xref: /freebsd/lib/libc/regex/regcomp.c (revision d93a896ef95946b0bf1219866fcb324b78543444)
1 /*-
2  * Copyright (c) 1992, 1993, 1994 Henry Spencer.
3  * Copyright (c) 1992, 1993, 1994
4  *	The Regents of the University of California.  All rights reserved.
5  *
6  * Copyright (c) 2011 The FreeBSD Foundation
7  * All rights reserved.
8  * Portions of this software were developed by David Chisnall
9  * under sponsorship from the FreeBSD Foundation.
10  *
11  * This code is derived from software contributed to Berkeley by
12  * Henry Spencer.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)regcomp.c	8.5 (Berkeley) 3/20/94
39  */
40 
41 #if defined(LIBC_SCCS) && !defined(lint)
42 static char sccsid[] = "@(#)regcomp.c	8.5 (Berkeley) 3/20/94";
43 #endif /* LIBC_SCCS and not lint */
44 #include <sys/cdefs.h>
45 __FBSDID("$FreeBSD$");
46 
47 #include <sys/types.h>
48 #include <stdio.h>
49 #include <string.h>
50 #include <ctype.h>
51 #include <limits.h>
52 #include <stdlib.h>
53 #include <regex.h>
54 #include <stdbool.h>
55 #include <wchar.h>
56 #include <wctype.h>
57 
58 #include "collate.h"
59 
60 #include "utils.h"
61 #include "regex2.h"
62 
63 #include "cname.h"
64 
65 /*
66  * Branching context, used to keep track of branch state for all of the branch-
67  * aware functions. In addition to keeping track of branch positions for the
68  * p_branch_* functions, we use this to simplify some clumsiness in BREs for
69  * detection of whether ^ is acting as an anchor or being used erroneously and
70  * also for whether we're in a sub-expression or not.
71  */
72 struct branchc {
73 	sopno start;
74 	sopno back;
75 	sopno fwd;
76 
77 	int nbranch;
78 	int nchain;
79 	bool outer;
80 	bool terminate;
81 };
82 
83 /*
84  * parse structure, passed up and down to avoid global variables and
85  * other clumsinesses
86  */
87 struct parse {
88 	const char *next;	/* next character in RE */
89 	const char *end;	/* end of string (-> NUL normally) */
90 	int error;		/* has an error been seen? */
91 	sop *strip;		/* malloced strip */
92 	sopno ssize;		/* malloced strip size (allocated) */
93 	sopno slen;		/* malloced strip length (used) */
94 	int ncsalloc;		/* number of csets allocated */
95 	struct re_guts *g;
96 #	define	NPAREN	10	/* we need to remember () 1-9 for back refs */
97 	sopno pbegin[NPAREN];	/* -> ( ([0] unused) */
98 	sopno pend[NPAREN];	/* -> ) ([0] unused) */
99 	bool allowbranch;	/* can this expression branch? */
100 	bool bre;		/* convenience; is this a BRE? */
101 	bool (*parse_expr)(struct parse *, struct branchc *);
102 	void (*pre_parse)(struct parse *, struct branchc *);
103 	void (*post_parse)(struct parse *, struct branchc *);
104 };
105 
106 /* ========= begin header generated by ./mkh ========= */
107 #ifdef __cplusplus
108 extern "C" {
109 #endif
110 
111 /* === regcomp.c === */
112 static bool p_ere_exp(struct parse *p, struct branchc *bc);
113 static void p_str(struct parse *p);
114 static int p_branch_eat_delim(struct parse *p, struct branchc *bc);
115 static void p_branch_ins_offset(struct parse *p, struct branchc *bc);
116 static void p_branch_fix_tail(struct parse *p, struct branchc *bc);
117 static bool p_branch_empty(struct parse *p, struct branchc *bc);
118 static bool p_branch_do(struct parse *p, struct branchc *bc);
119 static void p_bre_pre_parse(struct parse *p, struct branchc *bc);
120 static void p_bre_post_parse(struct parse *p, struct branchc *bc);
121 static void p_re(struct parse *p, int end1, int end2);
122 static bool p_simp_re(struct parse *p, struct branchc *bc);
123 static int p_count(struct parse *p);
124 static void p_bracket(struct parse *p);
125 static void p_b_term(struct parse *p, cset *cs);
126 static void p_b_cclass(struct parse *p, cset *cs);
127 static void p_b_eclass(struct parse *p, cset *cs);
128 static wint_t p_b_symbol(struct parse *p);
129 static wint_t p_b_coll_elem(struct parse *p, wint_t endc);
130 static wint_t othercase(wint_t ch);
131 static void bothcases(struct parse *p, wint_t ch);
132 static void ordinary(struct parse *p, wint_t ch);
133 static void nonnewline(struct parse *p);
134 static void repeat(struct parse *p, sopno start, int from, int to);
135 static int seterr(struct parse *p, int e);
136 static cset *allocset(struct parse *p);
137 static void freeset(struct parse *p, cset *cs);
138 static void CHadd(struct parse *p, cset *cs, wint_t ch);
139 static void CHaddrange(struct parse *p, cset *cs, wint_t min, wint_t max);
140 static void CHaddtype(struct parse *p, cset *cs, wctype_t wct);
141 static wint_t singleton(cset *cs);
142 static sopno dupl(struct parse *p, sopno start, sopno finish);
143 static void doemit(struct parse *p, sop op, size_t opnd);
144 static void doinsert(struct parse *p, sop op, size_t opnd, sopno pos);
145 static void dofwd(struct parse *p, sopno pos, sop value);
146 static int enlarge(struct parse *p, sopno size);
147 static void stripsnug(struct parse *p, struct re_guts *g);
148 static void findmust(struct parse *p, struct re_guts *g);
149 static int altoffset(sop *scan, int offset);
150 static void computejumps(struct parse *p, struct re_guts *g);
151 static void computematchjumps(struct parse *p, struct re_guts *g);
152 static sopno pluscount(struct parse *p, struct re_guts *g);
153 static wint_t wgetnext(struct parse *p);
154 
155 #ifdef __cplusplus
156 }
157 #endif
158 /* ========= end header generated by ./mkh ========= */
159 
160 static char nuls[10];		/* place to point scanner in event of error */
161 
162 /*
163  * macros for use with parse structure
164  * BEWARE:  these know that the parse structure is named `p' !!!
165  */
166 #define	PEEK()	(*p->next)
167 #define	PEEK2()	(*(p->next+1))
168 #define	MORE()	(p->next < p->end)
169 #define	MORE2()	(p->next+1 < p->end)
170 #define	SEE(c)	(MORE() && PEEK() == (c))
171 #define	SEETWO(a, b)	(MORE() && MORE2() && PEEK() == (a) && PEEK2() == (b))
172 #define	SEESPEC(a)	(p->bre ? SEETWO('\\', a) : SEE(a))
173 #define	EAT(c)	((SEE(c)) ? (NEXT(), 1) : 0)
174 #define	EATTWO(a, b)	((SEETWO(a, b)) ? (NEXT2(), 1) : 0)
175 #define	NEXT()	(p->next++)
176 #define	NEXT2()	(p->next += 2)
177 #define	NEXTn(n)	(p->next += (n))
178 #define	GETNEXT()	(*p->next++)
179 #define	WGETNEXT()	wgetnext(p)
180 #define	SETERROR(e)	seterr(p, (e))
181 #define	REQUIRE(co, e)	((co) || SETERROR(e))
182 #define	MUSTSEE(c, e)	(REQUIRE(MORE() && PEEK() == (c), e))
183 #define	MUSTEAT(c, e)	(REQUIRE(MORE() && GETNEXT() == (c), e))
184 #define	MUSTNOTSEE(c, e)	(REQUIRE(!MORE() || PEEK() != (c), e))
185 #define	EMIT(op, sopnd)	doemit(p, (sop)(op), (size_t)(sopnd))
186 #define	INSERT(op, pos)	doinsert(p, (sop)(op), HERE()-(pos)+1, pos)
187 #define	AHEAD(pos)		dofwd(p, pos, HERE()-(pos))
188 #define	ASTERN(sop, pos)	EMIT(sop, HERE()-pos)
189 #define	HERE()		(p->slen)
190 #define	THERE()		(p->slen - 1)
191 #define	THERETHERE()	(p->slen - 2)
192 #define	DROP(n)	(p->slen -= (n))
193 
194 #ifndef NDEBUG
195 static int never = 0;		/* for use in asserts; shuts lint up */
196 #else
197 #define	never	0		/* some <assert.h>s have bugs too */
198 #endif
199 
200 /* Macro used by computejump()/computematchjump() */
201 #define MIN(a,b)	((a)<(b)?(a):(b))
202 
203 /*
204  - regcomp - interface for parser and compilation
205  = extern int regcomp(regex_t *, const char *, int);
206  = #define	REG_BASIC	0000
207  = #define	REG_EXTENDED	0001
208  = #define	REG_ICASE	0002
209  = #define	REG_NOSUB	0004
210  = #define	REG_NEWLINE	0010
211  = #define	REG_NOSPEC	0020
212  = #define	REG_PEND	0040
213  = #define	REG_DUMP	0200
214  */
215 int				/* 0 success, otherwise REG_something */
216 regcomp(regex_t * __restrict preg,
217 	const char * __restrict pattern,
218 	int cflags)
219 {
220 	struct parse pa;
221 	struct re_guts *g;
222 	struct parse *p = &pa;
223 	int i;
224 	size_t len;
225 	size_t maxlen;
226 #ifdef REDEBUG
227 #	define	GOODFLAGS(f)	(f)
228 #else
229 #	define	GOODFLAGS(f)	((f)&~REG_DUMP)
230 #endif
231 
232 	cflags = GOODFLAGS(cflags);
233 	if ((cflags&REG_EXTENDED) && (cflags&REG_NOSPEC))
234 		return(REG_INVARG);
235 
236 	if (cflags&REG_PEND) {
237 		if (preg->re_endp < pattern)
238 			return(REG_INVARG);
239 		len = preg->re_endp - pattern;
240 	} else
241 		len = strlen(pattern);
242 
243 	/* do the mallocs early so failure handling is easy */
244 	g = (struct re_guts *)malloc(sizeof(struct re_guts));
245 	if (g == NULL)
246 		return(REG_ESPACE);
247 	/*
248 	 * Limit the pattern space to avoid a 32-bit overflow on buffer
249 	 * extension.  Also avoid any signed overflow in case of conversion
250 	 * so make the real limit based on a 31-bit overflow.
