __cplusplus
156  }
157  #endif
158  /* ========= end header generated by ./mkh ========= */
159  
160  static char nuls[10];		/* place to point scanner in event of error */
161  
162  /*
163   * macros for use with parse structure
164   * BEWARE:  these know that the parse structure is named `p' !!!
165   */
166  #define	PEEK()	(*p->next)
167  #define	PEEK2()	(*(p->next+1))
168  #define	MORE()	(p->next < p->end)
169  #define	MORE2()	(p->next+1 < p->end)
170  #define	SEE(c)	(MORE() && PEEK() == (c))
171  #define	SEETWO(a, b)	(MORE() && MORE2() && PEEK() == (a) && PEEK2() == (b))
172  #define	SEESPEC(a)	(p->bre ? SEETWO('\\', a) : SEE(a))
173  #define	EAT(c)	((SEE(c)) ? (NEXT(), 1) : 0)
174  #define	EATTWO(a, b)	((SEETWO(a, b)) ? (NEXT2(), 1) : 0)
175  #define	NEXT()	(p->next++)
176  #define	NEXT2()	(p->next += 2)
177  #define	NEXTn(n)	(p->next += (n))
178  #define	GETNEXT()	(*p->next++)
179  #define	WGETNEXT()	wgetnext(p)
180  #define	SETERROR(e)	seterr(p, (e))
181  #define	REQUIRE(co, e)	((co) || SETERROR(e))
182  #define	MUSTSEE(c, e)	(REQUIRE(MORE() && PEEK() == (c), e))
183  #define	MUSTEAT(c, e)	(REQUIRE(MORE() && GETNEXT() == (c), e))
184  #define	MUSTNOTSEE(c, e)	(REQUIRE(!MORE() || PEEK() != (c), e))
185  #define	EMIT(op, sopnd)	doemit(p, (sop)(op), (size_t)(sopnd))
186  #define	INSERT(op, pos)	doinsert(p, (sop)(op), HERE()-(pos)+1, pos)
187  #define	AHEAD(pos)		dofwd(p, pos, HERE()-(pos))
188  #define	ASTERN(sop, pos)	EMIT(sop, HERE()-pos)
189  #define	HERE()		(p->slen)
190  #define	THERE()		(p->slen - 1)
191  #define	THERETHERE()	(p->slen - 2)
192  #define	DROP(n)	(p->slen -= (n))
193  
194  #ifndef NDEBUG
195  static int never = 0;		/* for use in asserts; shuts lint up */
196  #else
197  #define	never	0		/* some <assert.h>s have bugs too */
198  #endif
199  
200  /* Macro used by computejump()/computematchjump() */
201  #define MIN(a,b)	((a)<(b)?(a):(b))
202  
203  /*
204   - regcomp - interface for parser and compilation
205   = extern int regcomp(regex_t *, const char *, int);
206   = #define	REG_BASIC	0000
207   = #define	REG_EXTENDED	0001
208   = #define	REG_ICASE	0002
209   = #define	REG_NOSUB	0004
210   = #define	REG_NEWLINE	0010
211   = #define	REG_NOSPEC	0020
212   = #define	REG_PEND	0040
213   = #define	REG_DUMP	0200
214   */
215  int				/* 0 success, otherwise REG_something */
216  regcomp(regex_t * __restrict preg,
217  	const char * __restrict pattern,
218  	int cflags)
219  {
220  	struct parse pa;
221  	struct re_guts *g;
222  	struct parse *p = &pa;
223  	int i;
224  	size_t len;
225  	size_t maxlen;
226  #ifdef REDEBUG
227  #	define	GOODFLAGS(f)	(f)
228  #else
229  #	define	GOODFLAGS(f)	((f)&~REG_DUMP)
230  #endif
231  
232  	cflags = GOODFLAGS(cflags);
233  	if ((cflags&REG_EXTENDED) && (cflags&REG_NOSPEC))
234  		return(REG_INVARG);
235  
236  	if (cflags&REG_PEND) {
237  		if (preg->re_endp < pattern)
238  			return(REG_INVARG);
239  		len = preg->re_endp - pattern;
240  	} else
241  		len = strlen(pattern);
242  
243  	/* do the mallocs early so failure handling is easy */
244  	g = (struct re_guts *)malloc(sizeof(struct re_guts));
245  	if (g == NULL)
246  		return(REG_ESPACE);
247  	/*
248  	 * Limit the pattern space to avoid a 32-bit overflow on buffer
249  	 * extension.  Also avoid any signed overflow in case of conversion
250  	 * so make the real limit based on a 31-bit overflow.
251  	 *
252  	 * Likely not applicable on 64-bit systems but handle the case
253  	 * generically (who are we to stop people from using ~715MB+
254  	 * patterns?).
255  	 */
256  	maxlen = ((size_t)-1 >> 1) / sizeof(sop) * 2 / 3;
257  	if (len >= maxlen) {
258  		free((char *)g);
259  		return(REG_ESPACE);
260  	}
261  	p->ssize = len/(size_t)2*(size_t)3 + (size_t)1;	/* ugh */
262  	assert(p->ssize >= len);
263  
264  	p->strip = (sop *)malloc(p->ssize * sizeof(sop));
265  	p->slen = 0;
266  	if (p->strip == NULL) {
267  		free((char *)g);
268  		return(REG_ESPACE);
269  	}
270  
271  	/* set things up */
272  	p->g = g;
273  	p->next = pattern;	/* convenience; we do not modify it */
274  	p->end = p->next + len;
275  	p->error = 0;
276  	p->ncsalloc = 0;
277  	for (i = 0; i < NPAREN; i++) {
278  		p->pbegin[i] = 0;
279  		p->pend[i] = 0;
280  	}
281  	if (cflags & REG_EXTENDED) {
282  		p->allowbranch = true;
283  		p->bre = false;
284  		p->parse_expr = p_ere_exp;
285  		p->pre_parse = NULL;
286  		p->post_parse = NULL;
287  	} else {
288  		p->allowbranch = false;
289  		p->bre = true;
290  		p->parse_expr = p_simp_re;
291  		p->pre_parse = p_bre_pre_parse;
292  		p->post_parse = p_bre_post_parse;
293  	}
294  	g->sets = NULL;
295  	g->ncsets = 0;
296  	g->cflags = cflags;
297  	g->iflags = 0;
298  	g->nbol = 0;
299  	g->neol = 0;
300  	g->must = NULL;
301  	g->moffset = -1;
302  	g->charjump = NULL;
303  	g->matchjump = NULL;
304  	g->mlen = 0;
305  	g->nsub = 0;
306  	g->backrefs = 0;
307  
308  	/* do it */
309  	EMIT(OEND, 0);
310  	g->firststate = THERE();
311  	if (cflags & REG_NOSPEC)
312  		p_str(p);
313  	else
314  		p_re(p, OUT, OUT);
315  	EMIT(OEND, 0);
316  	g->laststate = THERE();
317  
318  	/* tidy up loose ends and fill things in */
319  	stripsnug(p, g);
320  	findmust(p, g);
321  	/* only use Boyer-Moore algorithm if the pattern is bigger
322  	 * than three characters
323  	 */
324  	if(g->mlen > 3) {
325  		computejumps(p, g);
326  		computematchjumps(p, g);
327  		if(g->matchjump == NULL && g->charjump != NULL) {
328  			free(g->charjump);
329  			g->charjump = NULL;
330  		}
331  	}
332  	g->nplus = pluscount(p, g);
333  	g->magic = MAGIC2;
334  	preg->re_nsub = g->nsub;
335  	preg->re_g = g;
336  	preg->re_magic = MAGIC1;
337  #ifndef REDEBUG
338  	/* not debugging, so can't rely on the assert() in regexec() */
339  	if (g->iflags&BAD)
340  		SETERROR(REG_ASSERT);
341  #endif
342  
343  	/* win or lose, we're done */
344  	if (p->error != 0)	/* lose */
345  		regfree(preg);
346  	return(p->error);
347  }
348  
349  /*
350   - p_ere_exp - parse one subERE, an atom possibly followed by a repetition op,
351   - return whether we should terminate or not
352   == static bool p_ere_exp(struct parse *p);
353   */
354  static bool
355  p_ere_exp(struct parse *p, struct branchc *bc)
356  {
357  	char c;
358  	wint_t wc;
359  	sopno pos;
360  	int count;
361  	int count2;
362  	sopno subno;
363  	int wascaret = 0;
364  
365  	assert(MORE());		/* caller should have ensured this */
366  	c = GETNEXT();
367  
368  	pos = HERE();
369  	switch (c) {
370  	case '(':
371  		(void)REQUIRE(MORE(), REG_EPAREN);
372  		p->g->nsub++;
373  		subno = p->g->nsub;
374  		if (subno < NPAREN)
375  			p->pbegin[subno] = HERE();
376  		EMIT(OLPAREN, subno);
377  		if (!SEE(')'))
378  			p_re(p, ')', IGN);
379  		if (subno < NPAREN) {
380  			p->pend[subno] = HERE();
381  			assert(p->pend[subno] != 0);
382  		}
383  		EMIT(ORPAREN, subno);
384  		(void)MUSTEAT(')', REG_EPAREN);
385  		break;
386  #ifndef POSIX_MISTAKE
387  	case ')':		/* happens only if no current unmatched ( */
388  		/*
389  		 * You may ask, why the ifndef?  Because I didn't notice
390  		 * this until slightly too late for 1003.2, and none of the
391  		 * other 1003.2 regular-expression reviewers noticed it at
392  		 * all.  So an unmatched ) is legal POSIX, at least until
393  		 * we can get it fixed.