251 	 *
252 	 * Likely not applicable on 64-bit systems but handle the case
253 	 * generically (who are we to stop people from using ~715MB+
254 	 * patterns?).
255 	 */
256 	maxlen = ((size_t)-1 >> 1) / sizeof(sop) * 2 / 3;
257 	if (len >= maxlen) {
258 		free((char *)g);
259 		return(REG_ESPACE);
260 	}
261 	p->ssize = len/(size_t)2*(size_t)3 + (size_t)1;	/* ugh */
262 	assert(p->ssize >= len);
263 
264 	p->strip = (sop *)malloc(p->ssize * sizeof(sop));
265 	p->slen = 0;
266 	if (p->strip == NULL) {
267 		free((char *)g);
268 		return(REG_ESPACE);
269 	}
270 
271 	/* set things up */
272 	p->g = g;
273 	p->next = pattern;	/* convenience; we do not modify it */
274 	p->end = p->next + len;
275 	p->error = 0;
276 	p->ncsalloc = 0;
277 	for (i = 0; i < NPAREN; i++) {
278 		p->pbegin[i] = 0;
279 		p->pend[i] = 0;
280 	}
281 	if (cflags & REG_EXTENDED) {
282 		p->allowbranch = true;
283 		p->bre = false;
284 		p->parse_expr = p_ere_exp;
285 		p->pre_parse = NULL;
286 		p->post_parse = NULL;
287 	} else {
288 		p->allowbranch = false;
289 		p->bre = true;
290 		p->parse_expr = p_simp_re;
291 		p->pre_parse = p_bre_pre_parse;
292 		p->post_parse = p_bre_post_parse;
293 	}
294 	g->sets = NULL;
295 	g->ncsets = 0;
296 	g->cflags = cflags;
297 	g->iflags = 0;
298 	g->nbol = 0;
299 	g->neol = 0;
300 	g->must = NULL;
301 	g->moffset = -1;
302 	g->charjump = NULL;
303 	g->matchjump = NULL;
304 	g->mlen = 0;
305 	g->nsub = 0;
306 	g->backrefs = 0;
307 
308 	/* do it */
309 	EMIT(OEND, 0);
310 	g->firststate = THERE();
311 	if (cflags & REG_NOSPEC)
312 		p_str(p);
313 	else
314 		p_re(p, OUT, OUT);
315 	EMIT(OEND, 0);
316 	g->laststate = THERE();
317 
318 	/* tidy up loose ends and fill things in */
319 	stripsnug(p, g);
320 	findmust(p, g);
321 	/* only use Boyer-Moore algorithm if the pattern is bigger
322 	 * than three characters
323 	 */
324 	if(g->mlen > 3) {
325 		computejumps(p, g);
326 		computematchjumps(p, g);
327 		if(g->matchjump == NULL && g->charjump != NULL) {
328 			free(g->charjump);
329 			g->charjump = NULL;
330 		}
331 	}
332 	g->nplus = pluscount(p, g);
333 	g->magic = MAGIC2;
334 	preg->re_nsub = g->nsub;
335 	preg->re_g = g;
336 	preg->re_magic = MAGIC1;
337 #ifndef REDEBUG
338 	/* not debugging, so can't rely on the assert() in regexec() */
339 	if (g->iflags&BAD)
340 		SETERROR(REG_ASSERT);
341 #endif
342 
343 	/* win or lose, we're done */
344 	if (p->error != 0)	/* lose */
345 		regfree(preg);
346 	return(p->error);
347 }
348 
349 /*
350  - p_ere_exp - parse one subERE, an atom possibly followed by a repetition op,
351  - return whether we should terminate or not
352  == static bool p_ere_exp(struct parse *p);
353  */
354 static bool
355 p_ere_exp(struct parse *p, struct branchc *bc)
356 {
357 	char c;
358 	wint_t wc;
359 	sopno pos;
360 	int count;
361 	int count2;
362 	sopno subno;
363 	int wascaret = 0;
364 
365 	assert(MORE());		/* caller should have ensured this */
366 	c = GETNEXT();
367 
368 	pos = HERE();
369 	switch (c) {
370 	case '(':
371 		(void)REQUIRE(MORE(), REG_EPAREN);
372 		p->g->nsub++;
373 		subno = p->g->nsub;
374 		if (subno < NPAREN)
375 			p->pbegin[subno] = HERE();
376 		EMIT(OLPAREN, subno);
377 		if (!SEE(')'))
378 			p_re(p, ')', IGN);
379 		if (subno < NPAREN) {
380 			p->pend[subno] = HERE();
381 			assert(p->pend[subno] != 0);
382 		}
383 		EMIT(ORPAREN, subno);
384 		(void)MUSTEAT(')', REG_EPAREN);
385 		break;
386 #ifndef POSIX_MISTAKE
387 	case ')':		/* happens only if no current unmatched ( */
388 		/*
389 		 * You may ask, why the ifndef?  Because I didn't notice
390 		 * this until slightly too late for 1003.2, and none of the
391 		 * other 1003.2 regular-expression reviewers noticed it at
392 		 * all.  So an unmatched ) is legal POSIX, at least until
393 		 * we can get it fixed.
394 		 */
395 		SETERROR(REG_EPAREN);
396 		break;
397 #endif
398 	case '^':
399 		EMIT(OBOL, 0);
400 		p->g->iflags |= USEBOL;
401 		p->g->nbol++;
402 		wascaret = 1;
403 		break;
404 	case '$':
405 		EMIT(OEOL, 0);
406 		p->g->iflags |= USEEOL;
407 		p->g->neol++;
408 		break;
409 	case '|':
410 		SETERROR(REG_EMPTY);
411 		break;
412 	case '*':
413 	case '+':
414 	case '?':
415 		SETERROR(REG_BADRPT);
416 		break;
417 	case '.':
418 		if (p->g->cflags&REG_NEWLINE)
419 			nonnewline(p);
420 		else
421 			EMIT(OANY, 0);
422 		break;
423 	case '[':
424 		p_bracket(p);
425 		break;
426 	case '\\':
427 		(void)REQUIRE(MORE(), REG_EESCAPE);
428 		wc = WGETNEXT();
429 		switch (wc) {
430 		case '<':
431 			EMIT(OBOW, 0);
432 			break;
433 		case '>':
434 			EMIT(OEOW, 0);
435 			break;
436 		default:
437 			ordinary(p, wc);
438 			break;
439 		}
440 		break;
441 	case '{':		/* okay as ordinary except if digit follows */
442 		(void)REQUIRE(!MORE() || !isdigit((uch)PEEK()), REG_BADRPT);
443 		/* FALLTHROUGH */
444 	default:
445 		if (p->error != 0)
446 			return (false);
447 		p->next--;
448 		wc = WGETNEXT();
449 		ordinary(p, wc);
450 		break;
451 	}
452 
453 	if (!MORE())
454 		return (false);
455 	c = PEEK();
456 	/* we call { a repetition if followed by a digit */
457 	if (!( c == '*' || c == '+' || c == '?' ||
458 				(c == '{' && MORE2() && isdigit((uch)PEEK2())) ))
459 		return (false);		/* no repetition, we're done */
460 	NEXT();
461 
462 	(void)REQUIRE(!wascaret, REG_BADRPT);
463 	switch (c) {
464 	case '*':	/* implemented as +? */
465 		/* this case does not require the (y|) trick, noKLUDGE */
466 		INSERT(OPLUS_, pos);
467 		ASTERN(O_PLUS, pos);
468 		INSERT(OQUEST_, pos);
469 		ASTERN(O_QUEST, pos);
470 		break;
471 	case '+':
472 		INSERT(OPLUS_, pos);
473 		ASTERN(O_PLUS, pos);
474 		break;
475 	case '?':
476 		/* KLUDGE: emit y? as (y|) until subtle bug gets fixed */
477 		INSERT(OCH_, pos);		/* offset slightly wrong */
478 		ASTERN(OOR1, pos);		/* this one's right */
479 		AHEAD(pos);			/* fix the OCH_ */
480 		EMIT(OOR2, 0);			/* offset very wrong... */
481 		AHEAD(THERE());			/* ...so fix it */
482 		ASTERN(O_CH, THERETHERE());
483 		break;
484 	case '{':
485 		count = p_count(p);
486 		if (EAT(',')) {
487 			if (isdigit((uch)PEEK())) {
488 				count2 = p_count(p);
489 				(void)REQUIRE(count <= count2, REG_BADBR);
490 			} else		/* single number with comma */
491 				count2 = INFINITY;
492 		} else		/* just a single number */
493 			count2 = count;
494 		repeat(p, pos, count, count2);
495 		if (!EAT('}')) {	/* error heuristics */
496 			while (MORE() && PEEK() != '}')
497 				NEXT();
498 			(void)REQUIRE(MORE(), REG_EBRACE);
499 			SETERROR(REG_BADBR);
500 		}
501 		break;
502 	}
503 
504 	if (!MORE())
505 		return (false);
506 	c = PEEK();
507 	if (!( c == '*' || c == '+' || c == '?' ||
508 				(c == '{' && MORE2() && isdigit((uch)PEEK2())) ) )
509 		return (false);
510 	SETERROR(REG_BADRPT);
511 	return (false);
512 }
513 
514 /*
515  - p_str - string (no metacharacters) "parser"
516  == static void p_str(struct parse *p);
517  */
518 static void
519 p_str(struct parse *p)
520 {
521 	(void)REQUIRE(MORE(), REG_EMPTY);
522 	while (MORE())
523 		ordinary(p, WGETNEXT());
524 }
525 
526 /*
527  * Eat consecutive branch delimiters for the kind of expression that we are
528  * parsing, return the number of delimiters that we ate.
529  */
530 static int
531 p_branch_eat_delim(struct parse *p, struct branchc *bc)
532 {
533 	int nskip;
534 
535 	nskip = 0;
536 	while (EAT('|'))
537 		++nskip;
538 	return (nskip);
539 }
540 
541 /*
542  * Insert necessary branch book-keeping operations. This emits a
543  * bogus 'next' offset, since we still have more to parse
544  */
545 static void
546 p_branch_ins_offset(struct parse *p, struct branchc *bc)
547 {
548 
549 	if (bc->nbranch == 0) {
550 		INSERT(OCH_, bc->start);	/* offset is wrong */
551 		bc->fwd = bc->start;
552 		bc->back = bc->start;
553 	}
554 
555 	ASTERN(OOR1, bc->back);
556 	bc->back = THERE();
557 	AHEAD(bc->fwd);			/* fix previous offset */
558 	bc->fwd = HERE();
559 	EMIT(OOR2, 0);			/* offset is very wrong */
560 	++bc->nbranch;
561 }
562 
563 /*
564  * Fix the offset of the tail branch, if we actually had any branches.
565  * This is to correct the bogus placeholder offset that we use.
566  */
567 static void
568 p_branch_fix_tail(struct parse *p, struct branchc *bc)
569 {
570 
571 	/* Fix bogus offset at the tail if we actually have branches */
572 	if (bc->nbranch > 0) {
573 		AHEAD(bc->fwd);
574 		ASTERN(O_CH, bc->back);
575 	}
576 }
577 
578 /*
579  * Signal to the parser that an empty branch has been encountered; this will,
580  * in the future, be used to allow for more permissive behavior with empty
581  * branches. The return value should indicate whether parsing may continue
582  * or not.
583  */
584 static bool
585 p_branch_empty(struct parse *p, struct branchc *bc)
586 {
587 
588 	SETERROR(REG_EMPTY);
589 	return (false);
590 }
591 
592 /*
593  * Take care of any branching requirements. This includes inserting the
594  * appropriate branching instructions as well as eating all of the branch
595  * delimiters until we either run out of pattern or need to parse more pattern.
596  */
597 static bool
598 p_branch_do(struct parse *p, struct branchc *bc)
599 {
600 	int ate = 0;
601 
602 	ate = p_branch_eat_delim(p, bc);
603 	if (ate == 0)
604 		return (false);
605 	else if ((ate > 1 || (bc->outer && !MORE())) && !p_branch_empty(p, bc))
606 		/*
607 		 * Halt parsing only if we have an empty branch and p_branch_empty
608 		 * indicates that we must not continue. In the future, this will not
609 		 * necessarily be an error.
610 		 */
611 		return (false);
612 	p_branch_ins_offset(p, bc);
613 
614 	return (true);
615 }
616 
617 static void
618 p_bre_pre_parse(struct parse *p, struct branchc *bc)
619 {
620 
621 	(void) bc;
622 	/*
623 	 * Does not move cleanly into expression parser because of
624 	 * ordinary interpration of * at the beginning position of
625 	 * an expression.
626 	 */
627 	if (EAT('^')) {
628 		EMIT(OBOL, 0);
629 		p->g->iflags |= USEBOL;
630 		p->g->nbol++;
631 	}
632 }
633 
634 static void
635 p_bre_post_parse(struct parse *p, struct branchc *bc)
636 {
637 
638 	/* Expression is terminating due to EOL token */
639 	if (bc->terminate) {
640 		DROP(1);
641 		EMIT(OEOL, 0);
642 		p->g->iflags |= USEEOL;
643 		p->g->neol++;
644 	}
645 }
646 
647 /*
648  - p_re - Top level parser, concatenation and BRE anchoring
649  == static void p_re(struct parse *p, int end1, int end2);
650  * Giving end1 as OUT essentially eliminates the end1/end2 check.
651  *
652  * This implementation is a bit of a kludge, in that a trailing $ is first
653  * taken as an ordinary character and then revised to be an anchor.
654  * The amount of lookahead needed to avoid this kludge is excessive.
655  */
656 static void
657 p_re(struct parse *p,
658 	int end1,	/* first terminating character */
659 	int end2)	/* second terminating character; ignored for EREs */
660 {
661 	struct branchc bc;
662 
663 	bc.nbranch = 0;
664 	if (end1 == OUT && end2 == OUT)
665 		bc.outer = true;
666 	else
667 		bc.outer = false;
668 #define	SEEEND()	(!p->bre ? SEE(end1) : SEETWO(end1, end2))
669 	for (;;) {
670 		bc.start = HERE();
671 		bc.nchain = 0;
672 		bc.terminate = false;
673 		if (p->pre_parse != NULL)
674 			p->pre_parse(p, &bc);
675 		while (MORE() && (!p->allowbranch || !SEESPEC('|')) && !SEEEND()) {
676 			bc.terminate = p->parse_expr(p, &bc);
677 			++bc.nchain;
678 		}
679 		if (p->post_parse != NULL)
680 			p->post_parse(p, &bc);
681 		(void) REQUIRE(HERE() != bc.start, REG_EMPTY);
682 		if (!p->allowbranch)
683 			break;
684 		/*
685 		 * p_branch_do's return value indicates whether we should
686 		 * continue parsing or not. This is both for correctness and
687 		 * a slight optimization, because it will check if we've
688 		 * encountered an empty branch or the end of the string
689 		 * immediately following a branch delimiter.