394  		 */
395  		SETERROR(REG_EPAREN);
396  		break;
397  #endif
398  	case '^':
399  		EMIT(OBOL, 0);
400  		p->g->iflags |= USEBOL;
401  		p->g->nbol++;
402  		wascaret = 1;
403  		break;
404  	case '$':
405  		EMIT(OEOL, 0);
406  		p->g->iflags |= USEEOL;
407  		p->g->neol++;
408  		break;
409  	case '|':
410  		SETERROR(REG_EMPTY);
411  		break;
412  	case '*':
413  	case '+':
414  	case '?':
415  	case '{':
416  		SETERROR(REG_BADRPT);
417  		break;
418  	case '.':
419  		if (p->g->cflags&REG_NEWLINE)
420  			nonnewline(p);
421  		else
422  			EMIT(OANY, 0);
423  		break;
424  	case '[':
425  		p_bracket(p);
426  		break;
427  	case '\\':
428  		(void)REQUIRE(MORE(), REG_EESCAPE);
429  		wc = WGETNEXT();
430  		switch (wc) {
431  		case '<':
432  			EMIT(OBOW, 0);
433  			break;
434  		case '>':
435  			EMIT(OEOW, 0);
436  			break;
437  		default:
438  			ordinary(p, wc);
439  			break;
440  		}
441  		break;
442  	default:
443  		if (p->error != 0)
444  			return (false);
445  		p->next--;
446  		wc = WGETNEXT();
447  		ordinary(p, wc);
448  		break;
449  	}
450  
451  	if (!MORE())
452  		return (false);
453  	c = PEEK();
454  	/* we call { a repetition if followed by a digit */
455  	if (!( c == '*' || c == '+' || c == '?' || c == '{'))
456  		return (false);		/* no repetition, we're done */
457  	else if (c == '{')
458  		(void)REQUIRE(MORE2() && \
459  		    (isdigit((uch)PEEK2()) || PEEK2() == ','), REG_BADRPT);
460  	NEXT();
461  
462  	(void)REQUIRE(!wascaret, REG_BADRPT);
463  	switch (c) {
464  	case '*':	/* implemented as +? */
465  		/* this case does not require the (y|) trick, noKLUDGE */
466  		INSERT(OPLUS_, pos);
467  		ASTERN(O_PLUS, pos);
468  		INSERT(OQUEST_, pos);
469  		ASTERN(O_QUEST, pos);
470  		break;
471  	case '+':
472  		INSERT(OPLUS_, pos);
473  		ASTERN(O_PLUS, pos);
474  		break;
475  	case '?':
476  		/* KLUDGE: emit y? as (y|) until subtle bug gets fixed */
477  		INSERT(OCH_, pos);		/* offset slightly wrong */
478  		ASTERN(OOR1, pos);		/* this one's right */
479  		AHEAD(pos);			/* fix the OCH_ */
480  		EMIT(OOR2, 0);			/* offset very wrong... */
481  		AHEAD(THERE());			/* ...so fix it */
482  		ASTERN(O_CH, THERETHERE());
483  		break;
484  	case '{':
485  		count = p_count(p);
486  		if (EAT(',')) {
487  			if (isdigit((uch)PEEK())) {
488  				count2 = p_count(p);
489  				(void)REQUIRE(count <= count2, REG_BADBR);
490  			} else		/* single number with comma */
491  				count2 = INFINITY;
492  		} else		/* just a single number */
493  			count2 = count;
494  		repeat(p, pos, count, count2);
495  		if (!EAT('}')) {	/* error heuristics */
496  			while (MORE() && PEEK() != '}')
497  				NEXT();
498  			(void)REQUIRE(MORE(), REG_EBRACE);
499  			SETERROR(REG_BADBR);
500  		}
501  		break;
502  	}
503  
504  	if (!MORE())
505  		return (false);
506  	c = PEEK();
507  	if (!( c == '*' || c == '+' || c == '?' ||
508  				(c == '{' && MORE2() && isdigit((uch)PEEK2())) ) )
509  		return (false);
510  	SETERROR(REG_BADRPT);
511  	return (false);
512  }
513  
514  /*
515   - p_str - string (no metacharacters) "parser"
516   == static void p_str(struct parse *p);
517   */
518  static void
519  p_str(struct parse *p)
520  {
521  	(void)REQUIRE(MORE(), REG_EMPTY);
522  	while (MORE())
523  		ordinary(p, WGETNEXT());
524  }
525  
526  /*
527   * Eat consecutive branch delimiters for the kind of expression that we are
528   * parsing, return the number of delimiters that we ate.
529   */
530  static int
531  p_branch_eat_delim(struct parse *p, struct branchc *bc)
532  {
533  	int nskip;
534  
535  	nskip = 0;
536  	while (EAT('|'))
537  		++nskip;
538  	return (nskip);
539  }
540  
541  /*
542   * Insert necessary branch book-keeping operations. This emits a
543   * bogus 'next' offset, since we still have more to parse
544   */
545  static void
546  p_branch_ins_offset(struct parse *p, struct branchc *bc)
547  {
548  
549  	if (bc->nbranch == 0) {
550  		INSERT(OCH_, bc->start);	/* offset is wrong */
551  		bc->fwd = bc->start;
552  		bc->back = bc->start;
553  	}
554  
555  	ASTERN(OOR1, bc->back);
556  	bc->back = THERE();
557  	AHEAD(bc->fwd);			/* fix previous offset */
558  	bc->fwd = HERE();
559  	EMIT(OOR2, 0);			/* offset is very wrong */
560  	++bc->nbranch;
561  }
562  
563  /*
564   * Fix the offset of the tail branch, if we actually had any branches.
565   * This is to correct the bogus placeholder offset that we use.
566   */
567  static void
568  p_branch_fix_tail(struct parse *p, struct branchc *bc)
569  {
570  
571  	/* Fix bogus offset at the tail if we actually have branches */
572  	if (bc->nbranch > 0) {
573  		AHEAD(bc->fwd);
574  		ASTERN(O_CH, bc->back);
575  	}
576  }
577  
578  /*
579   * Signal to the parser that an empty branch has been encountered; this will,
580   * in the future, be used to allow for more permissive behavior with empty
581   * branches. The return value should indicate whether parsing may continue
582   * or not.
583   */
584  static bool
585  p_branch_empty(struct parse *p, struct branchc *bc)
586  {
587  
588  	SETERROR(REG_EMPTY);
589  	return (false);
590  }
591  
592  /*
593   * Take care of any branching requirements. This includes inserting the
594   * appropriate branching instructions as well as eating all of the branch
595   * delimiters until we either run out of pattern or need to parse more pattern.