690 		 */
691 		if (!p_branch_do(p, &bc))
692 			break;
693 	}
694 #undef SEE_END
695 	if (p->allowbranch)
696 		p_branch_fix_tail(p, &bc);
697 	assert(!MORE() || SEE(end1));
698 }
699 
700 /*
701  - p_simp_re - parse a simple RE, an atom possibly followed by a repetition
702  == static bool p_simp_re(struct parse *p, struct branchc *bc);
703  */
704 static bool			/* was the simple RE an unbackslashed $? */
705 p_simp_re(struct parse *p, struct branchc *bc)
706 {
707 	int c;
708 	int count;
709 	int count2;
710 	sopno pos;
711 	int i;
712 	wint_t wc;
713 	sopno subno;
714 #	define	BACKSL	(1<<CHAR_BIT)
715 
716 	pos = HERE();		/* repetition op, if any, covers from here */
717 
718 	assert(MORE());		/* caller should have ensured this */
719 	c = GETNEXT();
720 	if (c == '\\') {
721 		(void)REQUIRE(MORE(), REG_EESCAPE);
722 		c = BACKSL | GETNEXT();
723 	}
724 	switch (c) {
725 	case '.':
726 		if (p->g->cflags&REG_NEWLINE)
727 			nonnewline(p);
728 		else
729 			EMIT(OANY, 0);
730 		break;
731 	case '[':
732 		p_bracket(p);
733 		break;
734 	case BACKSL|'<':
735 		EMIT(OBOW, 0);
736 		break;
737 	case BACKSL|'>':
738 		EMIT(OEOW, 0);
739 		break;
740 	case BACKSL|'{':
741 		SETERROR(REG_BADRPT);
742 		break;
743 	case BACKSL|'(':
744 		p->g->nsub++;
745 		subno = p->g->nsub;
746 		if (subno < NPAREN)
747 			p->pbegin[subno] = HERE();
748 		EMIT(OLPAREN, subno);
749 		/* the MORE here is an error heuristic */
750 		if (MORE() && !SEETWO('\\', ')'))
751 			p_re(p, '\\', ')');
752 		if (subno < NPAREN) {
753 			p->pend[subno] = HERE();
754 			assert(p->pend[subno] != 0);
755 		}
756 		EMIT(ORPAREN, subno);
757 		(void)REQUIRE(EATTWO('\\', ')'), REG_EPAREN);
758 		break;
759 	case BACKSL|')':	/* should not get here -- must be user */
760 	case BACKSL|'}':
761 		SETERROR(REG_EPAREN);
762 		break;
763 	case BACKSL|'1':
764 	case BACKSL|'2':
765 	case BACKSL|'3':
766 	case BACKSL|'4':
767 	case BACKSL|'5':
768 	case BACKSL|'6':
769 	case BACKSL|'7':
770 	case BACKSL|'8':
771 	case BACKSL|'9':
772 		i = (c&~BACKSL) - '0';
773 		assert(i < NPAREN);
774 		if (p->pend[i] != 0) {
775 			assert(i <= p->g->nsub);
776 			EMIT(OBACK_, i);
777 			assert(p->pbegin[i] != 0);
778 			assert(OP(p->strip[p->pbegin[i]]) == OLPAREN);
779 			assert(OP(p->strip[p->pend[i]]) == ORPAREN);
780 			(void) dupl(p, p->pbegin[i]+1, p->pend[i]);
781 			EMIT(O_BACK, i);
782 		} else
783 			SETERROR(REG_ESUBREG);
784 		p->g->backrefs = 1;
785 		break;
786 	case '*':
787 		/*
788 		 * Ordinary if used as the first character beyond BOL anchor of
789 		 * a (sub-)expression, counts as a bad repetition operator if it
790 		 * appears otherwise.
791 		 */
792 		(void)REQUIRE(bc->nchain == 0, REG_BADRPT);
793 		/* FALLTHROUGH */
794 	default:
795 		if (p->error != 0)
796 			return (false);	/* Definitely not $... */
797 		p->next--;
798 		wc = WGETNEXT();
799 		ordinary(p, wc);
800 		break;
801 	}
802 
803 	if (EAT('*')) {		/* implemented as +? */
804 		/* this case does not require the (y|) trick, noKLUDGE */
805 		INSERT(OPLUS_, pos);
806 		ASTERN(O_PLUS, pos);
807 		INSERT(OQUEST_, pos);
808 		ASTERN(O_QUEST, pos);
809 	} else if (EATTWO('\\', '{')) {
810 		count = p_count(p);
811 		if (EAT(',')) {
812 			if (MORE() && isdigit((uch)PEEK())) {
813 				count2 = p_count(p);
814 				(void)REQUIRE(count <= count2, REG_BADBR);
815 			} else		/* single number with comma */
816 				count2 = INFINITY;
817 		} else		/* just a single number */
818 			count2 = count;
819 		repeat(p, pos, count, count2);
820 		if (!EATTWO('\\', '}')) {	/* error heuristics */
821 			while (MORE() && !SEETWO('\\', '}'))
822 				NEXT();
823 			(void)REQUIRE(MORE(), REG_EBRACE);
824 			SETERROR(REG_BADBR);
825 		}
826 	} else if (c == '$')     /* $ (but not \$) ends it */
827 		return (true);
828 
829 	return (false);
830 }
831 
832 /*
833  - p_count - parse a repetition count
834  == static int p_count(struct parse *p);
835  */
836 static int			/* the value */
837 p_count(struct parse *p)
838 {
839 	int count = 0;
840 	int ndigits = 0;
841 
842 	while (MORE() && isdigit((uch)PEEK()) && count <= DUPMAX) {
843 		count = count*10 + (GETNEXT() - '0');
844 		ndigits++;
845 	}
846 
847 	(void)REQUIRE(ndigits > 0 && count <= DUPMAX, REG_BADBR);
848 	return(count);
849 }
850 
851 /*
852  - p_bracket - parse a bracketed character list
853  == static void p_bracket(struct parse *p);
854  */
855 static void
856 p_bracket(struct parse *p)
857 {
858 	cset *cs;
859 	wint_t ch;
860 
861 	/* Dept of Truly Sickening Special-Case Kludges */
862 	if (p->next + 5 < p->end && strncmp(p->next, "[:<:]]", 6) == 0) {
863 		EMIT(OBOW, 0);
864 		NEXTn(6);
865 		return;
866 	}
867 	if (p->next + 5 < p->end && strncmp(p->next, "[:>:]]", 6) == 0) {
868 		EMIT(OEOW, 0);
869 		NEXTn(6);
870 		return;
871 	}
872 
873 	if ((cs = allocset(p)) == NULL)
874 		return;
875 
876 	if (p->g->cflags&REG_ICASE)
877 		cs->icase = 1;
878 	if (EAT('^'))
879 		cs->invert = 1;
880 	if (EAT(']'))
881 		CHadd(p, cs, ']');
882 	else if (EAT('-'))
883 		CHadd(p, cs, '-');
884 	while (MORE() && PEEK() != ']' && !SEETWO('-', ']'))
885 		p_b_term(p, cs);
886 	if (EAT('-'))
887 		CHadd(p, cs, '-');
888 	(void)MUSTEAT(']', REG_EBRACK);
889 
890 	if (p->error != 0)	/* don't mess things up further */
891 		return;
892 
893 	if (cs->invert && p->g->cflags&REG_NEWLINE)
894 		cs->bmp['\n' >> 3] |= 1 << ('\n' & 7);
895 
896 	if ((ch = singleton(cs)) != OUT) {	/* optimize singleton sets */
897 		ordinary(p, ch);
898 		freeset(p, cs);
899 	} else
900 		EMIT(OANYOF, (int)(cs - p->g->sets));
901 }
902 
903 /*
904  - p_b_term - parse one term of a bracketed character list
905  == static void p_b_term(struct parse *p, cset *cs);
906  */
907 static void
908 p_b_term(struct parse *p, cset *cs)
909 {
910 	char c;
911 	wint_t start, finish;
912 	wint_t i;
913 	struct xlocale_collate *table =
914 		(struct xlocale_collate*)__get_locale()->components[XLC_COLLATE];
915 
916 	/* classify what we've got */
917 	switch ((MORE()) ? PEEK() : '\0') {
918 	case '[':
919 		c = (MORE2()) ? PEEK2() : '\0';
920 		break;
921 	case '-':
922 		SETERROR(REG_ERANGE);
923 		return;			/* NOTE RETURN */
924 	default:
925 		c = '\0';
926 		break;
927 	}
928 
929 	switch (c) {
930 	case ':':		/* character class */
931 		NEXT2();
932 		(void)REQUIRE(MORE(), REG_EBRACK);
933 		c = PEEK();
934 		(void)REQUIRE(c != '-' && c != ']', REG_ECTYPE);
935 		p_b_cclass(p, cs);
936 		(void)REQUIRE(MORE(), REG_EBRACK);
937 		(void)REQUIRE(EATTWO(':', ']'), REG_ECTYPE);
938 		break;
939 	case '=':		/* equivalence class */
940 		NEXT2();
941 		(void)REQUIRE(MORE(), REG_EBRACK);
942 		c = PEEK();
943 		(void)REQUIRE(c != '-' && c != ']', REG_ECOLLATE);
944 		p_b_eclass(p, cs);
945 		(void)REQUIRE(MORE(), REG_EBRACK);
946 		(void)REQUIRE(EATTWO('=', ']'), REG_ECOLLATE);
947 		break;
948 	default:		/* symbol, ordinary character, or range */
949 		start = p_b_symbol(p);
950 		if (SEE('-') && MORE2() && PEEK2() != ']') {
951 			/* range */
952 			NEXT();
953 			if (EAT('-'))
954 				finish = '-';
955 			else
956 				finish = p_b_symbol(p);
957 		} else
958 			finish = start;
959 		if (start == finish)
960 			CHadd(p, cs, start);
961 		else {
962 			if (table->__collate_load_error || MB_CUR_MAX > 1) {
963 				(void)REQUIRE(start <= finish, REG_ERANGE);
964 				CHaddrange(p, cs, start, finish);
965 			} else {
966 				(void)REQUIRE(__wcollate_range_cmp(start, finish) <= 0, REG_ERANGE);
967 				for (i = 0; i <= UCHAR_MAX; i++) {
968 					if (   __wcollate_range_cmp(start, i) <= 0
969 					    && __wcollate_range_cmp(i, finish) <= 0
970 					   )
971 						CHadd(p, cs, i);
972 				}
973 			}
974 		}
975 		break;
976 	}
977 }
978 
979 /*
980  - p_b_cclass - parse a character-class name and deal with it
981  == static void p_b_cclass(struct parse *p, cset *cs);
982  */
983 static void
984 p_b_cclass(struct parse *p, cset *cs)
985 {
986 	const char *sp = p->next;
987 	size_t len;
988 	wctype_t wct;
989 	char clname[16];
990 
991 	while (MORE() && isalpha((uch)PEEK()))
992 		NEXT();
993 	len = p->next - sp;
994 	if (len >= sizeof(clname) - 1) {
995 		SETERROR(REG_ECTYPE);
996 		return;
997 	}
998 	memcpy(clname, sp, len);
999 	clname[len] = '\0';
1000 	if ((wct = wctype(clname)) == 0) {
1001 		SETERROR(REG_ECTYPE);
1002 		return;
1003 	}
1004 	CHaddtype(p, cs, wct);
1005 }
1006 
1007 /*
1008  - p_b_eclass - parse an equivalence-class name and deal with it
1009  == static void p_b_eclass(struct parse *p, cset *cs);
1010  *
1011  * This implementation is incomplete. xxx
1012  */
1013 static void
1014 p_b_eclass(struct parse *p, cset *cs)
1015 {
1016 	wint_t c;
1017 
1018 	c = p_b_coll_elem(p, '=');
1019 	CHadd(p, cs, c);
1020 }
1021 
1022 /*
1023  - p_b_symbol - parse a character or [..]ed multicharacter collating symbol
1024  == static wint_t p_b_symbol(struct parse *p);
1025  */
1026 static wint_t			/* value of symbol */
1027 p_b_symbol(struct parse *p)
1028 {
1029 	wint_t value;
1030 
1031 	(void)REQUIRE(MORE(), REG_EBRACK);
1032 	if (!EATTWO('[', '.'))