596   */
597  static bool
598  p_branch_do(struct parse *p, struct branchc *bc)
599  {
600  	int ate = 0;
601  
602  	ate = p_branch_eat_delim(p, bc);
603  	if (ate == 0)
604  		return (false);
605  	else if ((ate > 1 || (bc->outer && !MORE())) && !p_branch_empty(p, bc))
606  		/*
607  		 * Halt parsing only if we have an empty branch and p_branch_empty
608  		 * indicates that we must not continue. In the future, this will not
609  		 * necessarily be an error.
610  		 */
611  		return (false);
612  	p_branch_ins_offset(p, bc);
613  
614  	return (true);
615  }
616  
617  static void
618  p_bre_pre_parse(struct parse *p, struct branchc *bc)
619  {
620  
621  	(void) bc;
622  	/*
623  	 * Does not move cleanly into expression parser because of
624  	 * ordinary interpration of * at the beginning position of
625  	 * an expression.
626  	 */
627  	if (EAT('^')) {
628  		EMIT(OBOL, 0);
629  		p->g->iflags |= USEBOL;
630  		p->g->nbol++;
631  	}
632  }
633  
634  static void
635  p_bre_post_parse(struct parse *p, struct branchc *bc)
636  {
637  
638  	/* Expression is terminating due to EOL token */
639  	if (bc->terminate) {
640  		DROP(1);
641  		EMIT(OEOL, 0);
642  		p->g->iflags |= USEEOL;
643  		p->g->neol++;
644  	}
645  }
646  
647  /*
648   - p_re - Top level parser, concatenation and BRE anchoring
649   == static void p_re(struct parse *p, int end1, int end2);
650   * Giving end1 as OUT essentially eliminates the end1/end2 check.
651   *
652   * This implementation is a bit of a kludge, in that a trailing $ is first
653   * taken as an ordinary character and then revised to be an anchor.
654   * The amount of lookahead needed to avoid this kludge is excessive.
655   */
656  static void
657  p_re(struct parse *p,
658  	int end1,	/* first terminating character */
659  	int end2)	/* second terminating character; ignored for EREs */
660  {
661  	struct branchc bc;
662  
663  	bc.nbranch = 0;
664  	if (end1 == OUT && end2 == OUT)
665  		bc.outer = true;
666  	else
667  		bc.outer = false;
668  #define	SEEEND()	(!p->bre ? SEE(end1) : SEETWO(end1, end2))
669  	for (;;) {
670  		bc.start = HERE();
671  		bc.nchain = 0;
672  		bc.terminate = false;
673  		if (p->pre_parse != NULL)
674  			p->pre_parse(p, &bc);
675  		while (MORE() && (!p->allowbranch || !SEESPEC('|')) && !SEEEND()) {
676  			bc.terminate = p->parse_expr(p, &bc);
677  			++bc.nchain;
678  		}
679  		if (p->post_parse != NULL)
680  			p->post_parse(p, &bc);
681  		(void) REQUIRE(HERE() != bc.start, REG_EMPTY);
682  		if (!p->allowbranch)
683  			break;
684  		/*
685  		 * p_branch_do's return value indicates whether we should
686  		 * continue parsing or not. This is both for correctness and
687  		 * a slight optimization, because it will check if we've
688  		 * encountered an empty branch or the end of the string
689  		 * immediately following a branch delimiter.
690  		 */
691  		if (!p_branch_do(p, &bc))
692  			break;
693  	}
694  #undef SEE_END
695  	if (p->allowbranch)
696  		p_branch_fix_tail(p, &bc);
697  	assert(!MORE() || SEE(end1));
698  }
699  
700  /*
701   - p_simp_re - parse a simple RE, an atom possibly followed by a repetition
702   == static bool p_simp_re(struct parse *p, struct branchc *bc);
703   */
704  static bool			/* was the simple RE an unbackslashed $? */
705  p_simp_re(struct parse *p, struct branchc *bc)
706  {
707  	int c;
708  	int count;
709  	int count2;
710  	sopno pos;
711  	int i;
712  	wint_t wc;
713  	sopno subno;
714  #	define	BACKSL	(1<<CHAR_BIT)
715  
716  	pos = HERE();		/* repetition op, if any, covers from here */
717  
718  	assert(MORE());		/* caller should have ensured this */
719  	c = GETNEXT();
720  	if (c == '\\') {
721  		(void)REQUIRE(MORE(), REG_EESCAPE);
722  		c = BACKSL | GETNEXT();
723  	}
724  	switch (c) {
725  	case '.':
726  		if (p->g->cflags&REG_NEWLINE)
727  			nonnewline(p);
728  		else
729  			EMIT(OANY, 0);
730  		break;
731  	case '[':
732  		p_bracket(p);
733  		break;
734  	case BACKSL|'<':
735  		EMIT(OBOW, 0);
736  		break;
737  	case BACKSL|'>':
738  		EMIT(OEOW, 0);
739  		break;
740  	case BACKSL|'{':
741  		SETERROR(REG_BADRPT);
742  		break;
743  	case BACKSL|'(':
744  		p->g->nsub++;
745  		subno = p->g->nsub;
746  		if (subno < NPAREN)
747  			p->pbegin[subno] = HERE();
748  		EMIT(OLPAREN, subno);
749  		/* the MORE here is an error heuristic */
750  		if (MORE() && !SEETWO('\\', ')'))
751  			p_re(p, '\\', ')');
752  		if (subno < NPAREN) {
753  			p->pend[subno] = HERE();
754  			assert(p->pend[subno] != 0);
755  		}
756  		EMIT(ORPAREN, subno);
757  		(void)REQUIRE(EATTWO('\\', ')'), REG_EPAREN);
758  		break;
759  	case BACKSL|')':	/* should not get here -- must be user */
760  		SETERROR(REG_EPAREN);
761  		break;
762  	case BACKSL|'1':
763  	case BACKSL|'2':
764  	case BACKSL|'3':
765  	case BACKSL|'4':
766  	case BACKSL|'5':
767  	case BACKSL|'6':
768  	case BACKSL|'7':
769  	case BACKSL|'8':
770  	case BACKSL|'9':
771  		i = (c&~BACKSL) - '0';
772  		assert(i < NPAREN);
773  		if (p->pend[i] != 0) {
774  			assert(i <= p->g->nsub);
775  			EMIT(OBACK_, i);
776  			assert(p->pbegin[i] != 0);
777  			assert(OP(p->strip[p->pbegin[i]]) == OLPAREN);
778  			assert(OP(p->strip[p->pend[i]]) == ORPAREN);
779  			(void) dupl(p, p->pbegin[i]+1, p->pend[i]);
780  			EMIT(O_BACK, i);
781  		} else
782  			SETERROR(REG_ESUBREG);
783  		p->g->backrefs = 1;
784  		break;
785  	case '*':
786  		/*
787  		 * Ordinary if used as the first character beyond BOL anchor of
788  		 * a (sub-)expression, counts as a bad repetition operator if it
789  		 * appears otherwise.