1033 		return(WGETNEXT());
1034 
1035 	/* collating symbol */
1036 	value = p_b_coll_elem(p, '.');
1037 	(void)REQUIRE(EATTWO('.', ']'), REG_ECOLLATE);
1038 	return(value);
1039 }
1040 
1041 /*
1042  - p_b_coll_elem - parse a collating-element name and look it up
1043  == static wint_t p_b_coll_elem(struct parse *p, wint_t endc);
1044  */
1045 static wint_t			/* value of collating element */
1046 p_b_coll_elem(struct parse *p,
1047 	wint_t endc)		/* name ended by endc,']' */
1048 {
1049 	const char *sp = p->next;
1050 	struct cname *cp;
1051 	mbstate_t mbs;
1052 	wchar_t wc;
1053 	size_t clen, len;
1054 
1055 	while (MORE() && !SEETWO(endc, ']'))
1056 		NEXT();
1057 	if (!MORE()) {
1058 		SETERROR(REG_EBRACK);
1059 		return(0);
1060 	}
1061 	len = p->next - sp;
1062 	for (cp = cnames; cp->name != NULL; cp++)
1063 		if (strncmp(cp->name, sp, len) == 0 && cp->name[len] == '\0')
1064 			return(cp->code);	/* known name */
1065 	memset(&mbs, 0, sizeof(mbs));
1066 	if ((clen = mbrtowc(&wc, sp, len, &mbs)) == len)
1067 		return (wc);			/* single character */
1068 	else if (clen == (size_t)-1 || clen == (size_t)-2)
1069 		SETERROR(REG_ILLSEQ);
1070 	else
1071 		SETERROR(REG_ECOLLATE);		/* neither */
1072 	return(0);
1073 }
1074 
1075 /*
1076  - othercase - return the case counterpart of an alphabetic
1077  == static wint_t othercase(wint_t ch);
1078  */
1079 static wint_t			/* if no counterpart, return ch */
1080 othercase(wint_t ch)
1081 {
1082 	assert(iswalpha(ch));
1083 	if (iswupper(ch))
1084 		return(towlower(ch));
1085 	else if (iswlower(ch))
1086 		return(towupper(ch));
1087 	else			/* peculiar, but could happen */
1088 		return(ch);
1089 }
1090 
1091 /*
1092  - bothcases - emit a dualcase version of a two-case character
1093  == static void bothcases(struct parse *p, wint_t ch);
1094  *
1095  * Boy, is this implementation ever a kludge...
1096  */
1097 static void
1098 bothcases(struct parse *p, wint_t ch)
1099 {
1100 	const char *oldnext = p->next;
1101 	const char *oldend = p->end;
1102 	char bracket[3 + MB_LEN_MAX];
1103 	size_t n;
1104 	mbstate_t mbs;
1105 
1106 	assert(othercase(ch) != ch);	/* p_bracket() would recurse */
1107 	p->next = bracket;
1108 	memset(&mbs, 0, sizeof(mbs));
1109 	n = wcrtomb(bracket, ch, &mbs);
1110 	assert(n != (size_t)-1);
1111 	bracket[n] = ']';
1112 	bracket[n + 1] = '\0';
1113 	p->end = bracket+n+1;
1114 	p_bracket(p);
1115 	assert(p->next == p->end);
1116 	p->next = oldnext;
1117 	p->end = oldend;
1118 }
1119 
1120 /*
1121  - ordinary - emit an ordinary character
1122  == static void ordinary(struct parse *p, wint_t ch);
1123  */
1124 static void
1125 ordinary(struct parse *p, wint_t ch)
1126 {
1127 	cset *cs;
1128 
1129 	if ((p->g->cflags&REG_ICASE) && iswalpha(ch) && othercase(ch) != ch)
1130 		bothcases(p, ch);
1131 	else if ((ch & OPDMASK) == ch)
1132 		EMIT(OCHAR, ch);
1133 	else {
1134 		/*
1135 		 * Kludge: character is too big to fit into an OCHAR operand.
1136 		 * Emit a singleton set.
1137 		 */
1138 		if ((cs = allocset(p)) == NULL)
1139 			return;
1140 		CHadd(p, cs, ch);
1141 		EMIT(OANYOF, (int)(cs - p->g->sets));
1142 	}
1143 }
1144 
1145 /*
1146  - nonnewline - emit REG_NEWLINE version of OANY
1147  == static void nonnewline(struct parse *p);
1148  *
1149  * Boy, is this implementation ever a kludge...
1150  */
1151 static void
1152 nonnewline(struct parse *p)
1153 {
1154 	const char *oldnext = p->next;
1155 	const char *oldend = p->end;
1156 	char bracket[4];
1157 
1158 	p->next = bracket;
1159 	p->end = bracket+3;
1160 	bracket[0] = '^';
1161 	bracket[1] = '\n';
1162 	bracket[2] = ']';
1163 	bracket[3] = '\0';
1164 	p_bracket(p);
1165 	assert(p->next == bracket+3);
1166 	p->next = oldnext;
1167 	p->end = oldend;
1168 }
1169 
1170 /*
1171  - repeat - generate code for a bounded repetition, recursively if needed
1172  == static void repeat(struct parse *p, sopno start, int from, int to);
1173  */
1174 static void
1175 repeat(struct parse *p,
1176 	sopno start,		/* operand from here to end of strip */
1177 	int from,		/* repeated from this number */
1178 	int to)			/* to this number of times (maybe INFINITY) */
1179 {
1180 	sopno finish = HERE();
1181 #	define	N	2
1182 #	define	INF	3
1183 #	define	REP(f, t)	((f)*8 + (t))
1184 #	define	MAP(n)	(((n) <= 1) ? (n) : ((n) == INFINITY) ? INF : N)
1185 	sopno copy;
1186 
1187 	if (p->error != 0)	/* head off possible runaway recursion */
1188 		return;
1189 
1190 	assert(from <= to);
1191 
1192 	switch (REP(MAP(from), MAP(to))) {
1193 	case REP(0, 0):			/* must be user doing this */
1194 		DROP(finish-start);	/* drop the operand */
1195 		break;
1196 	case REP(0, 1):			/* as x{1,1}? */
1197 	case REP(0, N):			/* as x{1,n}? */
1198 	case REP(0, INF):		/* as x{1,}? */
1199 		/* KLUDGE: emit y? as (y|) until subtle bug gets fixed */
1200 		INSERT(OCH_, start);		/* offset is wrong... */
1201 		repeat(p, start+1, 1, to);
1202 		ASTERN(OOR1, start);
1203 		AHEAD(start);			/* ... fix it */
1204 		EMIT(OOR2, 0);
1205 		AHEAD(THERE());
1206 		ASTERN(O_CH, THERETHERE());
1207 		break;
1208 	case REP(1, 1):			/* trivial case */
1209 		/* done */
1210 		break;
1211 	case REP(1, N):			/* as x?x{1,n-1} */
1212 		/* KLUDGE: emit y? as (y|) until subtle bug gets fixed */
1213 		INSERT(OCH_, start);
1214 		ASTERN(OOR1, start);
1215 		AHEAD(start);
1216 		EMIT(OOR2, 0);			/* offset very wrong... */
1217 		AHEAD(THERE());			/* ...so fix it */
1218 		ASTERN(O_CH, THERETHERE());
1219 		copy = dupl(p, start+1, finish+1);
1220 		assert(copy == finish+4);
1221 		repeat(p, copy, 1, to-1);
1222 		break;
1223 	case REP(1, INF):		/* as x+ */
1224 		INSERT(OPLUS_, start);
1225 		ASTERN(O_PLUS, start);
1226 		break;
1227 	case REP(N, N):			/* as xx{m-1,n-1} */
1228 		copy = dupl(p, start, finish);
1229 		repeat(p, copy, from-1, to-1);
1230 		break;
1231 	case REP(N, INF):		/* as xx{n-1,INF} */
1232 		copy = dupl(p, start, finish);
1233 		repeat(p, copy, from-1, to);
1234 		break;
1235 	default:			/* "can't happen" */
1236 		SETERROR(REG_ASSERT);	/* just in case */
1237 		break;
1238 	}
1239 }
1240 
1241 /*
1242  - wgetnext - helper function for WGETNEXT() macro. Gets the next wide
1243  - character from the parse struct, signals a REG_ILLSEQ error if the
1244  - character can't be converted. Returns the number of bytes consumed.