790  		 */
791  		(void)REQUIRE(bc->nchain == 0, REG_BADRPT);
792  		/* FALLTHROUGH */
793  	default:
794  		if (p->error != 0)
795  			return (false);	/* Definitely not $... */
796  		p->next--;
797  		wc = WGETNEXT();
798  		ordinary(p, wc);
799  		break;
800  	}
801  
802  	if (EAT('*')) {		/* implemented as +? */
803  		/* this case does not require the (y|) trick, noKLUDGE */
804  		INSERT(OPLUS_, pos);
805  		ASTERN(O_PLUS, pos);
806  		INSERT(OQUEST_, pos);
807  		ASTERN(O_QUEST, pos);
808  	} else if (EATTWO('\\', '{')) {
809  		count = p_count(p);
810  		if (EAT(',')) {
811  			if (MORE() && isdigit((uch)PEEK())) {
812  				count2 = p_count(p);
813  				(void)REQUIRE(count <= count2, REG_BADBR);
814  			} else		/* single number with comma */
815  				count2 = INFINITY;
816  		} else		/* just a single number */
817  			count2 = count;
818  		repeat(p, pos, count, count2);
819  		if (!EATTWO('\\', '}')) {	/* error heuristics */
820  			while (MORE() && !SEETWO('\\', '}'))
821  				NEXT();
822  			(void)REQUIRE(MORE(), REG_EBRACE);
823  			SETERROR(REG_BADBR);
824  		}
825  	} else if (c == '$')     /* $ (but not \$) ends it */
826  		return (true);
827  
828  	return (false);
829  }
830  
831  /*
832   - p_count - parse a repetition count
833   == static int p_count(struct parse *p);
834   */
835  static int			/* the value */
836  p_count(struct parse *p)
837  {
838  	int count = 0;
839  	int ndigits = 0;
840  
841  	while (MORE() && isdigit((uch)PEEK()) && count <= DUPMAX) {
842  		count = count*10 + (GETNEXT() - '0');
843  		ndigits++;
844  	}
845  
846  	(void)REQUIRE(ndigits > 0 && count <= DUPMAX, REG_BADBR);
847  	return(count);
848  }
849  
850  /*
851   - p_bracket - parse a bracketed character list
852   == static void p_bracket(struct parse *p);
853   */
854  static void
855  p_bracket(struct parse *p)
856  {
857  	cset *cs;
858  	wint_t ch;
859  
860  	/* Dept of Truly Sickening Special-Case Kludges */
861  	if (p->next + 5 < p->end && strncmp(p->next, "[:<:]]", 6) == 0) {
862  		EMIT(OBOW, 0);
863  		NEXTn(6);
864  		return;
865  	}
866  	if (p->next + 5 < p->end && strncmp(p->next, "[:>:]]", 6) == 0) {
867  		EMIT(OEOW, 0);
868  		NEXTn(6);
869  		return;
870  	}
871  
872  	if ((cs = allocset(p)) == NULL)
873  		return;
874  
875  	if (p->g->cflags&REG_ICASE)
876  		cs->icase = 1;
877  	if (EAT('^'))
878  		cs->invert = 1;
879  	if (EAT(']'))
880  		CHadd(p, cs, ']');
881  	else if (EAT('-'))
882  		CHadd(p, cs, '-');
883  	while (MORE() && PEEK() != ']' && !SEETWO('-', ']'))
884  		p_b_term(p, cs);
885  	if (EAT('-'))
886  		CHadd(p, cs, '-');
887  	(void)MUSTEAT(']', REG_EBRACK);
888  
889  	if (p->error != 0)	/* don't mess things up further */
890  		return;
891  
892  	if (cs->invert && p->g->cflags&REG_NEWLINE)
893  		cs->bmp['\n' >> 3] |= 1 << ('\n' & 7);
894  
895  	if ((ch = singleton(cs)) != OUT) {	/* optimize singleton sets */
896  		ordinary(p, ch);
897  		freeset(p, cs);
898  	} else
899  		EMIT(OANYOF, (int)(cs - p->g->sets));
900  }
901  
902  /*
903   - p_b_term - parse one term of a bracketed character list
904   == static void p_b_term(struct parse *p, cset *cs);
905   */
906  static void
907  p_b_term(struct parse *p, cset *cs)
908  {
909  	char c;
910  	wint_t start, finish;
911  	wint_t i;
912  	struct xlocale_collate *table =
913  		(struct xlocale_collate*)__get_locale()->components[XLC_COLLATE];
914  
915  	/* classify what we've got */
916  	switch ((MORE()) ? PEEK() : '\0') {
917  	case '[':
918  		c = (MORE2()) ? PEEK2() : '\0';
919  		break;
920  	case '-':
921  		SETERROR(REG_ERANGE);
922  		return;			/* NOTE RETURN */
923  	default:
924  		c = '\0';
925  		break;
926  	}
927  
928  	switch (c) {
929  	case ':':		/* character class */
930  		NEXT2();
931  		(void)REQUIRE(MORE(), REG_EBRACK);
932  		c = PEEK();
933  		(void)REQUIRE(c != '-' && c != ']', REG_ECTYPE);
934  		p_b_cclass(p, cs);
935  		(void)REQUIRE(MORE(), REG_EBRACK);
936  		(void)REQUIRE(EATTWO(':', ']'), REG_ECTYPE);
937  		break;
938  	case '=':		/* equivalence class */
939  		NEXT2();
940  		(void)REQUIRE(MORE(), REG_EBRACK);
941  		c = PEEK();
942  		(void)REQUIRE(c != '-' && c != ']', REG_ECOLLATE);
943  		p_b_eclass(p, cs);
944  		(void)REQUIRE(MORE(), REG_EBRACK);
945  		(void)REQUIRE(EATTWO('=', ']'), REG_ECOLLATE);
946  		break;
947  	default:		/* symbol, ordinary character, or range */
948  		start = p_b_symbol(p);
949  		if (SEE('-') && MORE2() && PEEK2() != ']') {
950  			/* range */
951  			NEXT();
952  			if (EAT('-'))
953  				finish = '-';
954  			else
955  				finish = p_b_symbol(p);
956  		} else
957  			finish = start;
958  		if (start == finish)
959  			CHadd(p, cs, start);
960  		else {
961  			if (table->__collate_load_error || MB_CUR_MAX > 1) {
962  				(void)REQUIRE(start <= finish, REG_ERANGE);
963  				CHaddrange(p, cs, start, finish);
964  			} else {
965  				(void)REQUIRE(__wcollate_range_cmp(start, finish) <= 0, REG_ERANGE);
966  				for (i = 0; i <= UCHAR_MAX; i++) {
967  					if (   __wcollate_range_cmp(start, i) <= 0
968  					    && __wcollate_range_cmp(i, finish) <= 0
969  					   )
970  						CHadd(p, cs, i);
971  				}
972  			}
973  		}
974  		break;
975  	}
976  }
977  
978  /*
979   - p_b_cclass - parse a character-class name and deal with it
980   == static void p_b_cclass(struct parse *p, cset *cs);
981   */
982  static void
983  p_b_cclass(struct parse *p, cset *cs)
984  {
985  	const char *sp = p->next;
986  	size_t len;
987  	wctype_t wct;
988  	char clname[16];
989  
990  	while (MORE() && isalpha((uch)PEEK()))
991  		NEXT();
992  	len = p->next - sp;
993  	if (len >= sizeof(clname) - 1) {
994  		SETERROR(REG_ECTYPE);
995  		return;
996  	}
997  	memcpy(clname, sp, len);
998  	clname[len] = '\0';
999  	if ((wct = wctype(clname)) == 0) {
1000  		SETERROR(REG_ECTYPE);
1001  		return;
1002  	}
1003  	CHaddtype(p, cs, wct);
1004  }
1005  
1006  /*
1007   - p_b_eclass - parse an equivalence-class name and deal with it
1008   == static void p_b_eclass(struct parse *p, cset *cs);
1009   *
1010   * This implementation is incomplete. xxx
1011   */
1012  static void
1013  p_b_eclass(struct parse *p, cset *cs)
1014  {
1015  	wint_t c;
1016  
1017  	c = p_b_coll_elem(p, '=');
1018  	CHadd(p, cs, c);
1019  }
1020  
1021  /*
1022   - p_b_symbol - parse a character or [..]ed multicharacter collating symbol
1023   == static wint_t p_b_symbol(struct parse *p);
1024   */
1025  static wint_t			/* value of symbol */
1026  p_b_symbol(struct parse *p)
1027  {
1028  	wint_t value;
1029  
1030  	(void)REQUIRE(MORE(), REG_EBRACK);
1031  	if (!EATTWO('[', '.'))
1032  		return(WGETNEXT());
1033  
1034  	/* collating symbol */
1035  	value = p_b_coll_elem(p, '.');
1036  	(void)REQUIRE(EATTWO('.', ']'), REG_ECOLLATE);
1037  	return(value);
1038  }
1039  
1040  /*
1041   - p_b_coll_elem - parse a collating-element name and look it up
1042   == static wint_t p_b_coll_elem(struct parse *p, wint_t endc);
1043   */
1044  static wint_t			/* value of collating element */
1045  p_b_coll_elem(struct parse *p,
1046  	wint_t endc)		/* name ended by endc,']' */
1047  {
1048  	const char *sp = p->next;
1049  	struct cname *cp;
1050  	mbstate_t mbs;
1051  	wchar_t wc;
1052  	size_t clen, len;
1053  
1054  	while (MORE() && !SEETWO(endc, ']'))
1055  		NEXT();
1056  	if (!MORE()) {
1057  		SETERROR(REG_EBRACK);
1058  		return(0);
1059  	}
1060  	len = p->next - sp;
1061  	for (cp = cnames; cp->name != NULL; cp++)
1062  		if (strncmp(cp->name, sp, len) == 0 && cp->name[len] == '\0')
1063  			return(cp->code);	/* known name */
1064  	memset(&mbs, 0, sizeof(mbs));
1065  	if ((clen = mbrtowc(&wc, sp, len, &mbs)) == len)
1066  		return (wc);			/* single character */
1067  	else if (clen == (size_t)-1 || clen == (size_t)-2)
1068  		SETERROR(REG_ILLSEQ);
1069  	else
1070  		SETERROR(REG_ECOLLATE);		/* neither */
1071  	return(0);
1072  }
1073  
1074  /*
1075   - othercase - return the case counterpart of an alphabetic
1076   == static wint_t othercase(wint_t ch);
1077   */
1078  static wint_t			/* if no counterpart, return ch */
1079  othercase(wint_t ch)
1080  {
1081  	assert(iswalpha(ch));
1082  	if (iswupper(ch))
1083  		return(towlower(ch));
1084  	else if (iswlower(ch))
1085  		return(towupper(ch));
1086  	else			/* peculiar, but could happen */
1087  		return(ch);
1088  }
1089  
1090  /*
1091   - bothcases - emit a dualcase version of a two-case character
1092   == static void bothcases(struct parse *p, wint_t ch);
1093   *
1094   * Boy, is this implementation ever a kludge...
1095   */
1096  static void
1097  bothcases(struct parse *p, wint_t ch)
1098  {
1099  	const char *oldnext = p->next;
1100  	const char *oldend = p->end;
1101  	char bracket[3 + MB_LEN_MAX];
1102  	size_t n;
1103  	mbstate_t mbs;
1104  
1105  	assert(othercase(ch) != ch);	/* p_bracket() would recurse */
1106  	p->next = bracket;
1107  	memset(&mbs, 0, sizeof(mbs));
1108  	n = wcrtomb(bracket, ch, &mbs);
1109  	assert(n != (size_t)-1);
1110  	bracket[n] = ']';
1111  	bracket[n + 1] = '\0';
1112  	p->end = bracket+n+1;
1113  	p_bracket(p);
1114  	assert(p->next == p->end);
1115  	p->next = oldnext;
1116  	p->end = oldend;
1117  }
1118  
1119  /*
1120   - ordinary - emit an ordinary character
1121   == static void ordinary(struct parse *p, wint_t ch);
1122   */
1123  static void
1124  ordinary(struct parse *p, wint_t ch)
1125  {
1126  	cset *cs;
1127  
1128  	if ((p->g->cflags&REG_ICASE) && iswalpha(ch) && othercase(ch) != ch)
1129  		bothcases(p, ch);
1130  	else if ((ch & OPDMASK) == ch)
1131  		EMIT(OCHAR, ch);
1132  	else {
1133  		/*
1134  		 * Kludge: character is too big to fit into an OCHAR operand.
1135  		 * Emit a singleton set.
1136  		 */
1137  		if ((cs = allocset(p)) == NULL)
1138  			return;
1139  		CHadd(p, cs, ch);
1140  		EMIT(OANYOF, (int)(cs - p->g->sets));
1141  	}
1142  }
1143  
1144  /*
1145   - nonnewline - emit REG_NEWLINE version of OANY
1146   == static void nonnewline(struct parse *p);
1147   *
1148   * Boy, is this implementation ever a kludge...
1149   */
1150  static void
1151  nonnewline(struct parse *p)
1152  {
1153  	const char *oldnext = p->next;
1154  	const char *oldend = p->end;
1155  	char bracket[4];
1156  
1157  	p->next = bracket;
1158  	p->end = bracket+3;
1159  	bracket[0] = '^';
1160  	bracket[1] = '\n';
1161  	bracket[2] = ']';
1162  	bracket[3] = '\0';
1163  	p_bracket(p);
1164  	assert(p->next == bracket+3);
1165  	p->next = oldnext;
1166  	p->end = oldend;
1167  }
1168  
1169  /*
1170   - repeat - generate code for a bounded repetition, recursively if needed
1171   == static void repeat(struct parse *p, sopno start, int from, int to);
1172   */
1173  static void
1174  repeat(struct parse *p,
1175  	sopno start,		/* operand from here to end of strip */
1176  	int from,		/* repeated from this number */
1177  	int to)			/* to this number of times (maybe INFINITY) */
1178  {
1179  	sopno finish = HERE();
1180  #	define	N	2
1181  #	define	INF	3
1182  #	define	REP(f, t)	((f)*8 + (t))
1183  #	define	MAP(n)	(((n) <= 1) ? (n) : ((n) == INFINITY) ? INF : N)
1184  	sopno copy;
1185  
1186  	if (p->error != 0)	/* head off possible runaway recursion */
1187  		return;
1188  
1189  	assert(from <= to);
1190  
1191  	switch (REP(MAP(from), MAP(to))) {
1192  	case REP(0, 0):			/* must be user doing this */
1193  		DROP(finish-start);	/* drop the operand */
1194  		break;
1195  	case REP(0, 1):			/* as x{1,1}? */
1196  	case REP(0, N):			/* as x{1,n}? */
1197  	case REP(0, INF):		/* as x{1,}? */
1198  		/* KLUDGE: emit y? as (y|) until subtle bug gets fixed */
1199  		INSERT(OCH_, start);		/* offset is wrong... */
1200  		repeat(p, start+1, 1, to);
1201  		ASTERN(OOR1, start);
1202  		AHEAD(start);			/* ... fix it */
1203  		EMIT(OOR2, 0);
1204  		AHEAD(THERE());
1205  		ASTERN(O_CH, THERETHERE());
1206  		break;
1207  	case REP(1, 1):			/* trivial case */
1208  		/* done */
1209  		break;
1210  	case REP(1, N):			/* as x?x{1,n-1} */
1211  		/* KLUDGE: emit y? as (y|) until subtle bug gets fixed */
1212  		INSERT(OCH_, start);
1213  		ASTERN(OOR1, start);
1214  		AHEAD(start);
1215  		EMIT(OOR2, 0);			/* offset very wrong... */
1216  		AHEAD(THERE());			/* ...so fix it */
1217  		ASTERN(O_CH, THERETHERE());
1218  		copy = dupl(p, start+1, finish+1);
1219  		assert(copy == finish+4);
1220  		repeat(p, copy, 1, to-1);
1221  		break;
1222  	case REP(1, INF):		/* as x+ */
1223  		INSERT(OPLUS_, start);
1224  		ASTERN(O_PLUS, start);
1225  		break;
1226  	case REP(N, N):			/* as xx{m-1,n-1} */
1227  		copy = dupl(p, start, finish);
1228  		repeat(p, copy, from-1, to-1);
1229  		break;
1230  	case REP(N, INF):		/* as xx{n-1,INF} */
1231  		copy = dupl(p, start, finish);
1232  		repeat(p, copy, from-1, to);
1233  		break;
1234  	default:			/* "can't happen" */
1235  		SETERROR(REG_ASSERT);	/* just in case */
1236  		break;
1237  	}
1238  }
1239  
1240  /*
1241   - wgetnext - helper function for WGETNEXT() macro. Gets the next wide
1242   - character from the parse struct, signals a REG_ILLSEQ error if the
1243   - character can't be converted. Returns the number of bytes consumed.