1245  */
1246 static wint_t
1247 wgetnext(struct parse *p)
1248 {
1249 	mbstate_t mbs;
1250 	wchar_t wc;
1251 	size_t n;
1252 
1253 	memset(&mbs, 0, sizeof(mbs));
1254 	n = mbrtowc(&wc, p->next, p->end - p->next, &mbs);
1255 	if (n == (size_t)-1 || n == (size_t)-2) {
1256 		SETERROR(REG_ILLSEQ);
1257 		return (0);
1258 	}
1259 	if (n == 0)
1260 		n = 1;
1261 	p->next += n;
1262 	return (wc);
1263 }
1264 
1265 /*
1266  - seterr - set an error condition
1267  == static int seterr(struct parse *p, int e);
1268  */
1269 static int			/* useless but makes type checking happy */
1270 seterr(struct parse *p, int e)
1271 {
1272 	if (p->error == 0)	/* keep earliest error condition */
1273 		p->error = e;
1274 	p->next = nuls;		/* try to bring things to a halt */
1275 	p->end = nuls;
1276 	return(0);		/* make the return value well-defined */
1277 }
1278 
1279 /*
1280  - allocset - allocate a set of characters for []
1281  == static cset *allocset(struct parse *p);
1282  */
1283 static cset *
1284 allocset(struct parse *p)
1285 {
1286 	cset *cs, *ncs;
1287 
1288 	ncs = reallocarray(p->g->sets, p->g->ncsets + 1, sizeof(*ncs));
1289 	if (ncs == NULL) {
1290 		SETERROR(REG_ESPACE);
1291 		return (NULL);
1292 	}
1293 	p->g->sets = ncs;
1294 	cs = &p->g->sets[p->g->ncsets++];
1295 	memset(cs, 0, sizeof(*cs));
1296 
1297 	return(cs);
1298 }
1299 
1300 /*
1301  - freeset - free a now-unused set
1302  == static void freeset(struct parse *p, cset *cs);
1303  */
1304 static void
1305 freeset(struct parse *p, cset *cs)
1306 {
1307 	cset *top = &p->g->sets[p->g->ncsets];
1308 
1309 	free(cs->wides);
1310 	free(cs->ranges);
1311 	free(cs->types);
1312 	memset(cs, 0, sizeof(*cs));
1313 	if (cs == top-1)	/* recover only the easy case */
1314 		p->g->ncsets--;
1315 }
1316 
1317 /*
1318  - singleton - Determine whether a set contains only one character,
1319  - returning it if so, otherwise returning OUT.
1320  */
1321 static wint_t
1322 singleton(cset *cs)
1323 {
1324 	wint_t i, s, n;
1325 
1326 	for (i = n = 0; i < NC; i++)
1327 		if (CHIN(cs, i)) {
1328 			n++;
1329 			s = i;
1330 		}
1331 	if (n == 1)
1332 		return (s);
1333 	if (cs->nwides == 1 && cs->nranges == 0 && cs->ntypes == 0 &&
1334 	    cs->icase == 0)
1335 		return (cs->wides[0]);
1336 	/* Don't bother handling the other cases. */
1337 	return (OUT);
1338 }
1339 
1340 /*
1341  - CHadd - add character to character set.
1342  */
1343 static void
1344 CHadd(struct parse *p, cset *cs, wint_t ch)
1345 {
1346 	wint_t nch, *newwides;
1347 	assert(ch >= 0);
1348 	if (ch < NC)
1349 		cs->bmp[ch >> 3] |= 1 << (ch & 7);
1350 	else {
1351 		newwides = reallocarray(cs->wides, cs->nwides + 1,
1352 		    sizeof(*cs->wides));
1353 		if (newwides == NULL) {
1354 			SETERROR(REG_ESPACE);
1355 			return;
1356 		}
1357 		cs->wides = newwides;
1358 		cs->wides[cs->nwides++] = ch;
1359 	}
1360 	if (cs->icase) {
1361 		if ((nch = towlower(ch)) < NC)
1362 			cs->bmp[nch >> 3] |= 1 << (nch & 7);
1363 		if ((nch = towupper(ch)) < NC)
1364 			cs->bmp[nch >> 3] |= 1 << (nch & 7);
1365 	}
1366 }
1367 
1368 /*
1369  - CHaddrange - add all characters in the range [min,max] to a character set.
1370  */
1371 static void
1372 CHaddrange(struct parse *p, cset *cs, wint_t min, wint_t max)
1373 {
1374 	crange *newranges;
1375 
1376 	for (; min < NC && min <= max; min++)
1377 		CHadd(p, cs, min);
1378 	if (min >= max)
1379 		return;
1380 	newranges = reallocarray(cs->ranges, cs->nranges + 1,
1381 	    sizeof(*cs->ranges));
1382 	if (newranges == NULL) {
1383 		SETERROR(REG_ESPACE);
1384 		return;
1385 	}
1386 	cs->ranges = newranges;
1387 	cs->ranges[cs->nranges].min = min;
1388 	cs->ranges[cs->nranges].max = max;
1389 	cs->nranges++;
1390 }
1391 
1392 /*
1393  - CHaddtype - add all characters of a certain type to a character set.
1394  */
1395 static void
1396 CHaddtype(struct parse *p, cset *cs, wctype_t wct)
1397 {
1398 	wint_t i;
1399 	wctype_t *newtypes;
1400 
1401 	for (i = 0; i < NC; i++)
1402 		if (iswctype(i, wct))
1403 			CHadd(p, cs, i);
1404 	newtypes = reallocarray(cs->types, cs->ntypes + 1,
1405 	    sizeof(*cs->types));
1406 	if (newtypes == NULL) {
1407 		SETERROR(REG_ESPACE);
1408 		return;
1409 	}
1410 	cs->types = newtypes;
1411 	cs->types[cs->ntypes++] = wct;
1412 }
1413 
1414 /*
1415  - dupl - emit a duplicate of a bunch of sops
1416  == static sopno dupl(struct parse *p, sopno start, sopno finish);
1417  */
1418 static sopno			/* start of duplicate */
1419 dupl(struct parse *p,
1420 	sopno start,		/* from here */
1421 	sopno finish)		/* to this less one */
1422 {
1423 	sopno ret = HERE();
1424 	sopno len = finish - start;
1425 
1426 	assert(finish >= start);
1427 	if (len == 0)
1428 		return(ret);
1429 	if (!enlarge(p, p->ssize + len)) /* this many unexpected additions */
1430 		return(ret);
1431 	(void) memcpy((char *)(p->strip + p->slen),
1432 		(char *)(p->strip + start), (size_t)len*sizeof(sop));
1433 	p->slen += len;
1434 	return(ret);
1435 }
1436 
1437 /*
1438  - doemit - emit a strip operator
1439  == static void doemit(struct parse *p, sop op, size_t opnd);
1440  *
1441  * It might seem better to implement this as a macro with a function as
1442  * hard-case backup, but it's just too big and messy unless there are
1443  * some changes to the data structures.  Maybe later.