1244   */
1245  static wint_t
1246  wgetnext(struct parse *p)
1247  {
1248  	mbstate_t mbs;
1249  	wchar_t wc;
1250  	size_t n;
1251  
1252  	memset(&mbs, 0, sizeof(mbs));
1253  	n = mbrtowc(&wc, p->next, p->end - p->next, &mbs);
1254  	if (n == (size_t)-1 || n == (size_t)-2) {
1255  		SETERROR(REG_ILLSEQ);
1256  		return (0);
1257  	}
1258  	if (n == 0)
1259  		n = 1;
1260  	p->next += n;
1261  	return (wc);
1262  }
1263  
1264  /*
1265   - seterr - set an error condition
1266   == static int seterr(struct parse *p, int e);
1267   */
1268  static int			/* useless but makes type checking happy */
1269  seterr(struct parse *p, int e)
1270  {
1271  	if (p->error == 0)	/* keep earliest error condition */
1272  		p->error = e;
1273  	p->next = nuls;		/* try to bring things to a halt */
1274  	p->end = nuls;
1275  	return(0);		/* make the return value well-defined */
1276  }
1277  
1278  /*
1279   - allocset - allocate a set of characters for []
1280   == static cset *allocset(struct parse *p);
1281   */
1282  static cset *
1283  allocset(struct parse *p)
1284  {
1285  	cset *cs, *ncs;
1286  
1287  	ncs = reallocarray(p->g->sets, p->g->ncsets + 1, sizeof(*ncs));
1288  	if (ncs == NULL) {
1289  		SETERROR(REG_ESPACE);
1290  		return (NULL);
1291  	}
1292  	p->g->sets = ncs;
1293  	cs = &p->g->sets[p->g->ncsets++];
1294  	memset(cs, 0, sizeof(*cs));
1295  
1296  	return(cs);
1297  }
1298  
1299  /*
1300   - freeset - free a now-unused set
1301   == static void freeset(struct parse *p, cset *cs);
1302   */
1303  static void
1304  freeset(struct parse *p, cset *cs)
1305  {
1306  	cset *top = &p->g->sets[p->g->ncsets];
1307  
1308  	free(cs->wides);
1309  	free(cs->ranges);
1310  	free(cs->types);
1311  	memset(cs, 0, sizeof(*cs));
1312  	if (cs == top-1)	/* recover only the easy case */
1313  		p->g->ncsets--;
1314  }
1315  
1316  /*
1317   - singleton - Determine whether a set contains only one character,
1318   - returning it if so, otherwise returning OUT.
1319   */
1320  static wint_t
1321  singleton(cset *cs)
1322  {
1323  	wint_t i, s, n;
1324  
1325  	for (i = n = 0; i < NC; i++)
1326  		if (CHIN(cs, i)) {
1327  			n++;
1328  			s = i;
1329  		}
1330  	if (n == 1)
1331  		return (s);
1332  	if (cs->nwides == 1 && cs->nranges == 0 && cs->ntypes == 0 &&
1333  	    cs->icase == 0)
1334  		return (cs->wides[0]);
1335  	/* Don't bother handling the other cases. */
1336  	return (OUT);
1337  }
1338  
1339  /*
1340   - CHadd - add character to character set.
1341   */
1342  static void
1343  CHadd(struct parse *p, cset *cs, wint_t ch)
1344  {
1345  	wint_t nch, *newwides;
1346  	assert(ch >= 0);
1347  	if (ch < NC)
1348  		cs->bmp[ch >> 3] |= 1 << (ch & 7);
1349  	else {
1350  		newwides = reallocarray(cs->wides, cs->nwides + 1,
1351  		    sizeof(*cs->wides));
1352  		if (newwides == NULL) {
1353  			SETERROR(REG_ESPACE);
1354  			return;
1355  		}
1356  		cs->wides = newwides;
1357  		cs->wides[cs->nwides++] = ch;
1358  	}
1359  	if (cs->icase) {
1360  		if ((nch = towlower(ch)) < NC)
1361  			cs->bmp[nch >> 3] |= 1 << (nch & 7);
1362  		if ((nch = towupper(ch)) < NC)
1363  			cs->bmp[nch >> 3] |= 1 << (nch & 7);
1364  	}
1365  }
1366  
1367  /*
1368   - CHaddrange - add all characters in the range [min,max] to a character set.
1369   */
1370  static void
1371  CHaddrange(struct parse *p, cset *cs, wint_t min, wint_t max)
1372  {
1373  	crange *newranges;
1374  
1375  	for (; min < NC && min <= max; min++)
1376  		CHadd(p, cs, min);
1377  	if (min >= max)
1378  		return;
1379  	newranges = reallocarray(cs->ranges, cs->nranges + 1,
1380  	    sizeof(*cs->ranges));
1381  	if (newranges == NULL) {
1382  		SETERROR(REG_ESPACE);
1383  		return;
1384  	}
1385  	cs->ranges = newranges;
1386  	cs->ranges[cs->nranges].min = min;
1387  	cs->ranges[cs->nranges].max = max;
1388  	cs->nranges++;
1389  }
1390  
1391  /*
1392   - CHaddtype - add all characters of a certain type to a character set.
1393   */
1394  static void
1395  CHaddtype(struct parse *p, cset *cs, wctype_t wct)
1396  {
1397  	wint_t i;
1398  	wctype_t *newtypes;
1399  
1400  	for (i = 0; i < NC; i++)
1401  		if (iswctype(i, wct))
1402  			CHadd(p, cs, i);
1403  	newtypes = reallocarray(cs->types, cs->ntypes + 1,
1404  	    sizeof(*cs->types));
1405  	if (newtypes == NULL) {
1406  		SETERROR(REG_ESPACE);
1407  		return;
1408  	}
1409  	cs->types = newtypes;
1410  	cs->types[cs->ntypes++] = wct;
1411  }
1412  
1413  /*
1414   - dupl - emit a duplicate of a bunch of sops
1415   == static sopno dupl(struct parse *p, sopno start, sopno finish);
1416   */
1417  static sopno			/* start of duplicate */
1418  dupl(struct parse *p,
1419  	sopno start,		/* from here */
1420  	sopno finish)		/* to this less one */
1421  {
1422  	sopno ret = HERE();
1423  	sopno len = finish - start;
1424  
1425  	assert(finish >= start);
1426  	if (len == 0)
1427  		return(ret);
1428  	if (!enlarge(p, p->ssize + len)) /* this many unexpected additions */
1429  		return(ret);
1430  	(void) memcpy((char *)(p->strip + p->slen),
1431  		(char *)(p->strip + start), (size_t)len*sizeof(sop));
1432  	p->slen += len;
1433  	return(ret);
1434  }
1435  
1436  /*
1437   - doemit - emit a strip operator
1438   == static void doemit(struct parse *p, sop op, size_t opnd);
1439   *
1440   * It might seem better to implement this as a macro with a function as
1441   * hard-case backup, but it's just too big and messy unless there are
1442   * some changes to the data structures.  Maybe later.