1444  */
1445 static void
1446 doemit(struct parse *p, sop op, size_t opnd)
1447 {
1448 	/* avoid making error situations worse */
1449 	if (p->error != 0)
1450 		return;
1451 
1452 	/* deal with oversize operands ("can't happen", more or less) */
1453 	assert(opnd < 1<<OPSHIFT);
1454 
1455 	/* deal with undersized strip */
1456 	if (p->slen >= p->ssize)
1457 		if (!enlarge(p, (p->ssize+1) / 2 * 3))	/* +50% */
1458 			return;
1459 
1460 	/* finally, it's all reduced to the easy case */
1461 	p->strip[p->slen++] = SOP(op, opnd);
1462 }
1463 
1464 /*
1465  - doinsert - insert a sop into the strip
1466  == static void doinsert(struct parse *p, sop op, size_t opnd, sopno pos);
1467  */
1468 static void
1469 doinsert(struct parse *p, sop op, size_t opnd, sopno pos)
1470 {
1471 	sopno sn;
1472 	sop s;
1473 	int i;
1474 
1475 	/* avoid making error situations worse */
1476 	if (p->error != 0)
1477 		return;
1478 
1479 	sn = HERE();
1480 	EMIT(op, opnd);		/* do checks, ensure space */
1481 	assert(HERE() == sn+1);
1482 	s = p->strip[sn];
1483 
1484 	/* adjust paren pointers */
1485 	assert(pos > 0);
1486 	for (i = 1; i < NPAREN; i++) {
1487 		if (p->pbegin[i] >= pos) {
1488 			p->pbegin[i]++;
1489 		}
1490 		if (p->pend[i] >= pos) {
1491 			p->pend[i]++;
1492 		}
1493 	}
1494 
1495 	memmove((char *)&p->strip[pos+1], (char *)&p->strip[pos],
1496 						(HERE()-pos-1)*sizeof(sop));
1497 	p->strip[pos] = s;
1498 }
1499 
1500 /*
1501  - dofwd - complete a forward reference
1502  == static void dofwd(struct parse *p, sopno pos, sop value);
1503  */
1504 static void
1505 dofwd(struct parse *p, sopno pos, sop value)
1506 {
1507 	/* avoid making error situations worse */
1508 	if (p->error != 0)
1509 		return;
1510 
1511 	assert(value < 1<<OPSHIFT);
1512 	p->strip[pos] = OP(p->strip[pos]) | value;
1513 }
1514 
1515 /*
1516  - enlarge - enlarge the strip
1517  == static int enlarge(struct parse *p, sopno size);
1518  */
1519 static int
1520 enlarge(struct parse *p, sopno size)
1521 {
1522 	sop *sp;
1523 
1524 	if (p->ssize >= size)
1525 		return 1;
1526 
1527 	sp = reallocarray(p->strip, size, sizeof(sop));
1528 	if (sp == NULL) {
1529 		SETERROR(REG_ESPACE);
1530 		return 0;
1531 	}
1532 	p->strip = sp;
1533 	p->ssize = size;
1534 	return 1;
1535 }
1536 
1537 /*
1538  - stripsnug - compact the strip
1539  == static void stripsnug(struct parse *p, struct re_guts *g);
1540  */
1541 static void
1542 stripsnug(struct parse *p, struct re_guts *g)
1543 {
1544 	g->nstates = p->slen;
1545 	g->strip = reallocarray((char *)p->strip, p->slen, sizeof(sop));
1546 	if (g->strip == NULL) {
1547 		SETERROR(REG_ESPACE);
1548 		g->strip = p->strip;
1549 	}
1550 }
1551 
1552 /*
1553  - findmust - fill in must and mlen with longest mandatory literal string
1554  == static void findmust(struct parse *p, struct re_guts *g);
1555  *
1556  * This algorithm could do fancy things like analyzing the operands of |
1557  * for common subsequences.  Someday.  This code is simple and finds most
1558  * of the interesting cases.
1559  *
1560  * Note that must and mlen got initialized during setup.
1561  */
1562 static void
1563 findmust(struct parse *p, struct re_guts *g)
1564 {
1565 	sop *scan;
1566 	sop *start = NULL;
1567 	sop *newstart = NULL;
1568 	sopno newlen;
1569 	sop s;
1570 	char *cp;
1571 	int offset;
1572 	char buf[MB_LEN_MAX];
1573 	size_t clen;
1574 	mbstate_t mbs;
1575 
1576 	/* avoid making error situations worse */
1577 	if (p->error != 0)
1578 		return;
1579 
1580 	/*
1581 	 * It's not generally safe to do a ``char'' substring search on
1582 	 * multibyte character strings, but it's safe for at least
1583 	 * UTF-8 (see RFC 3629).
1584 	 */
1585 	if (MB_CUR_MAX > 1 &&
1586 	    strcmp(_CurrentRuneLocale->__encoding, "UTF-8") != 0)
1587 		return;
1588 
1589 	/* find the longest OCHAR sequence in strip */
1590 	newlen = 0;
1591 	offset = 0;
1592 	g->moffset = 0;
1593 	scan = g->strip + 1;
1594 	do {
1595 		s = *scan++;
1596 		switch (OP(s)) {
1597 		case OCHAR:		/* sequence member */
1598 			if (newlen == 0) {		/* new sequence */
1599 				memset(&mbs, 0, sizeof(mbs));
1600 				newstart = scan - 1;
1601 			}
1602 			clen = wcrtomb(buf, OPND(s), &mbs);
1603 			if (clen == (size_t)-1)
1604 				goto toohard;
1605 			newlen += clen;
1606 			break;
1607 		case OPLUS_:		/* things that don't break one */
1608 		case OLPAREN:
1609 		case ORPAREN:
1610 			break;
1611 		case OQUEST_:		/* things that must be skipped */
1612 		case OCH_:
1613 			offset = altoffset(scan, offset);
1614 			scan--;
1615 			do {
1616 				scan += OPND(s);
1617 				s = *scan;
1618 				/* assert() interferes w debug printouts */
1619 				if (OP(s) != O_QUEST && OP(s) != O_CH &&
1620 							OP(s) != OOR2) {
1621 					g->iflags |= BAD;
1622 					return;
1623 				}
1624 			} while (OP(s) != O_QUEST && OP(s) != O_CH);
1625 			/* FALLTHROUGH */
1626 		case OBOW:		/* things that break a sequence */
1627 		case OEOW:
1628 		case OBOL:
1629 		case OEOL:
1630 		case O_QUEST:
1631 		case O_CH:
1632 		case OEND:
1633 			if (newlen > g->mlen) {		/* ends one */
1634 				start = newstart;
1635 				g->mlen = newlen;
1636 				if (offset > -1) {
1637 					g->moffset += offset;
1638 					offset = newlen;
1639 				} else
1640 					g->moffset = offset;
1641 			} else {
1642 				if (offset > -1)
1643 					offset += newlen;
1644 			}
1645 			newlen = 0;
1646 			break;
1647 		case OANY:
1648 			if (newlen > g->mlen) {		/* ends one */
1649 				start = newstart;
1650 				g->mlen = newlen;
1651 				if (offset > -1) {
1652 					g->moffset += offset;
1653 					offset = newlen;
1654 				} else
1655 					g->moffset = offset;
1656 			} else {
1657 				if (offset > -1)
1658 					offset += newlen;
1659 			}
1660 			if (offset > -1)
1661 				offset++;
1662 			newlen = 0;
1663 			break;
1664 		case OANYOF:		/* may or may not invalidate offset */
1665 			/* First, everything as OANY */
1666 			if (newlen > g->mlen) {		/* ends one */
1667 				start = newstart;
1668 				g->mlen = newlen;
1669 				if (offset > -1) {
1670 					g->moffset += offset;
1671 					offset = newlen;
1672 				} else
1673 					g->moffset = offset;
1674 			} else {
1675 				if (offset > -1)
1676 					offset += newlen;
1677 			}
1678 			if (offset > -1)
1679 				offset++;
1680 			newlen = 0;
1681 			break;
1682 		toohard:
1683 		default:
1684 			/* Anything here makes it impossible or too hard
1685 			 * to calculate the offset -- so we give up;
1686 			 * save the last known good offset, in case the
1687 			 * must sequence doesn't occur later.
1688 			 */
1689 			if (newlen > g->mlen) {		/* ends one */
1690 				start = newstart;
1691 				g->mlen = newlen;
1692 				if (offset > -1)
1693 					g->moffset += offset;
1694 				else
1695 					g->moffset = offset;
1696 			}
1697 			offset = -1;
1698 			newlen = 0;
1699 			break;
1700 		}
1701 	} while (OP(s) != OEND);
1702 
1703 	if (g->mlen == 0) {		/* there isn't one */
1704 		g->moffset = -1;
1705 		return;
1706 	}
1707 
1708 	/* turn it into a character string */
1709 	g->must = malloc((size_t)g->mlen + 1);
1710 	if (g->must == NULL) {		/* argh; just forget it */
1711 		g->mlen = 0;
1712 		g->moffset = -1;
1713 		return;
1714 	}
1715 	cp = g->must;
1716 	scan = start;
1717 	memset(&mbs, 0, sizeof(mbs));
1718 	while (cp < g->must + g->mlen) {
1719 		while (OP(s = *scan++) != OCHAR)
1720 			continue;
1721 		clen = wcrtomb(cp, OPND(s), &mbs);
1722 		assert(clen != (size_t)-1);
1723 		cp += clen;
1724 	}
1725 	assert(cp == g->must + g->mlen);
1726 	*cp++ = '\0';		/* just on general principles */
1727 }
1728 
1729 /*
1730  - altoffset - choose biggest offset among multiple choices
1731  == static int altoffset(sop *scan, int offset);
1732  *
1733  * Compute, recursively if necessary, the largest offset among multiple
1734  * re paths.
1735  */
1736 static int
1737 altoffset(sop *scan, int offset)
1738 {
1739 	int largest;
1740 	int try;
1741 	sop s;
1742 
1743 	/* If we gave up already on offsets, return */
1744 	if (offset == -1)
1745 		return -1;
1746 
1747 	largest = 0;
1748 	try = 0;
1749 	s = *scan++;
1750 	while (OP(s) != O_QUEST && OP(s) != O_CH) {
1751 		switch (OP(s)) {
1752 		case OOR1:
1753 			if (try > largest)
1754 				largest = try;
1755 			try = 0;
1756 			break;
1757 		case OQUEST_:
1758 		case OCH_:
1759 			try = altoffset(scan, try);
1760 			if (try == -1)
1761 				return -1;
1762 			scan--;
1763 			do {
1764 				scan += OPND(s);
1765 				s = *scan;
1766 				if (OP(s) != O_QUEST && OP(s) != O_CH &&
1767 							OP(s) != OOR2)
1768 					return -1;
1769 			} while (OP(s) != O_QUEST && OP(s) != O_CH);
1770 			/* We must skip to the next position, or we'll
1771 			 * leave altoffset() too early.
1772 			 */
1773 			scan++;
1774 			break;
1775 		case OANYOF:
1776 		case OCHAR:
1777 		case OANY:
1778 			try++;
1779 		case OBOW:
1780 		case OEOW:
1781 		case OLPAREN:
1782 		case ORPAREN:
1783 		case OOR2:
1784 			break;
1785 		default:
1786 			try = -1;
1787 			break;
1788 		}
1789 		if (try == -1)
1790 			return -1;
1791 		s = *scan++;
1792 	}
1793 
1794 	if (try > largest)
1795 		largest = try;
1796 
1797 	return largest+offset;
1798 }
1799 
1800 /*
1801  - computejumps - compute char jumps for BM scan
1802  == static void computejumps(struct parse *p, struct re_guts *g);
1803  *
1804  * This algorithm assumes g->must exists and is has size greater than
1805  * zero. It's based on the algorithm found on Computer Algorithms by
1806  * Sara Baase.
1807  *
1808  * A char jump is the number of characters one needs to jump based on
1809  * the value of the character from the text that was mismatched.
1810  */
1811 static void
1812 computejumps(struct parse *p, struct re_guts *g)
1813 {
1814 	int ch;
1815 	int mindex;
1816 
1817 	/* Avoid making errors worse */
1818 	if (p->error != 0)
1819 		return;
1820 
1821 	g->charjump = (int*) malloc((NC + 1) * sizeof(int));
1822 	if (g->charjump == NULL)	/* Not a fatal error */
1823 		return;
1824 	/* Adjust for signed chars, if necessary */
1825 	g->charjump = &g->charjump[-(CHAR_MIN)];
1826 
1827 	/* If the character does not exist in the pattern, the jump
1828 	 * is equal to the number of characters in the pattern.
1829 	 */
1830 	for (ch = CHAR_MIN; ch < (CHAR_MAX + 1); ch++)
1831 		g->charjump[ch] = g->mlen;
1832 
1833 	/* If the character does exist, compute the jump that would
1834 	 * take us to the last character in the pattern equal to it
1835 	 * (notice that we match right to left, so that last character
1836 	 * is the first one that would be matched).
1837 	 */
1838 	for (mindex = 0; mindex < g->mlen; mindex++)
1839 		g->charjump[(int)g->must[mindex]] = g->mlen - mindex - 1;
1840 }
1841 
1842 /*
1843  - computematchjumps - compute match jumps for BM scan
1844  == static void computematchjumps(struct parse *p, struct re_guts *g);
1845  *
1846  * This algorithm assumes g->must exists and is has size greater than
1847  * zero. It's based on the algorithm found on Computer Algorithms by
1848  * Sara Baase.
1849  *
1850  * A match jump is the number of characters one needs to advance based
1851  * on the already-matched suffix.
1852  * Notice that all values here are minus (g->mlen-1), because of the way
1853  * the search algorithm works.
1854  */
1855 static void
1856 computematchjumps(struct parse *p, struct re_guts *g)
1857 {
1858 	int mindex;		/* General "must" iterator */
1859 	int suffix;		/* Keeps track of matching suffix */
1860 	int ssuffix;		/* Keeps track of suffixes' suffix */
1861 	int* pmatches;		/* pmatches[k] points to the next i
1862 				 * such that i+1...mlen is a substring
1863 				 * of k+1...k+mlen-i-1
1864 				 */
1865 
1866 	/* Avoid making errors worse */
1867 	if (p->error != 0)
1868 		return;
1869 
1870 	pmatches = (int*) malloc(g->mlen * sizeof(int));
1871 	if (pmatches == NULL) {
1872 		g->matchjump = NULL;
1873 		return;
1874 	}
1875 
1876 	g->matchjump = (int*) malloc(g->mlen * sizeof(int));
1877 	if (g->matchjump == NULL) {	/* Not a fatal error */
1878 		free(pmatches);
1879 		return;
1880 	}
1881 
1882 	/* Set maximum possible jump for each character in the pattern */
1883 	for (mindex = 0; mindex < g->mlen; mindex++)
1884 		g->matchjump[mindex] = 2*g->mlen - mindex - 1;
1885 
1886 	/* Compute pmatches[] */
1887 	for (mindex = g->mlen - 1, suffix = g->mlen; mindex >= 0;
1888 	    mindex--, suffix--) {
1889 		pmatches[mindex] = suffix;
1890 
1891 		/* If a mismatch is found, interrupting the substring,
1892 		 * compute the matchjump for that position. If no
1893 		 * mismatch is found, then a text substring mismatched
1894 		 * against the suffix will also mismatch against the
1895 		 * substring.
1896 		 */
1897 		while (suffix < g->mlen
1898 		    && g->must[mindex] != g->must[suffix]) {
1899 			g->matchjump[suffix] = MIN(g->matchjump[suffix],
1900 			    g->mlen - mindex - 1);
1901 			suffix = pmatches[suffix];
1902 		}
1903 	}
1904 
1905 	/* Compute the matchjump up to the last substring found to jump
1906 	 * to the beginning of the largest must pattern prefix matching
1907 	 * it's own suffix.
1908 	 */
1909 	for (mindex = 0; mindex <= suffix; mindex++)
1910 		g->matchjump[mindex] = MIN(g->matchjump[mindex],
1911 		    g->mlen + suffix - mindex);
1912 
1913         ssuffix = pmatches[suffix];
1914         while (suffix < g->mlen) {
1915                 while (suffix <= ssuffix && suffix < g->mlen) {
1916                         g->matchjump[suffix] = MIN(g->matchjump[suffix],
1917 			    g->mlen + ssuffix - suffix);
1918                         suffix++;
1919                 }
1920 		if (suffix < g->mlen)
1921                 	ssuffix = pmatches[ssuffix];
1922         }
1923 
1924 	free(pmatches);
1925 }
1926 
1927 /*
1928  - pluscount - count + nesting
1929  == static sopno pluscount(struct parse *p, struct re_guts *g);
1930  */
1931 static sopno			/* nesting depth */
1932 pluscount(struct parse *p, struct re_guts *g)
1933 {
1934 	sop *scan;
1935 	sop s;
1936 	sopno plusnest = 0;
1937 	sopno maxnest = 0;
1938 
1939 	if (p->error != 0)
1940 		return(0);	/* there may not be an OEND */
1941 
1942 	scan = g->strip + 1;
1943 	do {
1944 		s = *scan++;
1945 		switch (OP(s)) {
1946 		case OPLUS_:
1947 			plusnest++;
1948 			break;
1949 		case O_PLUS:
1950 			if (plusnest > maxnest)
1951 				maxnest = plusnest;
1952 			plusnest--;
1953 			break;
1954 		}
1955 	} while (OP(s) != OEND);
1956 	if (plusnest != 0)
1957 		g->iflags |= BAD;
1958 	return(maxnest);
1959 }
1960