1443   */
1444  static void
1445  doemit(struct parse *p, sop op, size_t opnd)
1446  {
1447  	/* avoid making error situations worse */
1448  	if (p->error != 0)
1449  		return;
1450  
1451  	/* deal with oversize operands ("can't happen", more or less) */
1452  	assert(opnd < 1<<OPSHIFT);
1453  
1454  	/* deal with undersized strip */
1455  	if (p->slen >= p->ssize)
1456  		if (!enlarge(p, (p->ssize+1) / 2 * 3))	/* +50% */
1457  			return;
1458  
1459  	/* finally, it's all reduced to the easy case */
1460  	p->strip[p->slen++] = SOP(op, opnd);
1461  }
1462  
1463  /*
1464   - doinsert - insert a sop into the strip
1465   == static void doinsert(struct parse *p, sop op, size_t opnd, sopno pos);
1466   */
1467  static void
1468  doinsert(struct parse *p, sop op, size_t opnd, sopno pos)
1469  {
1470  	sopno sn;
1471  	sop s;
1472  	int i;
1473  
1474  	/* avoid making error situations worse */
1475  	if (p->error != 0)
1476  		return;
1477  
1478  	sn = HERE();
1479  	EMIT(op, opnd);		/* do checks, ensure space */
1480  	assert(HERE() == sn+1);
1481  	s = p->strip[sn];
1482  
1483  	/* adjust paren pointers */
1484  	assert(pos > 0);
1485  	for (i = 1; i < NPAREN; i++) {
1486  		if (p->pbegin[i] >= pos) {
1487  			p->pbegin[i]++;
1488  		}
1489  		if (p->pend[i] >= pos) {
1490  			p->pend[i]++;
1491  		}
1492  	}
1493  
1494  	memmove((char *)&p->strip[pos+1], (char *)&p->strip[pos],
1495  						(HERE()-pos-1)*sizeof(sop));
1496  	p->strip[pos] = s;
1497  }
1498  
1499  /*
1500   - dofwd - complete a forward reference
1501   == static void dofwd(struct parse *p, sopno pos, sop value);
1502   */
1503  static void
1504  dofwd(struct parse *p, sopno pos, sop value)
1505  {
1506  	/* avoid making error situations worse */
1507  	if (p->error != 0)
1508  		return;
1509  
1510  	assert(value < 1<<OPSHIFT);
1511  	p->strip[pos] = OP(p->strip[pos]) | value;
1512  }
1513  
1514  /*
1515   - enlarge - enlarge the strip
1516   == static int enlarge(struct parse *p, sopno size);
1517   */
1518  static int
1519  enlarge(struct parse *p, sopno size)
1520  {
1521  	sop *sp;
1522  
1523  	if (p->ssize >= size)
1524  		return 1;
1525  
1526  	sp = reallocarray(p->strip, size, sizeof(sop));
1527  	if (sp == NULL) {
1528  		SETERROR(REG_ESPACE);
1529  		return 0;
1530  	}
1531  	p->strip = sp;
1532  	p->ssize = size;
1533  	return 1;
1534  }
1535  
1536  /*
1537   - stripsnug - compact the strip
1538   == static void stripsnug(struct parse *p, struct re_guts *g);
1539   */
1540  static void
1541  stripsnug(struct parse *p, struct re_guts *g)
1542  {
1543  	g->nstates = p->slen;
1544  	g->strip = reallocarray((char *)p->strip, p->slen, sizeof(sop));
1545  	if (g->strip == NULL) {
1546  		SETERROR(REG_ESPACE);
1547  		g->strip = p->strip;
1548  	}
1549  }
1550  
1551  /*
1552   - findmust - fill in must and mlen with longest mandatory literal string
1553   == static void findmust(struct parse *p, struct re_guts *g);
1554   *
1555   * This algorithm could do fancy things like analyzing the operands of |
1556   * for common subsequences.  Someday.  This code is simple and finds most
1557   * of the interesting cases.
1558   *
1559   * Note that must and mlen got initialized during setup.
1560   */
1561  static void
1562  findmust(struct parse *p, struct re_guts *g)
1563  {
1564  	sop *scan;
1565  	sop *start = NULL;
1566  	sop *newstart = NULL;
1567  	sopno newlen;
1568  	sop s;
1569  	char *cp;
1570  	int offset;
1571  	char buf[MB_LEN_MAX];
1572  	size_t clen;
1573  	mbstate_t mbs;
1574  
1575  	/* avoid making error situations worse */
1576  	if (p->error != 0)
1577  		return;
1578  
1579  	/*
1580  	 * It's not generally safe to do a ``char'' substring search on
1581  	 * multibyte character strings, but it's safe for at least
1582  	 * UTF-8 (see RFC 3629).
1583  	 */
1584  	if (MB_CUR_MAX > 1 &&
1585  	    strcmp(_CurrentRuneLocale->__encoding, "UTF-8") != 0)
1586  		return;
1587  
1588  	/* find the longest OCHAR sequence in strip */
1589  	newlen = 0;
1590  	offset = 0;
1591  	g->moffset = 0;
1592  	scan = g->strip + 1;
1593  	do {
1594  		s = *scan++;
1595  		switch (OP(s)) {
1596  		case OCHAR:		/* sequence member */
1597  			if (newlen == 0) {		/* new sequence */
1598  				memset(&mbs, 0, sizeof(mbs));
1599  				newstart = scan - 1;
1600  			}
1601  			clen = wcrtomb(buf, OPND(s), &mbs);
1602  			if (clen == (size_t)-1)
1603  				goto toohard;
1604  			newlen += clen;
1605  			break;
1606  		case OPLUS_:		/* things that don't break one */
1607  		case OLPAREN:
1608  		case ORPAREN:
1609  			break;
1610  		case OQUEST_:		/* things that must be skipped */
1611  		case OCH_:
1612  			offset = altoffset(scan, offset);
1613  			scan--;
1614  			do {
1615  				scan += OPND(s);
1616  				s = *scan;
1617  				/* assert() interferes w debug printouts */
1618  				if (OP(s) != O_QUEST && OP(s) != O_CH &&
1619  							OP(s) != OOR2) {
1620  					g->iflags |= BAD;
1621  					return;
1622  				}
1623  			} while (OP(s) != O_QUEST && OP(s) != O_CH);
1624  			/* FALLTHROUGH */
1625  		case OBOW:		/* things that break a sequence */
1626  		case OEOW:
1627  		case OBOL:
1628  		case OEOL:
1629  		case O_QUEST:
1630  		case O_CH:
1631  		case OEND:
1632  			if (newlen > g->mlen) {		/* ends one */
1633  				start = newstart;
1634  				g->mlen = newlen;
1635  				if (offset > -1) {
1636  					g->moffset += offset;
1637  					offset = newlen;
1638  				} else
1639  					g->moffset = offset;
1640  			} else {
1641  				if (offset > -1)
1642  					offset += newlen;
1643  			}
1644  			newlen = 0;
1645  			break;
1646  		case OANY:
1647  			if (newlen > g->mlen) {		/* ends one */
1648  				start = newstart;
1649  				g->mlen = newlen;
1650  				if (offset > -1) {
1651  					g->moffset += offset;
1652  					offset = newlen;
1653  				} else
1654  					g->moffset = offset;
1655  			} else {
1656  				if (offset > -1)
1657  					offset += newlen;
1658  			}
1659  			if (offset > -1)
1660  				offset++;
1661  			newlen = 0;
1662  			break;
1663  		case OANYOF:		/* may or may not invalidate offset */
1664  			/* First, everything as OANY */
1665  			if (newlen > g->mlen) {		/* ends one */
1666  				start = newstart;
1667  				g->mlen = newlen;
1668  				if (offset > -1) {
1669  					g->moffset += offset;
1670  					offset = newlen;
1671  				} else
1672  					g->moffset = offset;
1673  			} else {
1674  				if (offset > -1)
1675  					offset += newlen;
1676  			}
1677  			if (offset > -1)
1678  				offset++;
1679  			newlen = 0;
1680  			break;
1681  		toohard:
1682  		default:
1683  			/* Anything here makes it impossible or too hard
1684  			 * to calculate the offset -- so we give up;
1685  			 * save the last known good offset, in case the
1686  			 * must sequence doesn't occur later.
1687  			 */
1688  			if (newlen > g->mlen) {		/* ends one */
1689  				start = newstart;
1690  				g->mlen = newlen;
1691  				if (offset > -1)
1692  					g->moffset += offset;
1693  				else
1694  					g->moffset = offset;
1695  			}
1696  			offset = -1;
1697  			newlen = 0;
1698  			break;
1699  		}
1700  	} while (OP(s) != OEND);
1701  
1702  	if (g->mlen == 0) {		/* there isn't one */
1703  		g->moffset = -1;
1704  		return;
1705  	}
1706  
1707  	/* turn it into a character string */
1708  	g->must = malloc((size_t)g->mlen + 1);
1709  	if (g->must == NULL) {		/* argh; just forget it */
1710  		g->mlen = 0;
1711  		g->moffset = -1;
1712  		return;
1713  	}
1714  	cp = g->must;
1715  	scan = start;
1716  	memset(&mbs, 0, sizeof(mbs));
1717  	while (cp < g->must + g->mlen) {
1718  		while (OP(s = *scan++) != OCHAR)
1719  			continue;
1720  		clen = wcrtomb(cp, OPND(s), &mbs);
1721  		assert(clen != (size_t)-1);
1722  		cp += clen;
1723  	}
1724  	assert(cp == g->must + g->mlen);
1725  	*cp++ = '\0';		/* just on general principles */
1726  }
1727  
1728  /*
1729   - altoffset - choose biggest offset among multiple choices
1730   == static int altoffset(sop *scan, int offset);
1731   *
1732   * Compute, recursively if necessary, the largest offset among multiple
1733   * re paths.
1734   */
1735  static int
1736  altoffset(sop *scan, int offset)
1737  {
1738  	int largest;
1739  	int try;
1740  	sop s;
1741  
1742  	/* If we gave up already on offsets, return */
1743  	if (offset == -1)
1744  		return -1;
1745  
1746  	largest = 0;
1747  	try = 0;
1748  	s = *scan++;
1749  	while (OP(s) != O_QUEST && OP(s) != O_CH) {
1750  		switch (OP(s)) {
1751  		case OOR1:
1752  			if (try > largest)
1753  				largest = try;
1754  			try = 0;
1755  			break;
1756  		case OQUEST_:
1757  		case OCH_:
1758  			try = altoffset(scan, try);
1759  			if (try == -1)
1760  				return -1;
1761  			scan--;
1762  			do {
1763  				scan += OPND(s);
1764  				s = *scan;
1765  				if (OP(s) != O_QUEST && OP(s) != O_CH &&
1766  							OP(s) != OOR2)
1767  					return -1;
1768  			} while (OP(s) != O_QUEST && OP(s) != O_CH);
1769  			/* We must skip to the next position, or we'll
1770  			 * leave altoffset() too early.
1771  			 */
1772  			scan++;
1773  			break;
1774  		case OANYOF:
1775  		case OCHAR:
1776  		case OANY:
1777  			try++;
1778  		case OBOW:
1779  		case OEOW:
1780  		case OLPAREN:
1781  		case ORPAREN:
1782  		case OOR2:
1783  			break;
1784  		default:
1785  			try = -1;
1786  			break;
1787  		}
1788  		if (try == -1)
1789  			return -1;
1790  		s = *scan++;
1791  	}
1792  
1793  	if (try > largest)
1794  		largest = try;
1795  
1796  	return largest+offset;
1797  }
1798  
1799  /*
1800   - computejumps - compute char jumps for BM scan
1801   == static void computejumps(struct parse *p, struct re_guts *g);
1802   *
1803   * This algorithm assumes g->must exists and is has size greater than
1804   * zero. It's based on the algorithm found on Computer Algorithms by
1805   * Sara Baase.
1806   *
1807   * A char jump is the number of characters one needs to jump based on
1808   * the value of the character from the text that was mismatched.
1809   */
1810  static void
1811  computejumps(struct parse *p, struct re_guts *g)
1812  {
1813  	int ch;
1814  	int mindex;
1815  
1816  	/* Avoid making errors worse */
1817  	if (p->error != 0)
1818  		return;
1819  
1820  	g->charjump = (int*) malloc((NC + 1) * sizeof(int));
1821  	if (g->charjump == NULL)	/* Not a fatal error */
1822  		return;
1823  	/* Adjust for signed chars, if necessary */
1824  	g->charjump = &g->charjump[-(CHAR_MIN)];
1825  
1826  	/* If the character does not exist in the pattern, the jump
1827  	 * is equal to the number of characters in the pattern.
1828  	 */
1829  	for (ch = CHAR_MIN; ch < (CHAR_MAX + 1); ch++)
1830  		g->charjump[ch] = g->mlen;
1831  
1832  	/* If the character does exist, compute the jump that would
1833  	 * take us to the last character in the pattern equal to it
1834  	 * (notice that we match right to left, so that last character
1835  	 * is the first one that would be matched).
1836  	 */
1837  	for (mindex = 0; mindex < g->mlen; mindex++)
1838  		g->charjump[(int)g->must[mindex]] = g->mlen - mindex - 1;
1839  }
1840  
1841  /*
1842   - computematchjumps - compute match jumps for BM scan
1843   == static void computematchjumps(struct parse *p, struct re_guts *g);
1844   *
1845   * This algorithm assumes g->must exists and is has size greater than
1846   * zero. It's based on the algorithm found on Computer Algorithms by
1847   * Sara Baase.
1848   *
1849   * A match jump is the number of characters one needs to advance based
1850   * on the already-matched suffix.
1851   * Notice that all values here are minus (g->mlen-1), because of the way
1852   * the search algorithm works.
1853   */
1854  static void
1855  computematchjumps(struct parse *p, struct re_guts *g)
1856  {
1857  	int mindex;		/* General "must" iterator */
1858  	int suffix;		/* Keeps track of matching suffix */
1859  	int ssuffix;		/* Keeps track of suffixes' suffix */
1860  	int* pmatches;		/* pmatches[k] points to the next i
1861  				 * such that i+1...mlen is a substring
1862  				 * of k+1...k+mlen-i-1
1863  				 */
1864  
1865  	/* Avoid making errors worse */
1866  	if (p->error != 0)
1867  		return;
1868  
1869  	pmatches = (int*) malloc(g->mlen * sizeof(int));
1870  	if (pmatches == NULL) {
1871  		g->matchjump = NULL;
1872  		return;
1873  	}
1874  
1875  	g->matchjump = (int*) malloc(g->mlen * sizeof(int));
1876  	if (g->matchjump == NULL) {	/* Not a fatal error */
1877  		free(pmatches);
1878  		return;
1879  	}
1880  
1881  	/* Set maximum possible jump for each character in the pattern */
1882  	for (mindex = 0; mindex < g->mlen; mindex++)
1883  		g->matchjump[mindex] = 2*g->mlen - mindex - 1;
1884  
1885  	/* Compute pmatches[] */
1886  	for (mindex = g->mlen - 1, suffix = g->mlen; mindex >= 0;
1887  	    mindex--, suffix--) {
1888  		pmatches[mindex] = suffix;
1889  
1890  		/* If a mismatch is found, interrupting the substring,
1891  		 * compute the matchjump for that position. If no
1892  		 * mismatch is found, then a text substring mismatched
1893  		 * against the suffix will also mismatch against the
1894  		 * substring.
1895  		 */
1896  		while (suffix < g->mlen
1897  		    && g->must[mindex] != g->must[suffix]) {
1898  			g->matchjump[suffix] = MIN(g->matchjump[suffix],
1899  			    g->mlen - mindex - 1);
1900  			suffix = pmatches[suffix];
1901  		}
1902  	}
1903  
1904  	/* Compute the matchjump up to the last substring found to jump
1905  	 * to the beginning of the largest must pattern prefix matching
1906  	 * it's own suffix.
1907  	 */
1908  	for (mindex = 0; mindex <= suffix; mindex++)
1909  		g->matchjump[mindex] = MIN(g->matchjump[mindex],
1910  		    g->mlen + suffix - mindex);
1911  
1912          ssuffix = pmatches[suffix];
1913          while (suffix < g->mlen) {
1914                  while (suffix <= ssuffix && suffix < g->mlen) {
1915                          g->matchjump[suffix] = MIN(g->matchjump[suffix],
1916  			    g->mlen + ssuffix - suffix);
1917                          suffix++;
1918                  }
1919  		if (suffix < g->mlen)
1920                  	ssuffix = pmatches[ssuffix];
1921          }
1922  
1923  	free(pmatches);
1924  }
1925  
1926  /*
1927   - pluscount - count + nesting
1928   == static sopno pluscount(struct parse *p, struct re_guts *g);
1929   */
1930  static sopno			/* nesting depth */
1931  pluscount(struct parse *p, struct re_guts *g)
1932  {
1933  	sop *scan;
1934  	sop s;
1935  	sopno plusnest = 0;
1936  	sopno maxnest = 0;
1937  
1938  	if (p->error != 0)
1939  		return(0);	/* there may not be an OEND */
1940  
1941  	scan = g->strip + 1;
1942  	do {
1943  		s = *scan++;
1944  		switch (OP(s)) {
1945  		case OPLUS_:
1946  			plusnest++;
1947  			break;
1948  		case O_PLUS:
1949  			if (plusnest > maxnest)
1950  				maxnest = plusnest;
1951  			plusnest--;
1952  			break;
1953  		}
1954  	} while (OP(s) != OEND);
1955  	if (plusnest != 0)
1956  		g->iflags |= BAD;
1957  	return(maxnest);
1958  }
1959